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Abstract

Modeling and analysis of the materials universe is an emerging area of research with many important applications in materials

science. The main goal is to create a map of materials which allows not only to visualize and navigate the materials space,

but also reveal complex relationships and “connections” among materials and potentially find clusters of materials with similar

properties. In this paper, we consider the problem of mapping and exploring the materials universe using network science

tools and concepts. The networks are based on the open-source materials data repository AFLOW.org where each material is

represented as a node, and each pair of nodes is connected by a link if the respective materials exhibit a high level of similarity

between their Density of States (DOS) functions. We discuss the importance of similarity measure selection, investigate basic

structural properties of the resulting networks, and demonstrate advantages and limitations of the proposed approaches.

Introduction

Over the past several years, research in computational materials science has generated enormous amounts of
data. Extracting meaningful and non-trivial insights from this data, which would reveal materials processing-
structure-property-performance (PSPP) relations, is one of the main challenges in the emerging field of
materials informatics, also referred to as data-driven materials science (The High-Throughput Highway to
Computational Materials Design, 2013; K, 2018; Materials Science with Large-Scale Data and Informatics:
Unlocking New Opportunities, 2016; New Opportunities for Materials Informatics: Resources and Data
Mining Techniques for Uncovering Hidden Relationships, 2016; Yosipof A, 2016; B, 2017). In this domain
it is not only important to find a material with specific properties desired in a certain application, but also
to reveal relationships and “connections” between electronic structure features and to potentially identify
multiple materials that have the same or similar properties of interest or are otherwise “related” according
to some criteria.

The objective of this study is to contribute to research in material informatics methods by developing an
approach which takes advantage of network-based modeling, analysis, and visualization techniques. Similarly
to social networks, gene interaction networks and other well-known real-world complex networks, the dataset
of materials can be treated as a network structure, where each individual material is represented by a node
in a network, and a pair of nodes is connected by a link if two materials exhibit a certain level of similarity
according to a specified quantitative measure. For example, such measures can be based on the comparison
of density of states (DOS) functions, although different practical questions of interest may require the use
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of different similarity measures. In this approach, conceptual similarities between materials networks and
social networks are clear, individual nodes are connected if they share a certain property or characteristic
(i.e., materials are connected according to shared physical properties, and people are connected according
to their acquaintances, collaborations, common interests, etc.).

Once a materials similarity metric is established, different approaches can be used to construct a network
representation of the considered set. In an edge-weighted representation, the space of materials is treated
as a complete graph (that is, all possible edges are present), and the weights of edges are given by the
corresponding values of the considered similarity metrics. Alternatively, in an unweighted model, a threshold
θ is selected, and only the edges of weight at least θ are assumed to be significant. Thus, in this case only
pairs of materials that are considered “sufficiently similar” are linked by edges (unweighted) in the network
model. This procedure is sometimes called network “slicing” (D, 2018). Clearly, the weighted model carries
more information about the materials than an unweighted one. However, there are certain advantages of the
threshold-based approach which makes it popular in network-based data mining. The main benefit is that
keeping only edges indicating high level of similarity between nodes allows to apply algorithms from network
analysis (specifically designed for unweighted networks) to explore its structural properties and uncover some
hidden patterns and organizing principles. Another benefit is the in reduced storage requirements (which is
significant given the size of the data base), which can be adjusted by selecting appropriate weight threshold
values. In this paper, we focus on the threshold-based approach. Clearly, different properties of interest can
determine whether a pair of nodes is connected; therefore, multiple alternative network descriptions, with
different connectivity patterns, can be generated for the same set of nodes (materials).

To the best of our knowledge, the first published attempt to construct a materials network using some level of
similarity between materials (fingerprints) has been presented in (Materials Cartography: Representing and
Mining Materials Space Using Structural and Electronic Fingerprints, 2015). Specifically, the authors have
introduced the notion of “material cartography” to represent AFLOW library of materials (Aflowlib.org: A
Distributed Materials Properties Repository from High-Throughput Ab Initio Calculations, 2012) as a network.
They transformed the data describing band structures and density of states for each material in AFLOW into
B-fingerprints and D-fingerprints, and used Tanimoto score (Bajusz D, 2015) to quantify pairwise similarities
among materials based on the similarity scores between the obtained fingerprints. The proposed framework
was tested on more than 20,000 Inorganic Crystal Structure Database (ICSD) materials in AFLOW library
and its advantages have been demonstrated for (1) searching the duplicates in AFLOW library by identifying
materials with identical fingerprints and (2) identifying new compounds with interesting properties based
on their similarity to known compounds (gallium arsenide, for example). However, the authors considered
only similarities above 0.7 cutoff and did not report any detailed statistics of similarity score distributions
or global characteristics of the corresponding materials network.

