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Abstract

The space debris management and alleviation in the microgravity environment is a dynamic research theme of contemporary
interest. Herein, we provide a theoretical proof of the concept of a lucrative energy conversion system that is capable for
changing the space debris into useful powders in the international space station (ISS) for various bids. A specially designed
broom is adapted to collect the space debris of various sizes. An optical sorting method is proposed for the debris segregation
in the ISS by creating an artificial gravitational field using frame-dragging or gravitomagnetism. An induction furnace is
facilitated for converting the segregated metal-scrap into liquid metal. A fuel-cell aided water atomization method is proposed
for transforming the liquid debris into metal powder. The high-energetic metal powders obtained from the space debris could be
employed for producing propellants for useful aerospace applications, and the silicon powder obtained could be used for making
soil for fostering the pharmaceutical-flora in the space lab in the future aiming for the scarce-drug discoveries for high-endurance
health care management. The proposed energy conversion system is a possible alternative for the space debris extenuation, and
its real applications in orbiting laboratories through the international collaboration for the benefits to humanity.

Introduction

The International Space Station (ISS) is an exclusive scientific podium and an orbiting laboratory that has
facilitated interdisciplinary researchers in 106 countries to conduct various in vitro trials in microgravity.
Although each ISS partner has diverse scientific objectives, the aggregate aim is to encompass the experience
and knowledge garnered to benefit all humankind [1, 2]. This is predominantly factual for nurturing medicinal
plants in ISS for scarce-drug discoveries for the benefits of humanity [3]. This article is a part of the scientific
odyssey that resulted from a collaboration among members from various research groups from physical,
chemical, material and biological sciences. Literature review reveals that through fundamental research
and development a few products and services derived from space station activities are entering the souk
and furthering healthy and peaceful life on Earth [1], which is motivating us to propose more challenging
research in ISS. It is evident from the executive summary of ISS, which encapsulates the achievements of
innovative research on the orbiting laboratory that had created a positive impact on the quality of life on
Earth and the future scope of the interdisciplinary researches globally for creating an impact on scientific
advancement [1-16]. Herein we conduct theoretical studies for providing the proof of the concept of space
debris recycling and energy conversion system in a microgravity environment with an intention to carry out
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real-time experiments in the space platform through the multi-national collaboration with wide scope and
benefits to humanity.

The growing utilization of outer space for the advancement of the standard of living and hunt for wisdom
has led to the accretion of space debris or space junk in high-density satellites orbits. Various reports and
industrial engineering data on the usefulness of the prevailing debris extenuation methods are inadequate for
a realistic conclusion [4-16]. J.-C. Liou et al. [4-8] reported that as the space debris volume remains to rise
over time due to the global space activities in recent years, there is a need to update the debris alleviation
normal exercises to stimulate competent and active practices to better abate the risks from space debris
for the benign manoeuvres of future space missions. Literature review reveals that the frequency variations
of orbital launches are due to the in-house reasons in the participating countries [17]. The current trend
of rocket launches globally shows that in the next few decades’ large volumes of space debris will be in
orbit, which will create a serious threat to future missions. It is comprehended by other investigators that
albeit all upcoming space launches are called off, the space debris already exist will be tendering threats
for numerous decades to come before all of them re-enter earth and burn off [14-17]. Deepaa Anandhi et
al., [17] reported the need for an urgent action on the space debris mitigation independently or jointly by
the various beneficiary organizations utilizing the orbital space for meeting the future global needs. Though
numerous on going debris de-orbiting programs are intact, the engineering data on the usefulness of the
prevailing debris extenuation procedures are inadequate for a reliable judgment [18]. Briefly, an enhanced
volume of space debris has become a menace to live satellites, ISS and various space missions. Although
many studies have been reported over the decades on space debris management and alleviation, the space
system designers reported that there are no foolproof techniques for tracking and mitigation of space debris
having the object size between 1 cm and 10 cm, which could cause significant damage to live satellites, future
space vehicles and the ISS [18]. Although every space agency is persuaded to reduce space debris whenever
feasible by using their state-of-the-art modus operandi, there may be some parts that would be liberated
and orbiting for obvious causes beyond control. This situation was observed by many space agencies when
a physical part of the space vehicle was departed in geostationary transfer orbit (GTO) during a multiple
payload mission [10]. Therefore, it is essential, rather enviable, perhaps predestined for inventing lucrative
and efficient methods of space debris mitigation. United Nations (UN) Committee on the peaceful uses of
outer space reported that the most challenging part of the space operations is the collision avoidance. It also
reported that the space debris curing issues certainly entails joint action by all participants [11].

