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Abstract

Globally, temperate grasslands have been significantly altered and subsequently degraded as a result of increased human

population, urbanisation, and agriculture. Weeds now dominate most of these ecosystems, resulting in the loss of ecosystem

services, reduced carrying capacity for farmers, and loss of habitat for native animals. This paper reviews the literature of

temperate grassland restoration efforts from across the globe, and observes what techniques and combinations have been used

successfully and unsuccessfully to reduce weed dominance and promote native recruitment and establishment. The findings of

this review clarify that weed management should be ongoing in all projects, while optimal revegetation methods and grazing

regimes are specific to site location and study scope. There is a need for an increase in long-term monitoring of restoration

projects in order to make assumptions with greater confidence.

Introduction

Temperate grasslands once covered almost 9 million km2, which is equivalent to about 8% of the earth’s
surface (IUCN, 2013). They include the Prairies of North America, the Pampas of South America, the South
African Veldts, the Tussock grasslands of Australia and New Zealand, and the Steppes of Eurasia (Table
1). These biomes are often species rich (Faber-Langendoen & Josse, 2010), providing natural habitat for
many plants, animals and soil biota. In addition, these grasslands offer invaluable ecosystem services such
as high-quality forage for herbivores (Boval & Dixon, 2012), harbour pollinators for crops and native species
(Bendel et al ., 2019), provide significant levels of carbon sequestration (Ezeet al ., 2018), and are places for
many recreational and cultural activities (Gomez-Limon & de Lucio, 1995). They also afford many other
environment stabilizing services, such as soil erosion control and mitigation of flood waters (Sankaran &
Anderson, 2009).

Given the significance and contribution of this ecosystem, they’re currently one of the most altered ecosystems
in the world (Suttieet al ., 2005), warranting immediate action to restore these beneficial services. Estimates
suggest that 70% of these ecosystems were altered or degraded before 1950, and a further 14% by 1990
(Hassanet al ., 2005). This decline in ecosystem health is directly attributed to rapid population growth and
subsequent urban expansion (Williams et al ., 2005), as well as the concomitant conversion of these fertile
ecological systems into sites for agriculture, particularly for cropping systems and livestock grazing (Martin
et al ., 2005; Prober et al ., 2005; Bartolome et al ., 2009; Sankaran & Anderson, 2009). While increased
protection of the remaining intact system is critical, it is not enough to ensure the future resilience and
functionality of these systems. Therefore, this paper reviews restoration methods, both active and passive,
that reduce invasive plant biomass within global degraded temperate grasslands to promote the return of
natives and subsequent ecosystem functionality at a landscape scale.
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Ecological Restoration Methods

Ecosystem degradation is the movement of a high functioning and healthy ecosystem into an altered state
whereby ecosystem functions are reduced or lost as a result of a single or multiple disturbance event, usually
due to human actions (Suding & Hobbs, 2009). Healthy ecosystems are often resilient enough to withstand
moderate disturbances, and these events can be important for maintain biodiversity and healthy ecosystems.
When the intensity and/or frequency of these disturbance events change, an ecosystem can undergo hysteresis
and pass through irreversible degradation thresholds (Suding & Hobbs, 2009). An example of this was
observed in the grasslands of California where the combined factors of weed invasion by Mediterranean species
and altered grazing regimes from the introduction of livestock as well as multiple severe drought seasons
resulted in the sever degradation of this ecosystem, pushing it into an alternative stable state (Bartolome
et al ., 2009). Different levels of degradation can influence the scale of restoration required, depending on if
the biotic factors (weed invasion), abiotic factors (drought or altered fire regimes) or a combination of both
are affected.