In this paper we take a further step in exploring this promising direction of research by developing a new,
systematic network-based framework for mapping and structural analysis of the materials universe. Many
complex systems can be analyzed via network representations, which provide a nontrivial yet intuitive mathe-
matical tool to explore these systems. To construct network representations of materials, we examine various
similarity measures commonly used in data mining applications that may capture complementary aspects of
similarity between data elements. To quantify pairwise similarity between materials, we apply the selected
similarity measures to density of states (DOS) functions of the respective materials (complete or partial DOS
function data can be used). In particular, we compute similarity measures for all pairs of materials in the
dataset of around 27,000 ICSD materials with their DOS functions computed and stored in the AFLOW data
repository. We analyze the distributions of the obtained similarity metrics, discuss some advantages and
disadvantages of the considered measures, and develop new, enhanced metrics, based on weighted Pearson
correlation coefficient with some extra adjustments. Furthermore, we show that the constructed networks
exhibit pronounced “small-world” properties, which are strikingly similar to many other real-world networks.

As it was mentioned in (Materials Cartography: Representing and Mining Materials Space Using Structural
and Electronic Fingerprints, 2015), the similarity concept can be used as an effective tool for searching

2
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materials with similar properties in large databases. However, in addition to exploring pairwise similarities
of materials, one may be interested in identifying large groups of materials sharing similarity according to
some property. If the objective is to have a high similarity score for any pair of materials within the group, this
group would correspond to a clique in the network constructed based on the considered similarity criterion.
A clique is defined as a subset of nodes that are all adjacent to each other (Luce RD, 1949). The clique
concept is used in numerous application areas due to its elegance and inherent ability to logically represent
cohesive subgroups of “tightly knit” elements (i.e., nodes) in complex systems modeled as graphs (The
Maximum Clique Problem, 1999). For example, in social networks, where the vertices correspond to “actors”
and an edge indicates a relationship between two actors (Wasserman S, 1994), a clique represents a group
of people any two of which have a certain kind of relationship (friendship, acquaintance, etc.) with each
other (RJ, 1979). In fact, some of the earliest work on cliques and methods of their detection was motivated
by applications in sociometry (Luce RD, 1949; RD, 1950; Harary F, 1957). Hence, in this paper we are also
interested in computing cliques in the constructed materials networks. In particular, we will find maximum
cliques in materials networks based on various similarity cutoffs, which provide a “global” cohesiveness
characterization for the whole network. In addition, we will compute the largest cliques containing certain
materials selected for our “local” analysis. Finally, we demonstrate a prototype network-based navigation
tool we developed for the AFLOW library.

The remainder of this paper is organized as follows. Sec. describes the proposed methodology for con-
structing materials networks according to DOS-based similarity metrics. Sec. presents the obtained results,
including the similarity score distributions, global and local characteristics of the constructed materials net-
works, as well as prototype network-based navigation tool for AFLOW library. Sec. concludes the paper
with a discussion of future research directions.

Methodology

Dataset and Preprocessing

The experiments are performed on the dataset containing DOS values of 27,007 ICSD materials obtained
from AFLOW library available at AFLOW.org (Aflowlib.org: A Distributed Materials Properties Repository
from High-Throughput Ab Initio Calculations, 2012). AFLOW is one of the largest electronic structure data
repositories (>1,100,000 entries) in the world, designed specifically with materials informatics in mind.

Each material in our dataset is represented by its DOS function consisting of a list of 668 values. The first
half (334 values) corresponds to the DOS function values calculated at evenly distributed points (0.015eV
apart) over the energy from -5.0 eV to Ev, where Ev is the top of the valence band of the Fermi energy. The
remaining half (334 values) corresponds to the DOS function values above the energy for Ec (the bottom of
the conduction band) or the Fermi energy over to 5 eV range. DOS functions of both spin polarized and
non spin polarized calculations are considered. In the case of spin polarized calculations spin up and spin
down DOS are added together.

The DOS function values over energy regions below and above Fermi energy are referred to as negative and
positive energy regions, respectively. This representation was chosen (1) to deal with functional properties
influenced by features of the valence band or of the conduction band separately, and (2) to avoid uncertainties
associated with the calculated energy gap (Ec − Ev) that is recorded but not used in the metric. In the
following we compute similarity scores between their DOS functions over negative and positive energy regions.
The values of DOS functions are scaled in such a way that their sums over negative and positive energy
regions are equal to 100. This choice biases toward the presence of feature in the DOS over the magnitude
of such features, but allows to distill some of the main characteristics of the band structure of a material
into a single descriptor and build meaningful relations, to learn regarding a variety of physical properties,
such as transport, optical response, etc.

3
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As an example, the material Si (ICSD 150530) has the band structure and the DOS function illustrated on
Fig. 1 (obtained from AFLOW library 1). The corresponding vectors of scaled DOS values over positive and
negative energy regions considered in this paper for similarity computations are depicted on Fig. 2.

Figure 1: Band structure and DOS of Si (ICSD 150530) obtained from AFLOW library.

1 50 100 150 200 250 300 334
index

0.0
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Negative energy region

Figure 2: Vectors of DOS values over (a) negative [-5,0] and (b) positive [0,5] energy regions.

1http://aflowlib.org/material.php?id=150530
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Note that this material has a theoretical band gap 0.675 eV. Hence, the i-th component value of DOS
vector over negative energy region corresponds to the DOS function value at −0.015 × (334 − i) eV and
the i-th component of DOS vector over positive energy region corresponds to the DOS function value at
0.675 + 0.015× (i− 1) eV.

