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Abstract

The effect of climate change on water resources has been an area of continued research, especially in Australia. Previous studies

have suggested significant trends in rainfall, and these are amplified causing larger changes in streamflow. However, most of the

previous analysis was based on annual time scales or modelled data and did not account for changes in land cover, which could

interact with changes in climate. Climate data and streamflow data sourced from 13 fully forested small catchments (<250 km2)

was analysed for trends. Non-parametric Mann-Kendall trend analysis, generalised additive mixed modelling and rainfall-runoff

modelling were combined for the analysis. This indicates consistent increases in maximum temperature and varied decreases

in rainfall. Limited to a small number of catchments in south eastern Australia there were small, but significantly amplified,

decreases in streamflow. In general, overall decreases are much smaller than predicted in earlier research.

Introduction

The effects of climate change will influence water resource availability in the future (Huntington, 2006;
Trenberth et al., 2014). This is particularly of importance in Australia where major droughts have drastically
increased public concerns about water availability (Leblanc, Tweed, Van Dijk, & Timbal, 2012). As a result,
there have been several studies focussing on climate change impacts on water resources (Betts et al., 2007;
Chien, Yeh, & Knouft, 2013; Chiew & McMahon, 2002; Chiew et al., 2009).

Most of the earlier studies on future water availability have used rainfall-runoff models with climate data
from downscaled global circulation models to highlight future scenarios (e.g. Chien et al., 2013; Chiew
et al., 2009; Leblanc et al., 2012; Vaze, Davidson, Teng, & Podger, 2011). For Australia, most of these
studies indicate a more variable future and a decreased water availability (van Dijk et al., 2013). The main
explanation is decreased rainfall and increased evaporation and therefore decreased streamflow. A drawback
of such studies is that they introduce at least two types of errors: the calibration uncertainty of the rainfall-
runoff model and the associated uncertainty in the prediction; and uncertainty in future climate data, either
from downscaling global models (Leblanc et al., 2012), or from scaling of historical data (Chiew, 2006; Fu,
Charles, & Chiew, 2007).

Reductions in streamflow in Australia have also been attributed to increased CO2 fertilisation of the vegeta-
tion due to changes in the atmospheric CO2 concentrations (Trancoso, Larsen, McVicar, Phinn, & McAlpine,
2017; Ukkola et al., 2015). However, as Ajami et al. (2017) highlight, this effect varies along aridity gradients
and depends on other factors such as nutrient availability. Biological work (Franks et al., 2013) suggests
that tree stomata adapt to changes in climate, i.e. there is a certain level of bio-plasticity to reduce how
water is transpired as a function of temperature. This highlights further other, possibly interacting and
counteracting, factors that could influence future changes in streamflow, well beyond the traditional forcing
variables.
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Another issue with the earlier work, including some of the latest work on the changes in catchment responses
with drought (Ajami et al., 2017; Booij, Schipper, & Marhaento, 2019; Saft, Western, Zhang, Peel, & Potter,
2015), is that very few of the studies have controlled for land cover and therefore might have stationarity
issues (Montanari et al., 2013; Navas, Alonso, Gorgoglione, & Vervoort, 2019). Ajami et al. (2017) analysed
vegetation cover and found that runoff sensitivity to precipitation varied with fractional vegetation cover.
Moreover, they confirmed that increased vegetation cover decreases runoff sensitivity, confirming earlier work
(Chiew, 2006). However, Ajami et al. (2017) also point out that fractional vegetation cover covaries with
precipitation, therefore making the comparison difficult.

An alternative approach to biophysical modelling with future climate scenarios to understand changes in
future water yield, would be to analyse historical data sets, as several older studies in Australia have done
(Booij et al., 2019; Cai & Cowan, 2008; Chiew, Whetton, McMahon, & Pittock, 1995; Petrone, Hughes,
Van Niel, & Silberstein, 2010; Potter, Petheram, & Zhang, 2011; Trancoso et al., 2017). However, there are
several reasons why the issue of trends in streamflow might need revisiting. Many of the older studies were
based on annual data, a limited geographical area (Petrone et al., 2010) and varied in terms data periods
and data aggregation in space and time. Some studies focused on a few rivers (Petrone et al., 2010; Potter
& Chiew, 2011), some focussing on the whole Murray Darling water balance (Cai & Cowan, 2008) and some
focussing on a large data base of catchments (Booij et al., 2019; Chiew, 2006; Trancoso et al., 2017).

Finally, the models and types of analyses varied across the studies, including simple linear regression on
un-transformed and transformed data (Cai & Cowan, 2008; Chiew, 2006; Chiew et al., 2014; Potter et
al., 2011), non-parametric Mann-Kendall and step change methods (Petrone et al., 2010; Potter & Chiew,
2011), statistical analyses and using rainfall runoff models (Chiew, 2006; Potter, Chiew, & Frost, 2010) and
applying an energy framework (Booij et al., 2019) and focussing on baseflow (Trancoso et al., 2017). As
a result, despite a consistent view of a sharply declining streamflow in response to changing rainfall, it is
difficult to compare across studies.

Rather than using conceptual or deterministic modelling approaches, data based statistical models allow
quick identification of the main variables explaining variations in streamflow. If the variables in the statistical
model represent real physical processes (Fu et al., 2007), the model removes all variance based on the
physical processes and the remaining unexplained trend in the residuals can be analysed. Modern regression
approaches also allow non-linearity and the identification of uncertainties (Wood, 2006), rather than being
limited to linear relationships. The disadvantage of statistical models is that they are essentially a “black
box” as they do not explicitly include any physical processes. This means that, while the model can show
correlation, it does not necessarily prove causation, and a lack of understanding of processes within a system
may lead to an incorrect interpretation of statistical relationships.