Throughout the world, grasslands are currently subjected to multiple degrading pressures. The most common
of these pressures include; habitat fragmentation, which has been observed in Australia (Prober et al .,
2005), New Zealand (Standish et al ., 2009) and Europe (Kiehl, 2010), altered grazing pressures in the
USA (Martin et al ., 2005; Bartolome et al ., 2009), Africa ( Sankaran & Anderson, 2009) and Australia
(Prober et al ., 2005), desertification and bush encroachment have been observed in Africa (Sankaran &
Anderson, 2009), and climate change has been linked to the gradual decline in grasslands throughout China
(Zha & Gao, 2011). These degrading pressures often act to promote the invasion of exotic plants, which in
turn create positive feedback loops that maintain the degraded altered state. The alternative state theory
explains how internal disturbances and external shocks lead to positive feedback loops which promote a stable
degraded state (Chisholm et al ., 2015). In this state, the degrading factors have altered the environment to
promote their own development, as observed in south east Australian grasslands where annual exotic grasses
outcompete the perennial native grass, Themeda by developing new positive feedback loops that increases
soil nitrogen, and unless the available soil nitrogen levels are reduced, the invasive species will maintain
its competitive edge (Prober et al ., 2009). Further, cross-facilitation of invasive plant feedback loops has
been identified by observing Agropyron cristatum in northern USA, which alters native soil biota and thus,
soil dynamics (Jordan et al ., 2008). This reduces the competitiveness of the native vegetation, promoting
niche availability for the invasiveBromus inermis (Jordan et al ., 2008). It is in this aggressive context that
ecological restoration needs to reverse and prevent further degradation, and then assist in the recovery of an
ecosystem. An important element in this task is to more clearly understand how human behaviour influences
different aspects of an ecosystem (Schroder, 2009). Restoration models have been evolving for several decades
(Suding & Hobbs, 2009), and have proven to be successful for prioritising large- and small-scale restoration
projects.

The restoration of weed-dominated grasslands has received extensive both popular and academic interests.
Native tufted perennial grasses have been described as keystone species as they resist weed invasion and
maintain ecosystem processes (Stromberg et al ., 2009; Proberet al ., 2005). Human induced disturbance
has resulted to the decline of these native grasses and thus non-native perennial grasses have established,
which significantly reduces the carrying capacity and biodiversity. This has been observed in grasslands
dominated byNassella trichotoma throughout south-eastern Australia (Campbell & Nicol, 1999; Jacobs &
Everitt, 2012), South Africa (Joubert, 1984) and New Zealand (Lameroux et al ., 2011; Lusk et al ., 2017).
Annual weeds are also highly problematic, and outcompete native perennial grasses in their early life stages,
and this is most prevalent after disturbance (Musil et al ., 2005; Bartolome et al ., 2009; James et al ., 2011).
Because invasive plants are generally one of the main drivers for holding these ecosystems in degraded states,
the main focus of restoration efforts is on reducing the dominant weed population and promoting competition
from native species. Passive and active restoration techniques have been used in diverse combinations to
achieve this outcome at varying levels of success throughout different temperate grasslands (Table 2).

Passive restoration
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Passive ecological restoration involves removing human induced degrading pressures from a site with minimal
remediation. In many cases, it is presumed that non-target species will expand without human intervention,
however many passive restorations have observed weeds decline with sufficient native recruitment (Sinkins &
Otfinowski, 2012; Valkoet al ., 2017). Notable vegetation shifts often occur within 10 years of rest (Smallbone,
2014), however, some may take several decades to reach similar species richness as the remnant sites, and
even then, the composition of vegetation can significantly differ (van de Merwe & van Rooyen, 2011).

Successful passive restoration involves careful grazing management and the ability for target species to recruit
and establish. Rapid recovery of a degraded Hungarian alkaline grassland was observed (within one year) in
sites directly adjacent a natural grassland, and within six years, all sites where restored regardless of proximity
to the remnant site (Valko et al ., 2017). In this example, the dispersal of native plant propagules was
promoted by livestock roaming between natural and degraded sites (Valkko et al ., 2017). Grazing animals
were also observed to provide an important service in maintaining species richness for highly productive
Themeda grassland in south-east Australia (Schultz et al ., 2011). Grasslands often require disturbances
such as grazing or fire to maintain species richness and grazing animals remove excess phytomass in order
to generate niche space for rarer species.