The central idea of the space broom governed by the dual-head electromagnetic (DHEM) device [19], is to
mitigate the intermediate size of the space debris object, which could otherwise pierce holes in the structure
of the ISS and live satellites, particularly in the low earth orbit. It is estimated that the space debris could
crash any space vehicle at a velocity greater than 48,280 km/hr [18]. Hao Jiang et al. [20] carried out
tests in microgravity and reported that robotic grippers based on dry adhesion are a workable option for
purging space debris in low Earth orbit. The DHEM space broom with variable sweeping speed developed
by V.R.Sanal Kumar et al. [19] could be a useful method for the space debris mitigation and its collection
for recycling it in the orbiting space lab through the lucrative energy conversion methods. The DHEM space
broom could be redesigned for capturing the inactive satellites, rocket fragmentation debris, and other non-
functional objects or debris pieces from the low earth orbit. The environmental report (2019) of the European
Space Agency (ESA) highlighted that space debris mitigation requires a level playing field to achieve long-
term stability. The ESA highlighted in its annual space environment report (2019) that the production of
space debris via impacts and blasts in orbit could lead to an exponential growth in the volume of artificial
objects in space [21]. Therefore, the menace of space debris to the future of spaceflight, united with the
closely world-wide embracing of the U.N convention (1972) on global accountability for damage caused by
space objects, created the need for a set of internationally accepted space debris mitigation measures [22].
Recently the ESA emphasized the need of world-wide devotion to invoking space debris alleviation measures
lucratively. The accessible global literature reveals that no one attempted yet (2020), the recycling technique
to change the debris into powders in the ISS for multiple applications [14, 15].

Report (2019) reveals that India contributed around 400 pieces of orbital debris through their anti-satellite
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missile test (ASAT), which increases the risk of threat to the ISS on the order of 44 % [18]. Since the test
was done in a low altitude to restrict the orbital lifespan of ensuing debris, the space agency claimed that
whatever debris that is generated would decay and fall back onto the earth within weeks and the ISS will
not be at risk, as it is in the higher orbit. However, there are possibilities of the orbital lifting of space
debris due to missile impact, which could create threat to the ISS. Therefore, in future such tests must
be avoided by all the space agencies or must be done with caution as the ISS is a human inhabitant and
an orbiting laboratory, which is to be protected with zero-risk. It is well known that the non-responsive
satellites are the high-risk space debris to the operational satellites and the ISS. The primary structure of
most of the satellites consists of aluminum, beryllium, stainless steel and titanium. The appendage booms,
antenna dishes (made of aluminum / steel), platforms, solar panels (made of silicon / germanium), and
support trusses, are common secondary structures. The mounting brackets, cable supports, copper wiring
and connector panels, electronic boxes, and silicon made printed circuit board (PCB) are categorized as
tertiary structures [23]. Literature review reveals that Aluminum 6061, a potential fuel for solid propellant,
is used as the primary structure of the CubeSats [24]. Therefore, any combined method to mitigate and
recycle the space debris with an innovative energy conversion method could create a win-win situation, which
is attempted herein.