The above review highlights that it is therefore important to have consistent methodology that includes
several different statistical analyses to cross check the trend results, as each analysis included methodological
and data uncertainty.

Given the range of approaches, the aim of this paper is 1) to offer a combination of statistical approaches to
analyse climate change trends in streamflow data in forested catchments; 2) to use the increased observed
data length to revisit the work by Chiew (2006) and other past research to investigate climate change trends
on a subset of the Australian hydrological reference stations across the continent; and 3) to highlight the
spatial and temporal variation in these rainfall and temperature effects on streamflow across the Australian
continent.

While the data in this paper focuses on Australia, the outcomes and methodology are relevant for other
regions that are experiencing changes in rainfall and temperature and have predicted changes in streamflow.

In light of the complexity of the topic, and the number of existing papers with somewhat conflicting results,
all the data, explanations and code for the analyses used in this paper have been stored as supplementary
data in an on-line repository, which can be accessed via: https://doi.org/10.5281/zenodo.3757041
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Methods

Site selection and data

A total of 13 hydrologic reference stations across Australia, focussing on stations with catchments areas that
are less than 250km2 were selected from the Bureau of Meteorology (http://www.bom.gov.au/water/hrs/)
(Figure 1 and Table 1). Using a basic land use data interpretation, we focussed on catchments that are
essentially fully forested to minimise effects of landuse variation. By focussing on relatively small catchments,
we also aimed to control for catchment size which influences storage and routing.

Rainfall and temperature stations were selected for each streamflow station based on proximity, data length
and data continuity. Data for the selected rainfall and temperature sites for the period 1970-2010 were
obtained from the Bureau of Meteorology. However, since climate stations were not necessarily close to
the catchments, we also extracted the ANUCLIM 1km gridded rainfall product via the eMast NCI server
(http://dapds00.nci.org.au/thredds/catalog/rr9/ANUClimate/catalog.html) for each of the catchment out-
lets.

Analysis of annual trends and elasticities following Chiew (2006)

As a first step annual summaries of the data were analysed, following Chiew (2006). Both the non-parametric
approach for calculating the rainfall elasticity, εP, (Fu et al., 2007) and the modelling approach (Chiew, 2006)
were used. The non-parametric approach calculates the elasticity as (Fu et al., 2007):

εp = median

(
Qt−Q

Pt−P

P

Q

)
(1)

For the modelling approach, both GR4J (Perrin, Michel, & Andréassian, 2003) and SimHyd including the
Muskingum routing routine (Chiew et al., 2009) were used on the daily data. The models were all calibrated
on the full 40 year daily dataset (1970 – 2010). The calibration used shuffled complex evolution optimisation
with 20 complexes, and this was repeated 10 times to capture model uncertainty due to parameter equifinality.
The residuals of the modelling were calculated as the difference between observed and predicted values.

Following the original work (Chiew, 2006), the daily rainfall series (P ) was scaled by -15%, -10%, 0%, +10%,
while the daily maximum temperature (MaxT ) series, rather than the monthly Potential Evapotranspiration
(PET) as in Chiew (2006), was scaled by 0%, +5% and +10%. The resulting predicted daily flow series (Q )
were summarised to annual series and εP and the elasticity due to ET , εET, were calculated using regression
(Chiew, 2006):

δQannual = εP δPannual + εETδMaxTannual(2)

Where, MaxTannual is the average annual maximum daily temperature rather than the maximum annual
daily temperature. The elasticity is a measure of amplification of the rainfall change in the streamflow, with
elasticities greater than unity indicating amplification of the rainfall and ET signal (Chiew, 2006).

Mann-Kendall non-parametric trend test and linear trends

The presence of monotonic trends in weekly mean streamflow, rainfall and maximum temperature were
initially assessed using non-parametric Mann-Kendall tests. The advantages of Mann-Kendall based tests
are that there is no assumption that the data are normally distributed, nor does it assume that the trend
is linear. However, there are two possible issues with simply using a Mann-Kendall test on the data. The
first is outlined by Westra et al. (2012), which highlights that even in random data there is a probability
of identifying a trend. As a result, we followed Westra et al. (2012) and ran a bootstrap with 500 samples
to identify this error in the basic Mann-Kendall analysis. The second issue is outlined by Koutsoyiannis
and Montanari (2007): A locally observed trend is not necessarily a true trend in the data due to scaling
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properties. Under the assumption of scaling, the Mann-Kendall trend can be further tested to identify if
the Hurst coefficient is significant and the Mann-Kendall test can be corrected for this (Hamed, 2008), we
indicate this test as the LTPMK test (long time period Mann-Kendall).

The daily data were de-seasonalised and summarised to weekly before running the Mann-Kendall and
LTPMK tests using the package “deseasonalize” (McLeod & Gweon, 2013). Calculations for the stan-
dard Mann-Kendall and LTPMK tests were performed using the “Kendall” package (Mcleod, 2011) and
“HKProcess” (Tyralis, 2016) in R (R Core Team, 2013), respectively.

In addition to analysing the data series, the trend in the residuals of the modelled series from the previous
rainfall-runoff modelling step was also analysed using the same LTPMK test. If the modelled series deviates
from the observed series for the post calibration period with a consistent trend, then this would be another
indication of a trend in the data series. For this analysis, the residuals were summarised to weekly data to
match the observed data. All analyses were repeated with both the station rainfall data and the gridded
rainfall data.

Generalized additive mixed model (GAMM)

The basic starting assumption in this analysis is that streamflow (Q ), combining both surface runoff and
groundwater inflows, in relatively small homogeneous catchments can be modelled as a simple water balance
of rainfall (P ) and evapotranspiration (ET ):

Q = P − ET (3)

Due to the relatively small size of the catchments, storage effects based on the weekly data can be considered
minor and the majority of the storage delays can be captured (in other words, residence times of water
moving towards the stream are considered to be smaller than a week for the majority of the flow).