In total, for a given similarity metric, the corresponding similarity score has been calculated for 364,657,521
pairs of materials. Moreover, our dataset contains information about the band gap for each material (since
the band gap is not used in the similarity score computation), which we use to separate materials into three
classes (metals, semiconductors, insulators).

Similarity Measures

In this section, we first review the most common (symmetric) similarity measures used in various data-
mining applications (primarily for comparing probability distributions as DOS is essentially a distribution
function) to quantify the proximity/similarity among data points represented by vectors. We discuss their
advantages and disadvantages in terms of capturing certain aspects of physical similarity among materials
encoded in their DOS functions. Intuitively, the more similar the DOS values of two materials, the more
similar properties the respective materials should have. However, as it will be discussed later, the shape of
DOS function and its behavior in a certain energy region (around Fermi level) plays a key role in determining
physical properties of the corresponding material. Therefore, for the network construction and analysis, we
develop a similarity measure which takes this consideration into account and is able to better reflect the
similarity among materials properties.

For a pair of materials, let vectors x = (x1, . . . , xn) and y = (y1, . . . , yn) be their DOS function values,
respectively, over the positive or negative energy region (n = 334 in our experiments). We consider six simi-
larity metrics: two intersection-based (Jaccard similarity and average ratio), two distance-based (Euclidean
distance and Manhattan distance), and two inner product-based (cosine similarity and Pearson correlation
coefficient). These similarity metrics are chosen due to their frequent use in data-mining applications (see,
e.g., (SH, 2007) for a survey of various similarity metrics among probability distributions and their practical
usage). A brief description of each of the considered measures is given next. Note that four of the considered
similarity measures (Jaccard, average ratio, cosine, and Pearson correlation coefficient) are “score”-based,
that is, the larger the computed value of the respective similarity measure between a pair materials, the
more similar these materials are. On the contrary, the remaining two similarity measures (Euclidean and
Manhattan distances) are “distance”-based, with smaller values of the similarity measure implying that
materials are “close” to each other in the materials space or have high levels of similarity. To distinguish
between these types of similarity measures, score-based measures are denoted by S, whereas distance-based
measures are denoted by D.

Jaccard similarity This is essentially a measure of relative overlap of areas under the DOS functions of
materials represented by vectors x and y. The Jaccard similarity score SJ(x, y) is given by

SJ(x, y) =

n∑
i=1

min(xi, yi)

n∑
i=1

max(xi, yi)
.

(1)

In (SH, 2007) it is also referred to as Ruzicka similarity, or one minus Tanimoto (a.k.a Jaccard) or Soergel
distance. It has been used in (Materials Cartography: Representing and Mining Materials Space Using

5
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Structural and Electronic Fingerprints, 2015) to construct and map networks of materials based on similarity
among their fingerprints.

Average ratio This measure provides the average ratio between minimum and maximum values of DOS
functions at n considered energy levels:

Sa(x, y) =
1

n

n∑
i=1

min(xi, yi)

max(xi, yi)
.

(2)

It corresponds to one minus Wave Hedges distance, mentioned in (SH, 2007).

Euclidean distance (L2) This measure treats x and y as points in n-dimensional space Rn and computes
a (scaled) L2 distance between these two points:

DE(x, y) =

√√√√ 1

n

n∑
i=1

(xi − yi)2.

(3)

We scale it because one can use DOS functions represented by various number of points and we would like
to ensure that this measure is not sensitive to the density of the selected grid (points per unit of energy).

Manhattan distance (L1) This metric also treats x and y as points in n-dimensional space Rn and
computes a (scaled) L1 distance between these two points, which is less sensitive to outliers (points with
larger difference in DOS function values):

DM (x, y) =
1

n

n∑
i=1

|xi − yi|.

(4)

Cosine similarity This measure considers x and y as vectors in n-dimensional space Rn and computes a
cosine value of an angle between these two vectors:

Sc(x, y) =

n∑
i=1

xiyi√
n∑

i=1

x2i

√
n∑

i=1

y2i

.

6
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(5)

Cosine similarity is a popular vector based similarity measure in text analytics and information retrieval
applications (see e.g., (Distributed Representations of Words and Phrases and Their Compositionality, 2013)).

Pearson correlation coefficient This measure quantifies the linear correlation between two vectors x
and y:

Sp(x, y) =

n∑
i=1

(xi − x̄)(yi − ȳ)√
n∑

i=1

(xi − x̄)2

√
n∑

i=1

(yi − ȳ)2

.

(6)

Pearson correlation coefficient is essentially a cosine value of an angle between centered versions of these two
vectors x and y, i.e., vectors with subtracted mean values. Pearson correlation coefficient along with cosine
similarity are most widely used and popular similarity measures.

The results of preliminary experiments we conducted have shown that none of the six standard similarity
measures described above yielded satisfactory results from a physical perspective. More specifically, we
observed that for some pairs of materials that significantly differed in terms of physical properties of interest,
their similarity score was unexpectedly high. Only Pearson correlation coefficient seemed to have promising
results and was better in capturing the similarity among DOS tipping points and surrounding areas which
are important in determining materials properties.