While grazing plays an important role in maintaining highly productive grasslands, those suffering extensive
degradation or of lower productivity often benefit from the complete removal of grazing livestock. Grazing
exclusion is a cost-effective tool for passive restoration, particularly if native species are well represented.
A long-term (20 and 30 years) grazing exclusion zone was developed in the steppe grasslands of China,
which observed an increase in perennial grass cover, as well as higher density bud banks of these favourable
grasses when compared to the grazing sites (Zhao et al ., 2019). The long-term (40 years) removal of cattle
from northern fescue prairies in Canada was effective for reducing some invasive plants, but not others,
including Poa pratensis , which in some areas occupied up to 90% of the canopy (Sinkins & Otfinowski,
2012). Generally, grassland species have short-lived seedbanks and if desirable species are rare, or the site is
isolated from remnant patches, the seedbank will continue to diminish (Bossuyt & Hermy, 2003). Further,
the recruitment of native species in degraded temperate grasslands is rare, as seedlings often fail to survive
as a result of competitive weed interactions (Morgan, 2001; Lenz & Facelli, 2005). This demonstrates that
isolated sites dominated by aggressive weeds may not be suitable for passive restoration. While passive
restoration has proven successful under specific conditions, in sites where invasive plants have dominated for
several decades and biotic and abiotic thresholds have been crossed, active intervention will be required.

Active restoration

Active ecological restoration involves the integration of management techniques, such as revegetation, her-
bicide application, or mechanical soil disturbance to take an ecosystem from a degraded state to one that is
functional, self-sustaining and resilient. In weed dominant systems, restoration efforts that focus to remove
invasive plants and promote dense, native competition are often the most successful. In order to actively
restore a degraded landscape, understanding the sites history can be critical. The history of a site can
identify the factors that moved it into a degraded state, and whether these changes occurred rapidly or
continuously over an extended interval (Prober & Thiele, 2005). Further, the historic vegetation cover can
act as a restoration target, and guide managers on revegetation assemblages (Prober & Thiele, 2005). Active
restoration of weed dominated temperate grasslands should consider; i) the removal of the weeds biomass,
ii) manipulation of the soil to return it to remnant condition, iii) revegetation of native propagules, and ix)
site specific grazing management.

Targeting weed biomass

The removal of dense weed biomass is critical for reducing competition for naturally recruiting native’s
species, or those added via revegetation efforts. Weeds are often fast growing and form dense canopies,
which reduces light to the soil and can thus restricts the germination and subsequent growth of native seeds
or seedlings. Further, many annual grassland weeds have higher nutrient requirements than native perennial
grasses, thus creating a highly competitive environment for natives to establish. The most commonly used
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methods for reducing weed biomass include hand removal, herbicide application, and fire.

Grubbing, or hand weeding, is a restoration technique that completely removes unwanted plants (Tikka et
al ., 2001). While highly effective, this method is also very labour intensive, and is usually only appropriate
for smaller scale projects (Gibson-Roy et al ., 2007). That said, every three years, community efforts have
successfully removed 34% of the invasive perennial grass, N. trichotomathroughout Canterbury, New Zealand,
which has contained the population from further expansion (Bourdot & Saville, 2019). Grubbing is the best
solution for sites where weeds are newly emerging and easy to remove, or where only a few individuals have
established, such as roadsides. Grubbing can prove a critical tool for post restoration management by quickly
removing reinvading weeds. Grubbing is one of the most effective methods to reduce competition for space,
light and soil nutrients as the whole plant is instantly removed.

Herbicide application is often an economically viable and effective solution for reducing weed competition.
Herbicide works most effectively when integrated with other treatments, as seen by Johnson et al . (2018)
who observed spot-spraying weeds with glyphosate significantly improved the establishment of native forbs
seeds when combined with fencing, and the removal of leaf litter. Aerially spraying clopyralid (at a rate of 37.4
L/ha) was successful in reducing woody weed encroachment and enhancing plant diversity when combined
with prescribed burning (Ansley & Casellano, 2006). Waller et al . (2016) also observed significantly
improved native establishment when herbicide was combined with fire, tillage and rodent exclusions. In a
degraded grazing exclusion zone, Huddleson & Young (2005) identified herbicide application on its own was
effective for not only reduced annual weed competition by 40%, but increased native establishment ten-fold.