In this paper a cogent conceptual method has been proposed for converting the space debris into lucrative
solid fuels in the ISS with artificial gravitational field. Note that M.Tajmar [25] reported two different system
designs that could generate an artificial gravitational field using frame-dragging or gravitomagnetism. It
is known that frame-dragging is an effect on spacetime, predicted by Albert Einstein’s general theory of
relativity, which would be used to generate artificial gravitational fields similar to electric fields generated
by time-varying or moving magnetic fields with enhanced field strength [25].

The space broom operated by a DHEM device is used for capturing the space debris from the space envi-
ronment [19]. An optical sorting method will be used in the ISS for segregating the collected debris into
individual material and metal scraps. Using an electric channel induction furnace, the separated metal scraps
are converted into the molten metal form. Further, a lucrative water atomization system operated with a
fuel cell has been adopted for converting the molten metal into powder form, which produce the end prod-
ucts, viz., the metal powder and the water. The segregated selected powders are utilized for making solid
propellant for chemical propulsion. The specially separated silicon powders are used for building feigned soil
for nurturingpharmaceutical flora in the ISS for the scarce drugdiscovery for the high-endurance health care
management [3, 26-28]. An inclusive layout of the proposed methodology for space debris mitigation and
the energy conversion technique are described in the subsequent section.

METHODOLOGY

The comprehensive layout of the energy conversion system used for changing the space debris into fuel
and feigned soil is shown in Fig.1(a-b). The detailed report of an analytical case study, along with the
requirements of electricity and water in the ISS for separating aluminum and silicon powder from the space
debris, is presented in the subsequent section (see Table-1). The following lucrative steps are proposed for
the collection of composite space debris and further its conversion into powder form for various applications
in physical, chemical, pharmaceutical and biological sciences.
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Figure 1(a) The proposed process layout for converting the space debris into powders.

Figure 1(b) The proposed process layout of the water atomization process.

Debris collection method

The DHEM space broom proposed by V.R.Sanal Kumar et al. [19] is chosen as a profitable method for the
collection of space debris to the ISS. The feedback controlled variable sweeping speed DHEM space broom
will be capable of capturing all the space debris nearing to the ISS including the non-functional objects
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having an average size between 1 cm and 10 cm, which are moving with different velocities and directions
and polluting the space environment and creating risk to live satellites and space vehicles. Note that the
debris capturing net made ofGraphene material, and the bidirectional plasma thruster [29], could be other
options for space debris collection for the operational protection redundancy. The technology of the net
proposed by ESA [30] in this regard could be used for capturing the debris after decelerating it using plasma
thrusters.

Debris sorting method

A mechatronic control device, with cameras and/or lasers, is proposed for separating the irregular-shaped
debris into discrete materials, viz., magnesium, aluminum, etc. [31]. The device could achieve to sort out
2000-3000 particles per second, with a minimum power consumption (~1 kW) [32, 33].

Debris melting method

The amount of electrical energy required for the electrical channel induction furnace for melting the collected
debris in ISS is estimated onboard using an algorithm with traditional thermodynamics’ equations. The
evolved gases from the molten debris are collected in separate canisters for the profitable design of the space
thrusters for numerous applications onboard and off board, which comprises the desirable orbital tweaks of
the ISS. The entire system will be in a capsule facilitated with an artificial gravity generator to create a
gravity induced free-falls of fluids. As stated earlier, an artificial gravity could be created using an artificial
gravitational field using frame-dragging or gravitomagnetism [25] or by invoking a centripetal force.