Generalized additive mixed models (GAMMs) were defined to model the weekly streamflow at each station as
a function of rainfall and weekly mean maximum temperature. GAMMs may be considered as an extension
of generalized linear mixed models whereby the predictors are additive, but can also be non-linear (Chen,
2000). The mixed model addition to the standard Generalized Additive Model (GAM), allows modelling of
the autocorrelation in the residuals. Details of the statistical basis of GAMMs can be found in Chen (2000)
and Lin and Zhang (1999).

Mean weekly streamflow and rainfall are indicated byQw and Pw , respectively. A smoothing function, s(),
was applied to the rainfall term to account for non-linear responses in the rainfall-runoff relationship. Weekly
mean streamflow data was used to remove any effects of filled in missing data by the Bureau of Meteorology,
and to remove most of the stream routing effects.

The models were applied in several steps (Table 2). Initially, the linear trends in both rainfall and temperature
were analysed using generalised least squares using an autoregressive order 1 (AR1) correlation structure
fitted to the errors (et ). As an added benefit, the AR1 error structure accounts for further storage effects
in the catchment, including the effect of past rainfall.

Subsequently a GAMM with a smooth function of Pw , a linear trend and autoregressive order 1 (AR1)
correlation structure fitted to the errors (et ) was evaluated.

Log (Qw) ∼ s (Pw) + trend+ εt(4)

Streamflow data were log transformed to stabilise the variance of the residuals. The trend in equation 3 can
be interpreted as a change in the residual log (Qw ) over time. In order, to identify δΧ

greekt as a fractional change the trend needs to be back transformed using:

δΧ

greekt=(exp (trend) − 1). (5)

4
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The first model (equation 4) removes the direct effect of weekly rainfall (Pw ) on the weekly streamflow (Qw

). Amplification can be defined as δΧ

greekP¿1, using the annual data. However, the trend in equation 4 can include other phenomena changing
the rainfall-runoff response over time. As a second step, a GAMM with a smooth function of Pw and a
smooth function of the interaction between maxTw andPw was fitted:

Log (Qw) ∼ s (Pw) + s (maxTw, Pw) + trend+ εt(6)

The interaction between maxTw andPw is a proxy for the actual evapotranspiration. Equation 6 identifies the
residual trends in the streamflow data after removal of the effects of rainfall and actual evapotranspiration.
The difference in the trend in the second model (equation 6) and the first model (equation 4) highlights the
impact of actual evapotranspiration effects on streamflow. The final trend remaining in the model therefore
includes any “other” phenomena in the rainfall-runoff relationship. Examples of these could be changes due
to tree physiology, CO2 fertilization or geomorphology and is the degree of amplification, i.e. the change in
streamflow after changes in rainfall and evapotranspiration have been considered.

Using equation 6, a GAMM which removes the linear trend was also fitted, to test whether the assumption
of a linear trend affected the results:

Log (Qw) ∼ s (Pw) + s (maxTw, Pw) + εt(7)

The residuals (ετ ) of this final GAMM model (equation 7) were subsequently analysed for a trend using a
LTPMK test.

The GAMM modelling was conducted using the “mgcv” package in R (Wood, 2006).

Given the complexity of all the methodology a flow chart of the different approaches and comparisons is
presented in Figure 2.

Results

Annual data trends following Chiew (2006)

The relationship between annual rainfall and runoff for the catchments (Figure 3), generally plots below the
1:1 line. Ignoring storage variations, the divergence of the 1:1 line is related to the removal of water due
to evapotranspiration. Except for some single points all the data plot below the 1:1 line for the gridded
rainfall data. For the station data this is not the case for a few of the catchments (supplementary data on
zenodo https://doi.org/10.5281/zenodo.3757041), but the results generally show similar behaviour. One of
the catchments, where a lot of the data plotted above the 1:1 line using the observed station rainfall data,
is a small catchment (SOUT). Two other catchments (NIVE and HELL) occur in areas with steep elevation
gradients, and as a result the nearest rainfall station might not be representative. In contrast the ANUCLIM
gridded data appears more representative, as less of the data plot above the 1:1 line.

Non-parametric elasticities (εp, red triangles in Figure 4), calculated from the streamflow and gridded rainfall
data, were in the same range as those observed by Chiew (2006). All elasticities were less than 3, with most
about 2 or above, and some stations indicating elasticities very close to 1 (COCH, HELL and SOUT).

In contrast, elasticities calculated from the simulated data based on the rainfall runoff models were quite
different (boxplots and large blue dots indicating mean values in Figure 4), and in fact almost constant. The
variation between the 10 replications of the rainfall runoff model calibration was very narrow, particularly
for GR4J, so most of the boxplots look like single straight horizontal lines. Overall the elasticities calculated
from the rainfall runoff modelling results were close or smaller than 1. This suggest decreases in runoff that
are smaller than the associated decreases in rainfall, considering changes in evapotranspiration.
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The calibration of the rainfall models with the gridded rainfall data was generally good (NSE > 0.5) con-
sidering the 41 year data period, although the SimHyd performance was lower than the GR4J performance
(Figure 5), and some catchments had low model performance (Chiew et al., 2009). In addition, the dif-
ferent replications of the calibration with SimHyd showed considerable variation (wide boxplots), while the
replications in the GR4J calibrations were very consistent (resulting in the boxplots being plotted as single
lines). Comparing the two rainfall sources. the calibration performance using the observed station rainfall
data (document 6 supplementary data) was slightly worse for both models and the calculated elasticities
were also slightly lower (document 6 supplementary data).