The main reason these similarity measures among DOS function values might not be able to adequately
capture the similarity of materials properties is that the materials properties are primarily encoded not
only in the DOS function values over all possible energy values, but also in the shape and the behavior
of respective DOS function values around zero (Fermi) energy values (or right after the band gap region).
Specifically, the density of states values and the rate at which these values change are a direct consequence
of the details of the band structure of the material, and thus the important factors determining materials
properties, such as electronic transport and optical response. Moreover, for all practical applications, the
farther the considered energy level from Fermi energy, the less important are the density of states values in
defining the materials properties.

7
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Si (ICSD 150530)
Sb2Sr1 (ICSD 52307)

Figure 3: Vectors of DOS values of Si (ICSD 150530) and Sb2Sr1 (ICSD 52307) over (a) 334 points and
(b) 10 points near zero in negative energy region.

For example, according to Jaccard similarity measure over negative energy region, one of the most similar
materials to Si (ICSD 150530) is Sb2Sr1 (ICSD 52307) with similarity score 0.85, which essentially means
that the DOS functions have roughly 85% overlap (Fig. ??). However, one can see that DOS close to zero
energy have different behavior (Fig. ??). Not surprisingly, the material Sb2Sr1 (ICSD 52307) is substantially
different from Si (ICSD 150530); it appears to be a metal and has a more complex band structure.

Taking these considerations into account, we develop a similarity measure which is based on Pearson correla-
tion coefficient and introduce some adjustments to make it more suitable for capturing materials similarity.

Weighted Pearson correlation coefficient Since density of states values become less important (for
determining materials properties) as they get farther away from the Fermi energy, we introduce weight
functions that put higher weights on the values close to the Fermi energy. Based on our preliminary numerical
experiments, the following weight functions, depicted on Fig. 4 appear to be reasonable to address this
concern.

8
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1 67 134 200 267 334
0.0

0.2

0.4

0.6

0.8

1.0

Negative Energy Region
Positive Energy Region

Figure 4: Weight functions over positive and negative energy regions for Pearson coefficient computations.

Specifically, the considered energy region is divided into five approximately equal point sets, and the weight
wi is set to 1 for the points near zero energy (for negative energy region) or right after the band gap (for
positive energy region), and then it drops by 0.2 each time we move farther from that set. Then the weighted
Pearson correlation coefficient for vectors x and y is expressed by the following formula:

Swp(x, y) =

n∑
i=1

wi(xi − x̄w)(yi − ȳw)√
n∑

i=1

wi(xi − x̄w)2

√
n∑

i=1

wi(yi − ȳw)2

,

(7)

where x̄w =

n∑
i=1

wixi

n∑
i=1

wi

and ȳw =

n∑
i=1

wiyi

n∑
i=1

wi

.

Furthermore, to capture the similarity of DOS behavior near zero energy (or right after the band gap region),
we introduce two adjustments. Specifically, they are based on the last (for negative energy region) or the
first (for positive energy region) k components of the DOS vector where k is a small integer.

Adjustment 1 The first one measures the similarity between the averages of DOS function values over
these k components. It is equal to the ratio of the lowest average to the highest one among these two. It is
similar in spirit to two ratio-based similarity measures mentioned above, i.e., Jaccard similarity or average
ratio. The explicit equations for this adjustment over negative and positive energy region are given next.

9
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For the negative energy region we have the following formula:

Aneg(x, y, k) =

min

(
n∑

i=n−k+1

xi,
n∑

i=n−k+1

yi

)

max

(
n∑

i=n−k+1

xi,
n∑

i=n−k+1

yi

) .
(8)

For the positive energy region we obtain:

Apos(x, y, k) =

min

(
k∑

i=1

xi,
k∑

i=1

yi

)
max

(
k∑

i=1

xi,
k∑

i=1

yi

) .
(9)

Adjustment 2 The second adjustment measures the similarity between the changes of respective DOS
functions. Specifically, for a pair of DOS functions represented by vectors x and y, it is based on differences
among angles of DOS value changes from point 1 to point k. It is computed using the following equations.

For the negative energy region we have:

where e0 = 5/(n − 1) is the energy range between two consecutive data points (i.e., 0.015eV in our experi-
ments).

Similarly, for the positive energy region, we have:

10
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Weighted Pearson correlation coefficient with (0.5,0.5) adjustments Our final proposed similarity
measure is comprised of weighted Pearson correlation coefficient multiplied by the weighted sum of the two
adjustments. Our findings indicate that equally weighted adjustments provide satisfactory results:

Sadj
wp (x, y) = Swp(x, y)× (0.5A+ 0.5B),

(10)

where A = Aneg(x, y, k) and B = Bneg(x, y, k) for the negative energy region, and A = Apos(x, y, k) and
B = Bpos(x, y, k) for a positive energy region. Based on our preliminary computational experiments, we set
k = 3 for Adjustment 1 and k = 5 for Adjustment 2. Note that if x = y, then Sadj

wp (x, y) = 1, hence close
to 1 similarity scores should indicate high level of similarity. We use this measure for the construction and
analysis of materials network in the experiments reported in this paper.