The powder fuel production

A well- designed tundish is equipped in the ISS for storing the liquid paste in the molten state (see
Fig.1(b)).And for converting the molten material into small granules, a high velocity water jet is facili-
tated in the atomization process in thespace lab with multiple nozzles. The small granules could be placed
in the alloy powder box after sorting out, and the water will be recycled through the dewatering system and
filters. The collected granules are dried and the sizes of the granules are regulated according to onboard
applications. A loss of 3-5 % is anticipated during the sieving of powders. The required water for the atom-
ization administration is acquired from the proposed recycling, alkaline fuel cell, and electrolysis methods.
The proposed electrolysis method is the alkaline water electrolyzer, which could operate at a low temper-
ature (80o C – 200o C) with an efficiency of 70-80 %. The proposed system is capable to prevent powder
oxidation and thermal self-ignition [34]. Note that until recently (2019) water atomization process was not
used to creating aluminum and aluminum alloy powders primarily due to the anticipated detonation risk due
to the secretion of hydrogen as a result of powder interaction with water. Furthermore, water atomization
process was not, recommended due to the apprehension of powder oxidation and the deterioration of powder
properties. Admittedly, these problems have been resolved at the Institute for Problems of Materials Science
(Kiev, Ukraine). These are succinctly reported by Oleg D. Neikov et.al. [34].

In our system, the heat energy obtained from the electrolysis process is used for drying the powders. The
desired powders are separated with an objective for creating feigned soil in the ISS for cultivating phar-
maceutical flora. Furthermore, the other selected metal powders are mixed with oxidizers and binders for
making solid propellants for chemical propulsion. The powders, essentially aluminum, obtained with the
desirable properties of solid propellants could be used for micro-thrusters for nanosatellites or devising other
propulsion systems in the space lab. The silicon powder segregated from the debris powder could be used
for making artificial soil in the ISS for vegetation as it plays important roles in mineral nutrition of plants.
Note that silicon fertilizers today are very common in many crop production systems worldwide as it shows
the significant amount of evidence in improving crop productivity [35]. The comprehensive process layout
highlighting the water atomization process is shown in Figure 1(b). As mentioned earlier, the water at-
omization process and the other systems will be placed in a capsule where the artificial gravity environment

5
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persists. In this study, we are suggesting a water-cooling method for cooling down the system. The steam
evolved during the process will be collected in a different water vapour storage canister. The steam will be
regulated in the gaseous phase and will be used for the selective thrust-vectoring of the space station / ISS.
Alternatively, steam evolved during the process can also be recycled and used as water resources for the
atomization process. The temperature inside the capsule is maintained using the ATCS (Active Thermal
Control System) which is currently used in the ISS to regulate the temperature [36]. However, a further
experimental study on water atomization and the cooling system in a microgravity environment is required
for its qualification.

AN ANALYTICAL CASE STUDY

In our case study 1 kg of aluminum powder is selected for conversion into useful fuel onboard. It is evident
from Figure 2 that aluminum alloys are the major constituent of the space debris [37], which often collide
with the ISS. Note that using the recommended technique (see Figure1(a-b)), we estimated that, about 97
% of aluminum powder could be acquired from the hoarded aluminum debris. A loss of 3-5 % is anticipated
after the water atomization process because of the sieving.

Note that by varying the water jet speed we could achieve the desired size of the powder. Granules’ size
can be adjusted by either the water jet pressure or the nozzle size adjustment in which the molten liquid is
poured [34, 38]. Water jet pressure can be controlled either by the nozzle jet size or water flow rate.

The process layout is depicted in Figure 1(a-b) . The required amount of electric power, water, heat, and
the scale of pressure for converting the 1 kg of aluminum debris into fuel are highlighted in Table-1 . In
order to process 1 kg of debris in a visual separator, an amount of 1.85 milliwatts power is required at an
operating temperature of 40o C at a pressure of 700 kPa.

6
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Figure 2: A circle graph is demonstrating the percentage of materials that frequently blow on ISS.