Mann-Kendall and LTPMK tests

The results of the standard Mann-Kendall tests on the de-seasonalised weekly data indicate that there is
a consistent decreasing trend in streamflow (Table 3), with a significant (p-value < 0.05) trend for nine of
the 13 sites, which are all located in south of the continent and Western Australia. At least five and maybe
seven of these sites with significant trends had trends outside the bootstrap distribution (Figure 6).

There is a matching decreasing trend in most of the gridded rainfall records, with a significant (p-value
< 0.05) trend for 8 sites. However, only 2 of these are outside the bootstrap distribution (supplementary
material document 2). The station rainfall data had similar results to the gridded data. Basically, all the 13
de-seasonalised weekly average maximum temperature records have a significant increasing Mann Kendall
trend, even though only 5 of these are falling outside the bootstrap distribution (supplementary material
document 2), with locations in south eastern Australia.

In contrast, all the LTPMK results indicated highly significant Hurst coefficients and therefore, based on this
analysis, the Man Kendall trends were all not significant for all three variables under the scaling hypothesis
(Hamed, 2008). To check the overall test, we also ran the monthly and annual summaries of the three
variables. The results (supplementary material document 2A) show that the significance of the LTPMK
trends increases with an increase in the time aggregation. For example, the LTPMK average maximum
temperature was significant and increasing for six stations at the monthly time scale, and significant and
increasing for eight of the 13 stations at the annual time scale. Similar results were found with the time
integration for the rainfall and streamflow data, but in this case all significant trends were decreasing in
time.

Generalized additive mixed modelling

The results of the generalised least squares (GLS) modelling (model 1 in Table 2) suggest only four of the
studied catchments have significant linear trends in the streamflow over the last 41 years (Table 4), which is
fewer than in the earlier Mann Kendall results (Table 3 and Figure 6). The negative trends were very small
in actual percentage value, in the order of 10-4 % of the streamflow (Table 4). Similarly, significant trends in
rainfall were also all negative, and very small in actual percentage. For those stations that have significant
trends in both rainfall and streamflow, “amplification” (calculated as the trend in Q/trend in P) between
0.95 and 4.29 occurs. This is a larger trend then calculated from the original data and the rainfall-runoff
modelling in Figure 3. However, the trend in streamflow derived in the GLS analysis still incorporates the
changes in climate in the streamflow, such as changes in rainfall and temperature. These need to be removed
to identify the true “amplification” effect.

Comparing the streamflow model results without rainfall (model 2, Table 4) with the results of the model that
removes the rainfall effect (model 3, Table 5), indicates a small reduction in the negative trend and the same
number of significant stations. Overall the inclusion of rainfall in the model removes approximately < 10 to
30% of the original trends. In other words, the linear trend is the remaining trend in the streamflow after
removing the trend in the rainfall. In terms of amplification, this is the additional decrease in streamflow
on top of any reduction in the rainfall. However, some of the remaining trends could be due to trends in
temperature affecting potential ET.

6
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Overall variation explained by the final models that include both rainfall and evapotranspiration (model
4, Table 2 and Table 6) was low to medium (-0.03 < Adj r 2 < 0.43, supplementary material document
3C). The worst performing model was for station NIVE, but more generally these results suggest that there
are other processes causing variation in the runoff that the statistical model does not include. This is not
necessarily an issue, as the goal of the statistical modelling was to explain the maximum variation in the
streamflow related to rainfall and ET, and not to find the best predictive model.

After rainfall and evapotranspiration effects are accounted for (model 4), the models identify significant
trends in the weekly data in only six catchments (Table 6). These trends are once again very small and only
in the order of 1.1 – 5.5 × 10-4 % change. This suggests that the overall streamflow is indeed declining over
time, even after accounting for changes in rainfall and evapotranspiration, but currently the overall change
is very small. This remaining trend is the amplification.

Note that inclusion of the maximum temperature (evaporation) explains very little of the variation in stream-
flow, as the improvement in the performance measure AIC (Aikaike Information Criterium) between model
3 (Table 5) and model 4 (Table 6) is small. As a result, for those catchments still showing significant trends,
the variance explained by including rainfall and temperature is small, from < 10% to 30%. As with the
previous analyses (Chiew et al., 2009; Potter & Chiew, 2011), the catchments with significant trends are all
located in the South and West of Australia.

For the Mann-Kendall tests on the remaining residuals, eight catchments have significant trends (Table
6, Figure 7), again more than with the regression modelling. However, the bootstrap results in Figure 7
suggest that even fewer of the sites have true trends, with a minimum of one and a maximum of three of
the residual trends clearly falling outside the bootstrap distribution, including some on the outer edge. The
overlap between the results from the Mann-Kendall residual analysis and the trend in the GAMM is clear
for most of the locations, except for the very small YARR, for which the residual analysis suggests there is
no significant trend, but the GAMM suggests the linear trend is significant. In this case, the actual trend
might not be linear, but in general the assumption of a linear trend is not influencing the results. Moreover,
there is clear overlap between the LTPMK analysis and the traditional Mann-Kendall analysis, with the
same stations showing significance, despite the Hurst coefficient being significant for all the stations.

Model non-stationarity over long periods

This part of the analysis tested whether numerical models used for the analysis of trends and elasticities
impact the analysis of the elasticities presented earlier. This is important as several climate change studies
are based on model output analysis (Chiew et al., 2009; Potter & Chiew, 2011; Vaze et al., 2011) rather than
observed data. As calibrated models essentially fit a stationary series, the residuals (between observed and
simulated) should retain any existing trend in the data. This builds on earlier analyses (Buzacott, Tran, van
Ogtrop, & Vervoort, 2019; Saft et al., 2015; Vaze et al., 2010), which contrasted calibration differences in
dry and wet periods to investigate non-stationarity.