To illustrate that this measure provides reasonable results, consider the most similar material to Si (ICSD
150530) according to this measure, which is C1Sn1 (ICSD 182365) with 0.89 similarity score Sadj

wp over
negative energy region (Table 3, discussed in more detail below). It is based on 0.982 weighted Pearson
correlation coefficient, 0.874 adjustment 1 and 0.944 adjustment 2 scores. One can clearly see that not only
overall behaviors of DOS functions are similar (Fig. ??), but also DOS close to zero energy have similar
behaviors as well (Fig. ??). These two materials can indeed be considered as similar since they belong to
same group in the periodic table and have the same crystal structure.

1 50 100 150 200 250 300 334
index

0.0

0.1

0.2

0.3

0.4

0.5

DO
S 

(s
ca

le
d)

Negative energy region
Si (ICSD 150530)
C1Sn1 (ICSD 182365)

Figure 5: Vectors of DOS values of Si (ICSD 150530) and C1Sn1 (ICSD 52307) over (a) 334 points and (b)
10 points near zero in negative energy region.

We also note that the material Sb2Sr1 (ICSD 52307) we mentioned before (to illustrate the drawbacks of
using Jaccard similarity score), has only 0.28 similarity score according to Sadj

wp , which is primarily due to

11
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the difference in the DOS behavior near zero energy (adjustment 1 is equal to 0.331 and adjustment 2 is
equal to 0.271).

Constructing Networks of Materials

Similarly to social, biological, technological and other well-known real-world complex networks, the dataset
of materials can be treated as a network, where each individual material is represented by a node, and a pair
of nodes is connected by an edge (link) if the respective two materials exhibit a certain level of similarity
according to a specified quantitative measure. Using a similarity measure, such as those mentioned above,
one can construct a materials network G = (V,E), where V denotes the set of nodes and E ⊆

(
V
2

)
is the set

of edges, as follows. For each pair of materials x and y in V , given a similarity measure S(x, y) (or D(x, y))
and a threshold value C, we create a link {x, y} ∈ E between nodes x and y if S(x, y) ≥ C (or D(x, y) ≤ C).
Clearly, each distinct choice of a similarity measure and the corresponding threshold value would produce a
distinct instance of a network of materials. In the next section, we analyze the constructed network instances
and present the obtained results.

Results

In this section, we present the results of experiments concerning network representations of the AFLOW
library data using the introduced weighted Pearson correlation similarity measure (7) with adjustment (10).

Similarity Score Distributions

Figure 6: Heat maps of similarity scores computed over positive and negative energy regions based on (a)
weighted Pearson correlation coefficient Swp and (b) weighted Pearson correlation coefficient with adjustment
Sadj
wp

12
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First, we provide the plots illustrating similarity score distributions computed for all pairs of materials.
Specifically, since for each pair of materials the corresponding similarity scores over negative and positive
energy regions are computed separately, Fig. 6 shows the heat maps of similarity scores (weighted Pearson
correlation coefficient without and with adjustment) between DOS functions over negative (horizontal axis)
and positive (vertical axis) energy regions, as well as correlation coefficients for all pairs of materials in our
dataset. Our findings indicate that there is no clear correlation between similarity scores over positive and
negative energy regions, which means that the similarity score of two materials over one region does not
correlate with the similarity score over the other region. It also supports our motivation for considering
similarity over positive and negative energy regions separately as the behavior of DOS over these two regions
reflects different materials properties. However, as one can observe on the top right corner of Fig. ??, if
the similarity score over negative energy region is close to 1, it is more likely that the similarity score over
positive energy region is also close to 1, i.e., if two materials DOS are very similar in one energy region, it
is more likely that their DOS are very similar over the other energy region as well.

Figures 7 and 8

1.00 0.75 0.50 0.25 0.00 0.25 0.50 0.75 1.00
Similarity Score

100
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Weighted Pearson Correlation

Negative Energy Region
Positive Energy Region
Min(Negative, Positive)

Figure 7: Number of materials with given similarity scores: (a) weighted Pearson correlation coefficient Swp

and (b) weighted Pearson correlation coefficient with adjustment Sadj
wp . The number of materials is taken

over 0.01 region.
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Figure 8: Cumulative distribution of similarity scores: (a) weighted Pearson correlation coefficient Swp and
(b) weighted Pearson correlation coefficient with adjustment Sadj

wp .

illustrate the distributions of similarity scores (weighted Pearson correlation coefficient without and with
adjustment) over positive and negative energy regions. In addition, we plot the distribution of minimum
among the scores over negative and positive energy regions. One can observe a slight variation within the
distribution in the sense that the number of pairs of materials with high similarity scores (e.g., > 0.5) over
positive energy region is greater than that over negative energy region. The peak is observed near the zero
similarity score, which means that the majority of pairs of materials do not have similar DOS functions. From
the networks perspective, our cutoff region of interest is where the number of pairs of materials is not very
large (somewhere around 106, which corresponds to cutoff above 0.6), such that the constructed networks are
not very dense, meaningful, and reflect some structural aspects of the corresponding materials space. Note
that the authors of (Materials Cartography: Representing and Mining Materials Space Using Structural and
Electronic Fingerprints, 2015) use 0.7 cutoff for network construction and visualization, although they do
not provide any details on the choice of such threshold, and the similarity score they are using is somewhat
different.