In some cases, herbicide application was ineffective at improving native establishment (Cole et al ., 2005;
Conrad & Tischew, 2011). Spot-spraying Snapshot (a pre-emergent herbicide containing trifluralin and
isoxaban) at 2.5kg per 100m2 significantly reduced the emergence of native forbs compared to the controls
in South Africa (Musil et al ., 2005), however was effective for controlling invasive annual grasses. In New
Zealand, boom-spraying flupropanate at 1.49kg a.i/ha reduced native pasture grass by 89% (Lusk et al .,
2017). In these cases, using herbicides selectively can enhance restoration outcomes. Selective herbicides are
used to kill the unwanted weeds, while the desirable species remain unharmed, and this can be attributed
to; plant chemistry, physical growth parameters and plant physiology (Sutton, 1967). It is important to note
that the constant use of herbicides within an ecosystem can promote the emergence of herbicide resistant
populations, thus reducing its long-term effectiveness. Resistance to arguably the world’s most important
herbicide, glyphosate, has already been observed in several weeds (Powles 2008), including Conyza spp.
(Feng et al ., 2004; Urbano et al ., 2007) and Lolium spp. (Baerson et al ., 2002; Yanniccari et al ., 2017). It
is considered important, therefore, that herbicides should be used selectively and in combination with other
control methods in order to secure their effectiveness for the long term.

Fire is one of the most effective tools for restoring temperate grasslands that are dominated by weeds.
Historically, grasslands are ecosystems that are accustomed to frequent fire events, and altered fire regimes
in Australia (Stuwe & Parson, 1977), New Zealand (Mark, 2007; Standish et al ., 2009), the United States
(Foster & Gross 1998; Stromberg 2007), and South Africa (Sankaran & Anderson, 2009) have been linked to
the modification of these landscapes (Archer et al ., 1988; Knicker, 2007). Fire quickly creates available space
for heat resistant seeds to germinate and grow relatively free of competition (Meyer & Schiffman, 1999), and a
number of studies have observed that fire significantly reduces weed species and promotes native recruitment
(Huddleson & Young, 2005; Prober et al ., 2005; Bryant et al ., 2017). Lipoma et al . (2018) identified fire
to significantly reduce the viable number of seeds in the soil compared to pre-burnt conditions, and as most
weeds often have dense seedbanks, this can be beneficial in reducing at least the surface seedbanks of some
species (Peltzer & Douglass, 2019). In contrast, some species, particularly broadleaf weeds such as Echium
plantagineum , are promoted by fire (Prober et al ., 2004). Heat tolerance in seeds has been linked to seed
shape, with more rounded seeds demonstrating higher resistance than thinner seeds in European temperate
grasslands (Ruprecht et al ., 2015). This suggests that follow up weed management of burnt sites is critical
for the successful establishment of native species. In Australia, a summer wildfire was observed to kill 90%
of the standing native spear-grass (Austrastipa spp.), which is considered relatively fire tolerant (Sinclair et
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al ., 2014). Fire also offers soil manipulation services as carbon and nitrogen volatize at 180 and 200OC
respectively (DiTomaso et al ., 2006), therefore hot fires can remove soil nutrients that advantage annual
weeds and further inhibit their re-establishment (Knicker, 2007). Strategically burning when problematic
weeds are actively growing can effectively prevent seed set for that season (Prober et al ., 2005). The
complexity of fire effects suggests that post management plans should be specific for the site in order to
promote the establishment of a healthy native grassland community (Musil et al ., 2005; DiTomaso et al .,
2006).

Soil manipulation

Altered soil nutrients and textures resulting from agriculture have important consequences on the ability for
standing vegetation to take up water and nutrients (Sankaran & Anderson, 2009), therefore restoring these
factors to resemble historic levels can be important for weed suppression. Soil nutrients such as nitrogen,
phosphorous and potassium, are altered by agricultural practises, and even after agriculture has ceased,
the soil nutrient levels remain higher than historical levels (Prober et al ., 2005). Annual weeds become
problematic in environments with high nitrogen, where they are able to quickly dominate over the slower-
growing native perennial grasses (Huddleson & Young, 2005). Perennials invest in developing deeper rots
systems that allow them to store and recycle nutrients, giving established perennials an advantage over
annuals in areas of low nutrient availability. Therefore, integrating control methods that target soil nutrient
levels should be strongly considered for those grassland restoration projects in areas that have a history of
agriculture. This can be achieved with the addition of a carbon source, such as sucrose, can increases soil
microbial activity reduces soil nutrients, and leaves them unavailable for used by nutrient-adapted weeds.
This technique has been used successfully in Australia (Prober et al ., 2005; Hacker et al ., 2011) and the
United States (Blumenthal et al ., 2003). In one reported prairie restoration, carbon addition reduced soil
nitrogen by 86%, which subsequently reduced weed biomass by 54% (Blumenthalet al ., 2003). While carbon
addition has proven to be successful, it is a time and resource-demanding approach. Prober et al . (2004)
used 500g of sugar for every square metre, which was reapplied every three months, making this technique
difficult to implement at a landscape scale. Further, it is only suitable with nitrophillic weeds (Blumenthal
et al ., 2003).