The result of the Mann-Kendall non-parametric analysis on the weekly residuals (observed – predicted) for
the 41 years of the data series indicates significant slopes for only part of the stations (Figure 8). While there
appears to be no consistent pattern, it indicates that for SimHyd (at least for some of the stations) there
are stronger decreasing trends than for GR4J. In contrast, the residuals of GR4J had more significant trends
in the standard Mann Kendall analysis, but also predicted some (very small) positive trends. Overall the
identified catchments with significant slopes, CORA COTT, RUTH, SOUT and MURR, match the GAMM
and earlier Mann-Kendall analysis on the data. Again, the small YARR catchment is an outlier, indicating
a significant slope in the Mann-Kendall analysis, but positive for the GR4J residuals and negative for the
SimHyd residuals. However, in both cases the actual slope value is very close to 0. Overall this matches the
uncertainty for this catchment indicated in the earlier analyses.

The LTPMK tests however indicated that none of the identified trends were significant under this test
(supplementary documents, document 6A). This essentially shows that identified slope in the model residuals
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exists locally, but currently the overall variation in the data means we cannot yet affirm a long-term trend
in the residuals under the scaling hypothesis (Hamed, 2008).

Overall, these results are broadly similar to the earlier analyses, suggesting trends in only some of the South-
eastern Australian stations, but with many of the trends being very small. All analyses also indicate the
largest negative trend for the RUTH catchment.

Discussion

Summarising, this study used multiple approaches to confirm that in general streamflow in south-eastern
Australia is declining based on the 41 years of data, and that this decline tends to be greater than the asso-
ciated decline in rainfall (Tables 4 and 6). In other words, there is significant “amplification” of the observed
rainfall declines. However, the overall declines, for small forested catchments and considering 41 years of
data, is (still) very small in percentage and mm year-1 terms, once variability of rainfall and temperature is
accounted for. In addition, using the LTPMK approach, which accounts for the autocorrelation in the data
and test for significance of the Hurst coefficient, most of the approaches indicated non-significant trends.
This indicates that while there is a clear local trend in the 41 years of some of the data, we cannot (yet) say
with confidence whether this represents a long-term declining trend in streamflow.

Comparison to other studies

In comparison, an analysis of Australian streamflow records for the latter half of the 20th Century using a
Mann-Kendall test by Chiew and McMahon (1993) found significant declines at 7 of the 30 studied stations.
That study points out that due to the high inter-annual variability of Australian streamflow, a greater
change might be required to identify a statistically significant trend (Chiew & McMahon, 1993). A similar
observation can be made in this study considering the significance under the LTPMK test. Significant larger
declines in streamflow have been observed by Petrone et al. (2010), for catchments in southwest Western
Australia between 1950-2008. A more recent paper identified significant trends in 20 of 199 catchments,
concentrated in the South-East of Australia (Ajami et al., 2017). An analysis of global data (Milly, Dunne,
& Vecchia, 2005) similarly indicated decreases in streamflow in Australia, but the database from that study
overlaps with the other studies.

In general, decreasing trends in rainfall in the south east of Australia and increasing trends in temperature
have been widely identified (Cai & Cowan, 2012; Chowdhury, Beecham, Boland, & Piantadosi, 2015; Murphy
& Timbal, 2008). In contrast, positive trends in rainfall were found in the 20th Century in earlier studies
(Collins & Della-Marta, 1999; Smith, 2004), although the data period was suggested to be an issue (Smith,
2004). Some other studies have found much larger decreases in annual rainfall (Gallant, Hennesy, & Risbey,
2007; Murphy & Timbal, 2008) in the order of 1 mm per year and greater decreases in streamflow (Petrone et
al., 2010). The differences are most likely related to the difference in aggregation time scale (annual anomalies
versus weekly data). Another complicating factor could have been that many of these earlier studies had
timeseries to 2008, which was at the end of the millennium drought (van Dijk et al., 2013), while our study
included the drought breaking year 2010. This “local trend” phenomena can also explain why many of our
LTPMK tests showed no significant trends. This highlights once again the need for careful consideration of
the trend tests applied to the data.

The low rainfall elasticities calculated from the rainfall runoff simulations (Figure 4) differ from earlier
research (Chiew, 2006), which suggested much higher amplifications from their SimHyd modelling. There
are however differences with the original work (Chiew, 2006), which could explain the outcomes. Our study
simulates the streamflow on a daily scale and scales this to annual data, while the original work calibrated on
monthly data and scaled to annual. As larger time scales are smoother and show more significant trends than
weekly and daily data (see the monthly and annual Mann Kendall results in the supplementary documents,
document 3) this could have also affected the amplification calculations.
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There could be differences in the magnitude of the analysed trends in this study compared to other studies,
due to the differences in time scale. A reduction in variance occurs when the data is summarised to annual
and monthly data (Cai & Cowan, 2008; Petrone et al., 2010). In addition, there could be differences due to
the translation of remotely sensed (Ukkola et al., 2015), filtered (Trancoso et al., 2017) or modelled data
(Chiew et al., 2009) to streamflow declines. Several other studies investigated mainly the difference between
decades or specific periods (Chiew et al., 2014; Potter et al., 2010; Saft et al., 2015).

Furthermore, our work concentrates on 13 single land cover (forested) small catchments, while several older
studies did not control for land cover, but mainly selected “unimpaired” catchments (meaning no water
resource development). The data based analyses (triangles in Figure 4), and the GAMM modelling supports
the magnitude of the amplification (Chiew, 2006) for the few catchments that showed significant trends.
However, the non-parametric rainfall elasticities (grey triangles in Figure 4) could be biased (Fu et al., 2007)
as this does not take into account the full interaction between rainfall and temperature.

Remaining trends

What the remaining trends in the streamflow (after removing rainfall and temperature effects) exactly
represent is still difficult to say. Amplification has been mainly explained as an additional drying effect
(Chiew, 2006), mostly driven by the increases in temperature. Given that in most catchments the remaining
trend (Table 6) represents up to 80% of the original trend in the streamflow (Table 4), this would correspond
to amplifications around 4 (the data suggests 0.98 - 4.5).