“Global” Characteristics of Networks of Materials

In this set of experiments we construct materials networks using various threshold levels and investigate
their basic structural properties.

14
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Figure 9: Distributions of the degrees in the largest connected components of materials networks constructed
using adjusted weighted Pearson coefficient Sadj

wp over (a) Negative energy region and (b) Positive energy
region

Fig. 9 illustrates the distributions of the degrees in materials networks in their largest connected components
for four threshold levels (0.8, 0.75, 0.7, 0.65) constructed using the adjusted weighted Pearson correlation
coefficient (10) as the similarity metric. Specifically, each marker on a plot represents the number of materials
(horizontal axis) with a certain degree (vertical axis) in log-log scale. We would like to emphasize that simi-
larly to many real-life networks, the degree distribution of materials networks (for any threshold) resembles
a straight line, which indicates that the degree distributions are somewhat similar to those described by a
power law. Note that the degree distribution for the largest connected component has low-degree saturation
, meaning that low-degree nodes are less frequent than what is predicted by the power law. There is also a
high-degree cutoff, indicating that there are fewer high-degree nodes than what is expected in a pure power
law. These observations are common deviations from power law behavior in real networks (AL, 2016).

Tables 1 and 2 report the basic statistics of the materials networks constructed over the negative and positive
energy regions, respectively. Each of the networks has |V |=27,007 nodes. Out of 27,007 corresponding
materials, 14,262 (53%) are metals, 4,156 (15%) are semiconductors, and 8,588 (32%) are insulators. We
treat a material as a metal if it has 0 band gap, as a semiconductor if it has a positive band gap less than
1.5 eV, and as an insulator, if its band gap is above 1.5 eV. The notations used to describe the columns in
these tables are as follows: |E| – the number of edges; |V1| – the number of nodes in the largest connected
component; %|V m

1 |, %|V s
1 |, %|V ins

1 |) – the percentages of ’metals’, ’semiconductors’ and ’insulators’ in the
largest connected component, respectively; |V2| – the number of nodes in the second largest connected
component; #isol – the number of isolated nodes; and #comp – the number of connected components
(disregarding the isolated nodes). The remaining columns contain characteristics of the largest connected
component: Deg – the average degree; Diam – the diameter; AvgDist – the average distance; C1 – the
global clustering coefficient; C2 – the average local clustering coefficient; DegCorr – the degree correlation;
and MaxClique – the size of the maximum clique.
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Based on these tables, it is interesting to observe that materials networks appear to be small world networks
(Watts DJ, 1998), which means that they have high clustering coefficients, small diameters and small average
distances. Moreover, average distance, clustering coefficients and degree correlation of the materials network
constructed with, e.g., 0.7 cutoff, are surprisingly similar to the corresponding parameters of collaboration
network among physicists (two physicists are connected by an edge if they co-authored at least one paper)
presented in Table II in (MEJ, 2003). Namely, the materials network has average distance 6, clustering
coefficients 0.37 and 0.51, and degree correlation 0.27, whereas the same parameters for the physicists’
collaboration network are equal 6.19, 0.45, 0.56 and 0.363, respectively. Note that other networks studied in
the aforementioned paper have somewhat different values of such parameters.

Another interesting observation is that the second largest connected component is usually very small in
comparison to the largest one. It means that as the threshold level decreases from 0.8 to 0.65, only one giant
component emerges (containing mostly metals), and the rest of the network is mostly comprised of isolated
nodes and very few connected components of small sizes. However, as the largest connected component grows,
it contains more and more semiconductors and insulators. For example, for a threshold level 0.65, out of
27,007 materials there is one connected component with 14,673 nodes (70.9% metals, 14.4% semiconductors
and 14.6% insulators), 10,214 isolated nodes, and 827 connected component of small sizes, with the total of
2,120 nodes (average size < 3).

This observation about uneven distribution of metals, semiconductors and insulators in the connected com-
ponents indicates that different types of materials (metals, semiconductors or insulators) should be treated
differently when choosing a similarity threshold for any particular application. The results presented in the
next section will further support this conclusion.

Note that in Tables 1 and 2 we also report the results on cardinality of maximum cliques in the largest
connected components of the corresponding materials network. For example, the largest clique of size 10 for
the 0.85 cutoff (Table 1) contains the following set of materials: Na1 (ICSD 426957), Li1 (ICSD 642102),
Ca10·6758 (ICSD 163535), S1Tl1 (ICSD 52201), Li1 (ICSD 642105), Ba1Li4 (ICSD 615944), Ho1 (ICSD
639322), O1Ta1 (ICSD 647483), Ca10·7184 (ICSD 163531), and Na1 (ICSD 53753). All materials in this set
are metals with occupied states bands that are largely parabolic.