Another method for altering soil dynamics is through mechanical disturbance techniques, such as tilling or
scalping. These techniques are effective for creating an environment that promotes the establishment of
broadcasted seeds and reduces competition from weeds (Tikka et al ., 2001). As many weed seeds respond
positively to disturbance events, tillage can be used to stimulate stored seedbanks (Stromberg et al ., 2007).
Scalping is a technique where top soil is removed from a site and subsequently treated. This is a useful
technique in highly degraded sites that are heavily infested by weeds as it removes their seedbank as well as
the elevated nutrient levels that promote their growth and establishment (Brown et al ., 2017). Consequently,
scalping may result in excessive waste soil, increases erosion rates, habitat loss and disrupted mycorrhizal
symbiosis, and therefore should be implemented with caution (Gibson-Roy et al ., 2010; Gerlach, 2015;
Brown et al ., 2017). Further, weed reinvasion can occur on scalped sites, and Gerlach (2015) identified
weeds to occupy 70% of the ground cover after three years of scalping and revegetation. Scalping treatments
followed by with spot-spraying has proven to be successful within small scale (1m X1m plots) for reducing
all vegetation (Gibson-Roy et al ., 2010).

Revegetation

Establishing dense competition from desirable species is the most effective way to reduce weeds and return
natural ecosystem functionality. In the case that natural regeneration is an unviable option, competition can
be introduced using a variety of methods including direct seeding (Thomas et al ., 2019; Cole et al ., 2005),
transfer of threshing material (Baasch et al ., 2016) or hay (Sengel et al ., 2016), direct drilling (Bakker et al .,
2003) and plant plugs (Tikka et al ., 2001). Hedberg & Kotowski (2010) reviewed the effectiveness of different
revegetation options for fragmented grasslands and found that direct seeding (sowing and broadcasting) to be
the most widely used and most effective for introducing species back to semi-natural systems. However, they
specifically recommended the use of plant plugs for the establishment of rarer species (Hedberg & Kotowski,
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2010).

The effectiveness of species richness in seed mixes has been explored for grassland restorations, with both
high and low rates demonstrating beneficial results dependent on the projects scope (Prober & Thiele, 2005;
Wortley et al ., 2013). The determined species mix is often reflective of the goals of that particular restoration
project; for example, Conrad & Tishew (2011) found a high seed mix of 35 species achieved their goals of
increasing species diversity as well as establishing target species, whilst in another area, Huddleson & Young
(2005) used a mix of only three native grasses to successfully outcompete weeds. Further, it appears that
high species diversity improves the establishment of native species (Barr et al ., 2017), long-term resilience to
weed reinvasion (Carter & Blair, 2012; Scotton, 2016), and provide habitat for recolonization of threatened
wildlife (McDougal & Morgan, 2005). Nemec et al . (2013) has demonstrated seed diversity to be a more
important factor than seed rate for achieving reasonable competition for weeds. While high seed rates can
improve the chances in successfully outcompeting weeds (Tikka et al ., 2001; Bakker et al ., 2003; Barr et
al ., 2017), this approach can waste seeds as a result of higher intraspecific competition, and the associated
high costs can make it unpractical (Sheley et al ., 2006; Wagner et al ., 2011). Seed mixes low in diversity
and density can promote spontaneous secondary succession, and this can stimulate ecosystem processes more
quickly (Lengyelet al ., 2012). We note that the failure of sown seeds to establish can be linked to several
factors, including herbivory, adverse weather conditions, and species competition (Gibson-Roy et al ., 2007),
therefore implementing pre-sowing management that minimises these threats is critical. Whilst it is clear
that the introduction of seeds or seedlings is often critical for the restoration of many degraded temperate
grasslands it is also clear that the best implementation method will be dependent on the site, scale and
funding available to the project (Prober & Thiele, 2005).