There is no indication that streamflow in these forested catchments has decreased by a large amount (24 -
28%) due to increases in evapotranspiration as a result of CO2 fertilisation (Ukkola et al., 2015; van Dijk et
al., 2013). Because we selected homogeneous land cover (forestry), the larger declines found in earlier studies
(Ukkola et al., 2015; van Dijk et al., 2013) might be due to trends in land management and land cover, such
as changes in cropping patterns, introduction of conservation tillage, or terracing and crop variety effects.
Furthermore, changes in the vegetation water use efficiencies and changes in the tree physiology (Franks et al.,
2013; Ukkola et al., 2015) can also explain part of the remaining trends. Conceptually, if trees become more
water use efficient and produce more leaf mass, then this could affect evapotranspiration and streamflow.
In addition, larger leaf area could also result in increased interception, specifically for smaller rainfall events
(Stoof et al., 2012). This clearly highlights that more work in the area of vegetation effects on streamflow
would be useful, given the dominance of transpiration in the global water balance (Jasechko et al., 2013), to
support investigations into climate change effects.

Distribution changes

Changes in the timing and distribution of rainfall could impact the amplification of the rainfall signal in the
streamflow. Shifts in the main rainfall season from winter towards summer, or changes in the average storm
depth and timing between rainfall events can all affect the runoff process (Ishak, Rahman, Westra, Sharma,
& Kuczera, 2013; Westra et al., 2012) and shift the balance between surface runoff and groundwater flow.
For example, Trancoso et al. (2017) recently found declines of about 1 mm/year focussing on baseflow. We
compared streamflow and rainfall distribution curves across the four decades in the data (supplementary
data, document 4) but found no obvious or clear patterns. But this analysis was essentially qualitative and
a more detailed analysis of changes in the distribution of flows and rainfall is warranted.

Limitations

However, there are also some limitations to the present study. Small catchments might have smaller tempera-
ture effects on streamflow (as there is less time for evaporation to work on the catchment storage). However,
the advantages of controlling for routing and land cover in smaller catchments were important for this study.
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Some of the reasons for the low performance of the GAMM models could be that the weekly data is too
coarse to pick up some of the non-linear rainfall responses, or that the AR1 model is not complex enough to
model the remaining storage delays in the weekly data despite the small catchments. However, computational
difficulties and missing data make working with daily data in GAMM challenging.

The low impact of rainfall and ET on explaining variation in streamflow contrasts the earlier work in this
area using mainly linear regression and with annual and monthly data (Cai & Cowan, 2008; Potter & Chiew,
2011). We believe that this difference has to do with the differences in aggregation time scale and the
non-linearity of the processes.

The value of using observed data to analyse trends is that the model bias (Figure 5) is not affecting the
results. However, finding the right method of analysis is tricky (Fu et al., 2007). We chose to use statistical
modelling to remove the need to make the assumptions related to mechanistic rainfall-runoff models. This also
removes the need for water balance closure, which can affect the parameter calibration (Vervoort, Miechels,
van Ogtrop, & Guillaume, 2014).

This study has concentrated on a relatively small group of Australian catchments as an example, because
we controlled for catchment size and land cover. We identified about 5 more catchments that could be
included, but these were either very small or would skew the spatial distribution of the catchments. However,
future research could be to take advantage of other (global) long term databases of unimpaired and forested
catchments, such as the Critical Zone Observatories in the US (Troch et al., 2015) or the well-publicized
French catchment database (Oudin, Andréassian, Perrin, Michel, & Le Moine, 2008) and other European
catchments (Euser et al., 2013; Fenicia et al., 2014; Kirchner, 2009). This would identify whether the trends
in streamflow are unique to Australia, or link in with global changes in the hydrological cycle (Huntington,
2006). Another avenue of future research would be to run the same analysis on a comparison catchment
dataset which is strictly agricultural. Based on this research, we would hypothesise that these catchments
would demonstrate greater changes in streamflow and larger elasticities.

Conclusions

This work highlights that trends in streamflow can be difficult to detect, even using a range of methods. The
analysis is sensitive to the aggregation scale, the noise in the data and the length of the data series. In this
work, only very small downward trends in the streamflow for 13 hydrological reference stations in Australia
were observed between 1970 – 2010, and only four stations indicated consistent statistically significant trends
across the different methods applied. This is despite evidence of increasing trends in temperature in all
catchments, and declining rainfall in the southern part of the continent. While the analyses identified trends
in the 1970 – 2010 data, the Mann Kendall analysis under scaling hypothesis did not always identify significant
trends, meaning that we cannot yet draw a definite conclusion on the long term decline in streamflow, but
can be definite about trends in the 41 years under investigation.

In the catchments where a statistical downward trend was detected, only a small part of the trend could be
directly explained by changes in rainfall and temperature. As a result, extrapolation of models calibrated on
current datasets might bias future predictions, specifically if the assumption is that the runoff response to
rainfall remains stationary.