Table 1 Power and Water Requirements for Transforming 1kg of Aluminum into Fuel [18]

Process Electricity (W) (Power) Water Temperature (°C) Pressure (Pa)

Segregation 0.00185* - 40 700000
Liquefaction 273.33** - 750 ** 96520
Liquid alloy to powder conversion 3000-5000** 12 liters/kg** 750-1000 1030000
Recycling unit (Filter and Dewater) 18000 (1500 W/liter of water) Recycling of the generated water 24 for filter & 55 for dewater 101325
Electrolysis 50000*** 60-80 3000000
Bacon fuel cell 33330 9 liters/kg*** 90 101350

* for administering of 1kg scarp in the space lab** for administering of 1kg aluminum*** HydrogenTable
2 The components and the connected materials used in the SNUSAT

Elements Constituents Mass per unit (kg) Amount (Nos.) Allowance (% +/-) Overall Mass (kg)

Sun Sensor Al, Si, Cu 0.005 3 5 0.01575
Earth Sensor Al, FR-4, Cu 0.050 4 10 0.22000
Star tracker Baffle material, Carbon nanotube coating, Cu 0.050 1 10 0.05500
GPS Al, FR-4, Cu, Si 0.050 1 5 0.05250
Reaction wheel Stainless steel 0.045 3 5 0.14175
EPS board Polystyrene 0.105 1 5 0.11025

7
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Elements Constituents Mass per unit (kg) Amount (Nos.) Allowance (% +/-) Overall Mass (kg)

Batteries Lithium-Polymer, FR-4 0.256 1 5 0.28880
Solar Panel Ge 0.100 4 10 0.44000
UHF Transceiver Al, FR-4, Si 0.075 1 5 0.07875
S-band transmitter FR-4, Cu 0.062 1 5 0.06510
S-band antenna Steel 0.100 1 5 0.10500
UHF antenna Al, FR-4, Cu 0.100 1 5 0.10500
Structure Al 0.500 1 10 0.55000
On board Computers’ Al, Cu, Si, FR-4 0.055 1 5 0.05775
EPOIS Camera Material 1.000 1 10 1.10000
Thrusters Al, propellants 0.500 1 10 0.55000
TOTAL 3.063 3.91565

Source: APCL, Aerospace Engineering, SNU, Seoul, The Republic of Korea(Al – Aluminum, Cu - Copper,
Ge – Germanium, Si – Silicon) An amount of 273.33 W electric energy is required for melting 1 kg of
aluminum in the ISS at a temperature of 750o C and pressure of 96.52 kPa. Additionally, 750-1000° C range
heating system is required to retain aluminum in the liquid state at a pressure of 1.03 MPa in the atomization
process of 12 liters of water, obtained from the alkaline fuel cell, at an electric energy consumption of 3-5
kW. The potassium hydroxide is used as an electrolyte in the alkaline fuel cells at a temperature of 90o C
at a pressure of 101.35 kPa. During this process 9 liters of water and 33.33 kW of electricity are acquired as
derivatives for 1 kg of hydrogen. The required amount of water is generated from the Bacon fuel cell for the
atomization process. The estimated electric power needed for atomization, dewatering and filtering processes
is 1.5 kW. Note that a temperature of 55° C for dewatering [39] and 24° C for filtering must be maintained
in the system. The water is segregated into hydrogen and oxygen with the aid of the potassium hydroxide
as an electrolyte at an energy consumption of 50 kW for 1 kg of hydrogen at a temperature range of 60-80o

C, and at a pressure of 3 MPa. The generated hydrogen and oxygen are permitted to recycle in the onboard
system to produce the water continuously for the water atomization process. The required powder, as an
end product with desirable size, is obtained through appropriate sieving. Note that, if necessary, hydrogen
gas could be either transported from the earth or obtained from space by utilizing the Bussard’s ramjet [40].

The solar energy conversion system is invoked for an efficient power generation, as the ISS has 2,500 m2

solar panel, which could produce up to 84–120 kW [41]. Additionally, the fuel cell could contribute 33.33 kW
of electricity, which mainly utilized for the recycling process. In the proposed technique, a total amount of
40 kW is required for processing 1 kg of aluminum. It is estimated that up to 1 kW power can be generated
using a solar panel with one square meter area.