Grazing management

Grazers play an important role in the continuous removal of leaf litter and generating available space for
new recruitment (Lengyel et al ., 2012; Török et al ., 2018), which can promote species richness (Towne et al
., 2005; Klaus et al ., 2018). Germination of the native North American prairie grass, Nassella pulchra was
enhanced by burning and sheep grazing (Dyer, 2002). Moderate grazing (30-50 within a 303ha enclosure)
from Bos bisonsignificantly improved the species richness of a Prairie grassland within its later stages of
development (approximately 10-years after revegetation) (Wilsey & Martin, 2015), this was also observed
within tallgrass prairies (Towne et al ., 2005). Livestock can transport seeds of important species over great
distances via endo or ectozoochory if remnant sites are available (Lengyel et al ., 2012; Töröket al ., 2018).
Further, the careful management of paddock rotations for grazing livestock has been identified to be critical
in maintaining genetic diversity for plants threatened by fragmentation (Plue et al ., 2019). High genetic
diversity can allow for a population to react more responsively to disturbance events through improved
resilience.

Overgrazing by livestock is one of the leading causes of grassland degradation (Bartolome et al ., 2009; Zha
& Gao, 2011; Wortleyet al ., 2013). The effects of different degrees of overgrazing were observed by Török
et al . (2018) within four different Hungarian steppe grassland communities. They found that the highest
richness was achieved from low grazing (less than one animal per hectare), but medium was also suitable
(1-2.5 animals per hectare), and grazing densities above this had detrimental effects of species richness.
Further, the different grassland communities responded differently to the grazing intensities suggesting they
are grassland specific (Török et al ., 2018). Competition dynamics between forb and grass species were
altered by livestock grazing in southern Argentina (Dı́az Barradas et al ., 2001). Under sheep grazing, the
grasses did not produce inflorescences and forbs became taller and more abundant compared to non-grazing
tracts, where grass species dominated (Dı́az Barradas et al ., 2001). Forb cover was also observed to increase
in Prairie grasslands when exposed to grazing from cattle and bison (Towne et al ., 2005). Therefore, grazing
intensities should be carefully managed, particularly during drought periods to promote competition from
native perennial grasses (Klaus et al ., 2018), and resting paddocks from grazing when natives are emerging,
particularly if herbage is sparse, could improve their establishment and survival (Clarke & Davison, 2014).

Considerations for long-term management
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The role of grassland seedbanks

Limitations in funding and technology makes it difficult to manage grassland restoration projects over long
time scales (Freudenberger & Gibson-Roy, 2011; Lengyel et al ., 2012). Without follow-up management, weeds
can re-establish either from regeneration from the seedbank or from migration of seeds from surrounding
sites (Gibson-Royet al ., 2007). By knowing how long the dominant weeds seeds remain viable within the
soil seedbank, we can make recommendations as to how long a site should be actively managed.

Weed species are often prolific seed producers, therefore, to protect a rehabilitated grassland from being
reinvaded by a dominant weed species, an understanding of its seedbank persistence is required. Gardeneret
al ., (2003) identified that after three years of no seed migration within a Nassella neesiana dominated
grassland, there was still, on average, 1457 viable seeds per square metre of this species, indicating that
ongoing management of only three years would not be effective for controlling this invasive grass. Seed
longevity studies are useful for investigating how long a species can persist at different depth or soil types.
The common trend is that seed viability declines with shallow burial and increased duration within the
seedbank. This is seen in Andropogon gayanus (Bebawi et al ., 2018),R. raphanistrum (Reeves et al ., 1981),
Conyza canadensis (Vargas et al ., 2018) and Artemisia tridentate(Wijayratne & Pyke, 2012). Seeds located
on or just below the soil surface are exposed to more intense fluctuations in soil moisture and temperature
compared to deeper buried seeds, and these fluctuations can result in the shallow buried seeds drying out.
A two-year study foundA . tridentate had only 0-11% of seeds remaining viable at the soil surface compared
with almost half of the seeds maintaining viability at 3cm depth (Wijayratne & Pyke, 2012). Seed predation
by mammals, birds, or soil microbes is also enhanced at these shallow depths (Dalling et al ., 2011). Seeds
that are buried deeper into the soil profile, are often better protected from these devitalizing and predatory
pressures (Bebawi et al ., 2018). The trade-off, however, is that at these depths seed dormancy is usually
prolonged, particularly for photoblastic seeds (Benvenuti et al. , 2005; Ahmed et al. , 2015), making these
weeds troublesome for managing cropping systems utilizing tillage, since this can resurface viable invasive
seeds, resulting in reinvasion.