Currently there is no clear biophysical explanation for the remaining negative trends after accounting for
rainfall and temperature changes (the observed amplification). Given that the catchments were chosen based
on homogeneous landcover, this suggests that possible vegetation effects impact the observed trends. An
alternative explanation is that timing and distribution of rainfall affects the rainfall runoff response. Both
these areas will require further research.
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Data Availability Statement

The data that support the findings of this study are openly available in https://doi.org/10.5281/zenodo.3757041.
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Tables

Table 1 Overview of hydrologic reference stations and characteristics

Abbreviation Gauge Number State Catchment area (km2) Latitude Longitude Mean annual flow (mm) Rainfall Station Mean annual Rain (mm) HQ maxT station

COTT 410730 ACT 130 -35.592 148.821 327.5 70316 931.9 70351
RUTH 219001 NSW 14 -36.593 149.442 451.3 69003 789.8 70351
CORA 215004 NSW 166 -35.147 150.033 305.5 69049 774.8 68072
ELIZ G8150018 NT 96 -12.606 131.074 643.1 14149 1711.4 14015
COCH 113004A QLD 95 -17.74 145.629 1854.0 31083 2763.5 34084
COEN 922101B QLD 170 -13.956 143.175 685.2 27005 1258.2 27045
SCOT A5030502 SA 29 -35.099 138.673 125.9 23734 803.3 23373
HELL 312061 TAS 101 -41.419 145.67 1316.7 91109 1427.0 96003
NIVE 304497 TAS 174 -42.031 146.42 1098.1 91065 1124.4 96003
MURR 405205 VIC 106 -37.414 145.564 496.4 88028 838.4 85072
SOUT 225020A VIC 10 -37.833 146.354 1330.7 85238 1119 85072
YARR 614044 WA 80 -32.812 116.155 23.4 09538 1178.2 09021
DOMB 607155 WA 116 -34.579 115.972 309.2 09590 1219.8 90518

Table 2 Overview of different statistical models and trend analysis related to the models

No Model Trend Analysis

1 Log (Q) ∼ trend+ εt linear 40-year trend in
streamflow to compare
with LTPMK analysis

2 Log (P ) ∼ trend+ εt linear 40-year trend in
rainfall to compare
with LTPMK analysis
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No Model Trend Analysis

3 Log (Q) ∼
s (P ) + trend+ εt
(equation 4)

linear The trend in this
model relative to model
1 indicates the
importance of “other
processes”, while the
comparison with model
2 indicates the
“amplification”.

4 Log (Q) ∼ s (P ) +
s(maxT, P ) + trend+ εt
(equation 6)

linear Difference between model
3 and 4 is the effect of
evapotranspiration on the
trend. The remaining
trend is related to
changes over time in the
rainfall runoff response.

5 Log (Q) ∼
s (P )+s(maxT, P )+ εt
(equation 7)

Mann Kendall and
LTPMK

Check if linear trend
assumption is biased.

Table 3 Mann-Kendall and Long time period Man Kendall (LTPMK) test results on de-seasonalised weekly
time series.

Mann Kendall Mann Kendall LTPMK

Catchment tau p-value Hurst p-value adj p-value
Stream flow

COTT -0.17 0.00 0.00 0.70
RUTH -0.25 0.00 0.00 0.39
CORA -0.08 0.00 0.00 0.80
ELIZ -0.01 0.71 0.00 0.89
COCH -0.02 0.24 0.00 0.98
COEN -0.02 0.18 0.00 0.98
SCOT -0.02 0.10 0.00 0.91
HELL -0.10 0.00 0.00 0.88
NIVE -0.04 0.01 0.00 0.95
MURR -0.22 0.00 0.00 0.63
SOUT -0.15 0.00 0.00 0.79
YARR -0.15 0.00 0.00 0.69
DOMB -0.05 0.00 0.00 0.81

Gridded Rainfall Gridded Rainfall
COTT -0.05 0.00 0.00 0.04
RUTH -0.02 0.09 0.00 0.52
CORA -0.02 0.22 0.00 0.58
ELIZ 0.01 0.59 0.00 0.98
COCH 0.00 0.89 0.00 0.97
COEN -0.01 0.43 0.00 0.99
SCOT -0.04 0.01 0.00 0.53
HELL -0.01 0.54 0.00 0.93
NIVE -0.03 0.03 0.00 0.41
MURR -0.05 0.00 0.00 0.22
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Mann Kendall Mann Kendall LTPMK

SOUT -0.08 0.00 0.00 0.01
YARR -0.01 0.65 0.00 0.94
DOMB -0.03 0.02 0.00 0.83

Maximum Temperature Maximum Temperature
COTT 0.14 0.00 0.00 0.90
RUTH 0.14 0.00 0.00 0.90
CORA 0.07 0.00 0.00 0.93
ELIZ 0.07 0.00 0.00 0.85
COCH 0.07 0.00 0.00 0.93
COEN 0.13 0.00 0.00 0.85
SCOT 0.04 0.01 0.00 0.97
HELL 0.06 0.00 0.00 0.94
NIVE 0.06 0.00 0.00 0.94
MURR 0.10 0.00 0.00 0.92
SOUT 0.10 0.00 0.00 0.92
YARR 0.07 0.00 0.00 0.95
DOMB 0.04 0.00 0.00 0.97

Table 4 log linear trends in streamflow (Q) and rainfall (P), conversion to % change and associated p-values
(models 1 and 2 in Table 2)

Catchment

Linear trend
estimate in
Q (log scale)
×10-4

p- value for
trend in Q

Trend in Q
(×10-4 %)

Linear trend
estimate in
P ×10-4

p-value for
trend in P

Trend in P
(×10-4 %)

COTT -3.55 0.01 -3.54 -1.67 0.00 -1.67
RUTH -7.99 0.00 -7.98 -1.86 0.01 -1.86
CORA -3.23 0.01 -3.23 -1.50 0.02 -1.50
ELIZ 4.50 0.12 8.31 0.44
COCH -1.02 0.93 -0.73 0.40
COEN 2.59 0.48 -2.98 0.06 -2.98
SCOT -2.85 0.31 -0.53 0.44
HELL -1.68 0.17 -0.41 0.48
NIVE -0.63 0.79 -1.08 0.04 -1.08
MURR -2.63 0.00 -2.63 -0.94 0.11
SOUT -1.58 0.00 -1.58 -1.67 0.00 -1.67
YARR -2.41 0.53 -0.19 0.83
DOMB -2.25 0.57 -1.05 0.24

Table 5 Results of the GAMM modelling with only P as a smooth term and a trend (model 3). The results
indicate the AIC (Aikaike Information Criterion) and the estimate of the log transformed trend and the
significance of the trend term, followed by (for those trends that were significant at p < 0.05) the trend as
% change in streamflow.