The satellite, named SNUSAT-2, a 3 U CubeSat designed and developed by the Seoul National University
(SNU), South Korea for remote sensing is selected for our analytical case study. The main elements and
the connected materials employed in the SNUSAT are given inTable-2 . It is evident from the component
details that once this SNUSAT becomes non-operational, it gives 1350 g of aluminum powder. In the case
of a non-operational Vanguard-1 [42] we could collect an amount of 1420 g of aluminum through recycling,
which could be converted into fuels for spacecraft propulsion.

CONCLUDING REMARKS

A theoretical proof of the concept complemented with the pragmatic methodological approach has been
established herein for converting space debris lucratively into fuels and also for building soil from silicon
powder for fostering the pharmaceutical flora in the space lab of ISS for the drug discoveries. During the
recycling process at the artificial gravity condition, the evolved gases could be stored in the canisters for
devising thrusters for various aerospace propulsion applications. Note that, using these thrusters, the ISS

8
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could be shifted to the subsequent orbit after mitigating all space debris from the nearest surroundings.
Briefly, the recycling energy conversion system proposed herein could be utilized for the possible orbital
trajectory changes of space labs. Through our analytical estimation we concluded that 1 kg of aluminum
debris could produce ~ 0.96-0.98 kg of aluminum powder for producing valuable fuel for chemical propulsion.
Additionally, we could conclude that the silicon powder created could be used for producing feigned soil for
fosteringpharmaceutical flora in the ISS to discover scarce-drugs for high-endurance health care management.
It leads to say that one can aim for cultivating medicinal plants in the space lab for discovering suitable
drugs for enhancing the heat capacity ratio of blood for reducing the risk of asymptomatic stroke and acute
heart failure in the gravity and microgravity conditions presumably due to the variations in blood viscosity
and turbulence level in the circulatory systems of human being and animals. These are succinctly reported
in toto by V.R.Sanal Kumar et al. [3, 26-28]. It is known that cardiovascular risk is higher in astronauts /
cosmonaut but the fundamental cause of such risk is still unknown to medical science [3, 43, 44]. Michael
D. Del et al. [43] highlighted that Apollo lunar astronauts exhibit higher cardiovascular disease mortality.
It is important to note that the world-wide space agencies and nations are contemplating for the extended
manned missions to Mars and theMoon . In such manned missions, health risks could be escalated as travel
goes beyond the Earth’s protective magnetosphere into the more intense deep space radiation environment.
Therefore, suitable drug discovery is inevitable for increasing the thermal tolerance level [3, 28] for reducing
the cardiovascular risk of the inhabitants (human being / animal) of the space vehicle or space lab. Clare
Wilson [44] reported (2019) that being in microgravity can have strange effects on the body, including
people’s blood flow backwards. K. Marshall-Goebe [45] reported that exposure to a weightless environment
during space flight results in a chronic headward blood and tissue fluid shift compared with the upright
posture on Earth, with unknown consequences to cerebral venous out flow. All these findings lead to say
that high endurance health care management is required for reducing the risk of cardiovascular disease
mortality of astronauts / cosmonaut for conducting experiments in the space labs. Further discussion on the
medical application of our study is beyond the scope of this short communication.

Briefly, our theoretical concept study will create a win-win situation through real time experiments in the
orbiting space lab by recycling the space debris lucratively, for creating end products for the benefits to
humanity. We concluded that the proof of the theoretical concept presented herein could be implemented in
real-time in any space lab for the debris mitigation and recycling in accordance with the procedural require-
ments set for meeting the safety and mission assurance [46-50]. Note that additional materials (fuel/oxidizer)
and/or additives must be available on board for making solid propellants for getting desirable specific impul-
se, as the case may be. Additionally, sufficient water must be produced using on-board fuel-cell for vegetation.
These are identified as minor limitations in making the desirable end product without any prerequisite. Ne-
vertheless, barring all limitations, we concluded that the space debris-recycling and the energy conversion
system described methodologically herein are viable options for producing the end products in the ISS for
various biological and aerospace applications in the future for the benefits to humanity.
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