Anticipating climate Change

Grasslands currently store approximately 34% of the worlds terrestrial carbon, making these ecosystems
important carbon sinks and play a critical role in climate change mitigation (Contant, 2010). Carbon se-
questration is achieved by grassland vegetation holding organic carbon within their roots, therefore higher
sequestration is found in less disturbed grasslands with long lived perennial grasses that develop dense root
systems (Acharya et al ., 2012). This suggests that long term management of grasslands will likely provi-
de greater climate regulation. Carbon sequestration has been observed to improve with good management
techniques, particularly the addition of nitrogen fixing plants (De Deyn et al ., 2011), addition of fertilizers
and lime (Acharya et al ., 2012) and withholding excessive grazing (Ezeet al ., 2018). Further, grasslands
are essential for human food security and provide an income for approximately 1.3 billion people around the
world (Suttie et al ., 2005). Livestock grazing utilizes 80% of the total agricultural land and contributes to
40% of global agricultural production (Suttie et al ., 2005). It is predicted that demands for animal-based
proteins and dairy are only going to increase as a result of projected population growth (O’Mara, 2012),
making functioning grasslands critical for providing adequate nutritional resources.

Accelerated climate change adds a further element of complexity for managing restoration projects into
the future. It is expected that for every 1OC increase in air temperature, there will be a 1.5OC increase
in soil temperature (Ooi et al ., 2011), which may also cause disruptions to the seedbanks of many plant
species. Temperature has proven to be an important environmental factor for breaking seed dormancy and
these increased temperatures could influence these important physiological processes (Ooi, 2012; Prosottoet
al ., 2014). Further, atmospheric CO2 has steadily risen from 325ppm recorded in 1970 to 405ppm in 2017
(Lindsay, 2018), and this is expected to approximately double by the end of this century (IPCC, 2019).
Enhanced atmospheric CO2 can result in higher saturation of CO2, potentially reducing photorespiration
in C3 plants, even under a warmer climate. This increased physiological efficiency has been demonstrated
to alter dynamics between C3 and C4plants (Dukes, 2000). As a result of these physiological improvements,
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such as increased water-use efficiency (Varga et al ., 2015), plants can allocate more resources to growth and
fecundity and these changes have also been observed to be more pronounce in weeds than natives or crops
(Marble et al ., 2015). Changes in extreme weather patterns is expected to increase as a result of human
induced climate change. Compared to pre-industrial data, changes in the intensity and pattern of rainfall
events are already being noticed (Power et al ., 2017). Changes in rainfall have direct consequences on the
intensity and frequency of fire, drought and flood events (Ooi, 2012). As these factors play an important role
in shaping the vegetation of ecosystems and agroecosystems, new challenges for managing native and weed
competition dynamics can be expected.

Conclusion

Temperate grasslands are now significantly degraded throughout the world as a result of human actions.
Weeds now dominate many of these degraded systems and act to hold them in this undesirable altered
state. A number of successful restoration techniques have been developed to reduce weed dominance and
promote native species, but it is clear that a single technique for restoration is rarely successful for the long
term. In order to reduce dominant weeds, we must continue to research the integration of control methods
that are economical, practical and applicable to temperate grasslands at a local, regional and global scales.
Researchers should also aim to develop long-term studies that observe successional changes in plant dynamics
as a result of various treatments. It is critical that managers plan now for changes in weather patterns (such as
rainfall frequency and intensity) as a result accelerated climate change. This review recognises the similarities
in successful temperate grassland restorations involve the ongoing effort of targeting the above and below
ground density of the dominant weeds. Revegetation methods are often site- and study-specific and depend
on proximity of remanent vegetation, budget and restoration goals.
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