Catchment AIC
Trend estimate
(×10-4 %) Trend p-value Trend (×10-4 %)

COTT 1347.3 -2.31 0.03 -2.31
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Catchment AIC
Trend estimate
(×10-4 %) Trend p-value Trend (×10-4 %)

RUTH 1956.8 -5.37 0.00 -5.37
CORA 3801.0 -1.63 0.00 -1.63
ELIZ 2737.1 -0.30 0.89
COCH 2157.5 -0.01 0.99
COEN 2790.9 -0.13 0.95
SCOT 1561.0 -0.64 0.45
HELL 2901.6 -1.37 0.16
NIVE 3394.7 -0.61 0.69
MURR 774.9 -2.03 0.00 -2.03
SOUT 2239.9 -1.14 0.02 -1.14
YARR -512.9 -1.10 0.02 -1.10
DOMB 2127.6 -1.14 0.52

Table 6 Results of the GAMM modelling with both P and maximum Temperature as a smooth term (Model
4) including trend analysis. The first three columns relate to the results of the GAMM model which includes
a trend (model 4), while the second three columns relate to the GAMM model without a trend (model 5),
for which the residuals are analyzed use a Mann-Kendall test.

Catchment
AIC
model 41

Trend
estimate
(log
scale)
×10-4

Trend
p-value

Trend2

(×10-4

%)
AIC
model 53

MK tau
residuals

p-value
MK

p-value
Hurst
coeffi-
cient

Adj
p-value

COTT 997.8 -2.36 0.06 -2.36 1007.8 -0.03 0.02 0.00 0.00
RUTH 1746.2 -5.49 0.00 -5.48 1777.4 -0.12 0.00 0.04 0.00
CORA 3803.7 -1.63 0.00 -1.63 3812.3 -0.04 0.00 0.69 0.00
ELIZ 2676.5 -0.30 0.89 2674.7 -0.01 0.66 0.15 0.70
COCH 1693.1 -0.08 0.94 1695.2 0.01 0.40 0.00 0.24
COEN 2780.9 -0.16 0.93 2781.4 0.01 0.34 0.00 0.23
SCOT 1555.6 -0.66 0.43 1555.0 -0.02 0.28 0.00 0.07
HELL 2814.8 -1.44 0.20 2824.2 -0.02 0.15 0.00 0.06
NIVE 3291.4 -0.70 0.69 3296.6 -0.01 0.49 0.00 0.66
MURR -404.6 -2.02 0.00 -2.02 -391.7 -0.05 0.00 0.00 0.00
SOUT 1460.1 -1.25 0.03 -1.25 1468.3 -0.03 0.07 0.00 0.02
YARR -514.3 -1.10 0.02 -1.10 -511.7 -0.01 0.37 0.00 0.12
DOMB 2131.5 -1.14 0.52 2129.8 0.00 0.88 0.00 0.85

1Trend included in the GAMM model.2Backtransformed trend which is interpreted as a percentage of the
flow. 3no trend in the model, Mann-Kendall trend analysis on the residuals. The Mann-Kendall tau is
similar to a correlation coefficient and varies between -1 to +1

Figure Legends

Figure 1 Location of hydrologic reference stations used in the study (http://www.bom.gov.au/water/hrs/)

Figure 2 Flowchart of the different approaches and comparisons of trends and significance used in the
methodology
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Figure 3 Annual rainfall runoff relationships for all the catchments based on the available 41 years of stream-
flow data and associated gridded rainfall data.

Figure 4 Rainfall elasticities calculated from the original streamflow and gridded rainfall data using a non-
parametric method (Chiew, 2006) (red triangles). Also plotted are the rainfall elasticities calculated from
the streamflow simulations of the two different rainfall runoff models (SimHyd and GR4J) using the gridded
rainfall data. As the model calibrations were replicated 10 times to estimate parameter equifinality, the
elasticities from the rainfall-runoff models are actually distributions. This equifinality is in most cases very
small and the boxplots show up as single horizontal gray lines. Outliers from the boxplots are shown as light
gray dots, median values of the boxplots are shown as blue points.

Figure 5 Boxplots and median values (black dots) for goodness of fit of the GR4J and SimHyd calibrations
on the 1970 - 2010 daily data using the gridded rainfall data. The goodness of fit is indicated by the Nash
Sutcliffe Efficiency, which is equal to 1 for a perfect fit, and 0 for a fit equal to the mean daily streamflow.
Because most of the catchments, and particularly the GR4J model, had very small equifinality (variability
between repeated calibrations), the boxplots are only visible as horizontal lines.

Figure 6 Mann Kendall trends (tau) for deseasonalised streamflow for the different catchments, against the
distribution of slope results of a bootstrap analysis. Black points that are located outside the bootstrap
distribution can be confidently seen as highly significant and not related to possible trends in random data.

Figure 7 Mann-Kendall tau values (Dot points) and tau results of the bootstrapped residual trend analysis
(distribution histograms) for the residuals of the GAMM analysis.

Figure 8 Analysis of residual trends between modelled and observed data for the models based on the 1970
– 2010 data. Red distribution boxes are significant (p value < 0.05), while blue boxes are not significant.
The actual p-values can be found in the supplementary material (document 6A). Boxplots represent the
10 replications of the calibration. As in Figure 5, the variation between the calibration replications is very
small, especially for GR4J, in some of the catchments resulting in the boxplots plotting as straight lines.
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