Table 1: Basic characteristics of the materials networks constructed based on the weighted Pearson coefficient
with adjustments over the negative energy region.

Threshold |E| |V1| %|V m
1 | %|V s

1 | %|V ins
1 | |V2| #isol #comp Deg Diam AvgDist C1 C2 DegCorr MaxCl

0.9 1578 16 100 0 0 15 25219 662 3.875 5 2.275 0.622 0.411 0.254 6
0.85 3690 71 98.6 0 1.4 48 23523 1103 4.648 15 5.49 0.639 0.396 0.646 10
0.84 4394 131 99.2 0.8 0 120 23116 1149 3.389 26 10.146 0.47 0.356 0.181 7
0.83 5279 306 98.4 1.6 0 299 22620 1192 4.275 24 8.218 0.506 0.413 0.324 11
0.82 6467 610 98.7 1.1 0.2 480 22071 1197 4.659 27 9.811 0.462 0.38 0.367 11
0.81 7931 1130 92.4 6.4 1.2 561 21507 1221 5.166 39 12.546 0.484 0.414 0.379 13
0.8 9871 1692 91.9 6.1 2 713 20928 1214 5.457 41 11.97 0.436 0.389 0.373 13
0.79 12357 3061 90 5 5 90 20284 1180 5.823 56 17.473 0.427 0.401 0.409 15
0.78 15363 3755 88.3 6.7 5 164 19661 1120 6.351 63 16.175 0.411 0.394 0.423 15
0.77 19248 4783 83.2 8.4 8.4 64 18973 1095 6.799 55 14.79 0.396 0.392 0.458 16
0.76 24268 5593 81 9.7 9.3 78 18278 1053 7.638 53 12.961 0.383 0.392 0.466 18
0.75 30381 6467 79.6 10.5 9.9 32 17592 1017 8.584 47 12.147 0.376 0.401 0.475 19
0.74 37921 7306 77.6 11 11.3 36 16871 992 9.694 42 11.415 0.37 0.401 0.476 21
0.73 47268 8193 76.7 11.3 12.1 32 16144 960 10.962 44 10.972 0.366 0.402 0.483 23
0.72 58467 9016 75.2 11.7 13.1 33 15409 920 12.464 39 10.201 0.365 0.401 0.485 26
0.71 72144 9959 73.9 12.2 13.9 29 14674 872 14.074 43 9.721 0.363 0.4 0.482 28
0.7 88495 10797 72.7 12.5 14.7 16 13948 836 16.04 34 9.105 0.363 0.411 0.479 31
0.69 107778 11661 71.8 12.7 15.5 14 13245 789 18.185 36 8.673 0.363 0.413 0.48 33
0.68 130960 12485 70.7 13 16.3 13 12541 749 20.719 34 8.194 0.364 0.421 0.479 39
0.67 158403 13245 69.7 13.2 17.1 20 11890 702 23.688 31 7.807 0.364 0.426 0.476 44
0.66 190692 14084 68.8 13.4 17.7 20 11247 635 26.885 30 7.542 0.366 0.427 0.473 49
0.65 228035 14853 67.9 13.7 18.3 20 10603 602 30.539 29 7.267 0.367 0.432 0.469 52
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Table 2: Basic characteristics of the materials networks constructed based on the weighted Pearson coefficient
with adjustments over the positive energy region.

Threshold |E| |V1| %|V m
1 | %|V s

1 | %|V ins
1 | |V2| #isol #comp Deg Diam AvgDist C1 C2 DegCorr MaxCl

0.9 1871 46 0 19.6 80.4 45 25026 644 2.565 10 4.196 0.195 0.203 -0.235 3
0.85 6810 704 1.1 29.4 69.5 458 22564 1034 6.33 29 8.462 0.357 0.363 0.223 9
0.84 8994 1337 2.8 32 65.2 600 21893 1079 6.402 40 11.465 0.377 0.342 0.315 11
0.83 11880 1614 3 33.3 63.6 754 21218 1119 7.502 36 10.497 0.385 0.372 0.344 12
0.82 15469 1869 3.4 34.1 62.5 1097 20542 1129 8.748 33 9.666 0.393 0.383 0.364 13
0.81 20070 2117 3.4 34.8 61.8 1418 19859 1143 10.334 31 9.079 0.401 0.404 0.375 14
0.8 25642 4045 43.6 21.3 35.1 216 19137 1163 10.536 60 17.436 0.401 0.411 0.417 18
0.79 32688 4833 47.3 19.8 32.8 270 18456 1139 11.935 61 15.984 0.404 0.419 0.423 21
0.78 41381 5684 51.2 18.2 30.7 300 17670 1141 13.213 73 16.858 0.406 0.42 0.43 23
0.77 52014 6415 53 17.6 29.4 518 16875 1119 14.954 54 14.814 0.407 0.426 0.43 26
0.76 64261 7762 53.1 17.2 29.7 34 16074 1112 15.861 56 16.139 0.408 0.421 0.445 30
0.75 79503 8766 54 17 29 20 15257 1066 17.559 58 15.154 0.409 0.416 0.443 32
0.74 97698 9715 54.5 16.7 28.8 32 14523 994 19.629 53 14.136 0.411 0.423 0.441 35
0.73 118658 10659 55.4 16.5 28.1 25 13676 965 21.849 48 13.169 0.414 0.424 0.442 42
0.72 143579 11652 55.6 16.4 28 16 12971 891 24.323 54 12.628 0.416 0.43 0.44 46
0.71 172937 12517 56.1 16.6 27.4 12 12245 837 27.349 43 11.773 0.418 0.43 0.439 53
0.7 206139 13333 56.2 16.4 27.4 19 11519 793 30.664 38 10.995 0.42 0.432 0.44 58
0.69 244849 14198 56.3 16.3 27.4 12 10812 735 34.264 34 10.359 0.423 0.431 0.438 61
0.68 289260 14976 56.1 16.2 27.7 12 10130 696 38.423 32 9.814 0.425 0.436 0.436 67
0.67 339650 15777 55.9 16.2 27.9 12 9516 636 42.879 30 9.281 0.427 0.442 0.433 75
0.66 397184 16516 55.8 16.2 28 12 8802 627 47.93 28 8.727 0.43 0.445 0.432 83
0.65 462140 17263 55.9 16 28 12 8204 568 53.396 28 8.342 0.433 0.446 0.431 88

“Local” Characteristics of Networks of Materials

While global structural properties of a materials network may reveal some basic collective characteristics of
the materials universe emerging from the information about pairwise similarities of the materials, in practice
one is often interested in a “local neighborhood” of a particular material, that is, a group of materials
that are similar to the given material. In this section we present sample results on local analysis for the
constructed materials networks. Specifically, to illustrate the approach, we analyze the local neighborhoods
of the following 4 prototypical materials: Si (ICSD 150530), the most common semiconductor; Al (ICSD
43492), a typical metal; Ba1O3Ti1 (ICSD 183932), a wide band-gap insulator of technological interest;
and Co1Sb3 (ICSD 164980), a well known thermoelectric of a particularly complex band structure. Fig.
10 illustrates the largest connected component of the materials network that includes Si (ICSD 150530)
constructed for the adjusted weighted Pearson coefficient similarity score between DOS function values over
all energy regions combined, with 0.82 cutoff.
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Table 3: Top 20 similar materials according to our similarity score to Si (ICSD 150530) and Al (ICSD 43492)
over negative and positive energy regions.

Si (ICSD 150530) Al (ICSD 43492)
Negative Positive Negative Positive

Rank Material ICSD Score Material ICSD Score Material ICSD Score Material ICSD Score
1 C1Sn1 182365 0.893 Ag1Mg1Sb1 187151 0.861 Dy1Zn5 630386 0.728 Ga1 12174 0.919
2 Cr5Cs1S8 2566 0.842 Cu3N1 53313 0.777 C1Ta1 185986 0.705 P1 98121 0.839
3 Ge1Li2Zn1 171498 0.825 Ag1Bi1Ca1 659377 0.742 Ga1 12174 0.691 Hg1Mg1 639081 0.838
4 Cr2Se4Zn1 626758 0.825 Sb4Sn3Sr1 165617 0.73 Y1Zn5 106228 0.69 Si1 109025 0.814
5 Cr3S5Tl1 23632 0.825 As2Ba2Mn1O2Zn2 85659 0.709 Cd1Ge1P2 52804 0.673 Si1 41392 0.811
6 Cr5Se8Tl1 37123 0.812 As2Nb1 18143 0.695 La1Zn5 104736 0.671 Ni1Si2Tb1 54298 0.81
7 Cr5Rb1S8 2567 0.802 As4Ba3Zn2 424760 0.689 Ag2Ba1Sn2 25332 0.668 Sb1 52227 0.801
8 C1Ge1 182363 0.802 Na1Sb1Zn1 645023 0.681 N2Os1 185513 0.666 P1 169539 0.8
9 Si1Sn1 184676 0.786 B1Sb1 184571 0.679 Cd3In1 109285 0.657 In1Mg1 51972 0.799
10 P2Ta1 648187 0.782 Ba1Bi2Zn1 58638 0.679 In1Sb1 659843 0.647 In1 53091 0.798
11 Ge1P1 637492 0.773 Ag1Pb1S3Sb1 24257 0.677 La3Zn22 642095 0.645 In1 57392 0.797
12 Na1O5P1V1 33944 0.766 Ge1Na2Zn1 240728 0.675 Hf1 426944 0.644 Co1Er1Si2 622852 0.796
13 Cd2O7Os2 155761 0.757 Pb1Se2 174577 0.665 Lu1Pb2 104811 0.641 Cu2Eu1Si2 627287 0.796
14 Bi1Te1 617181 0.752 As4Ba3Cd2 424761 0.653 Ag1Er1 58234 0.631 Co1Si2Y1 625129 0.796
15 Ga1Sb1 635312 0.75 As1Br3Ca3 426 0.647 H2Nb1 164606 0.629 Ca5P6Pd6 79096 0.786
16 Ba1Dy2Ni1O5 85046 0.75 Br5C2Ce4 418408 0.644 Al2Ca1Zn2 57550 0.628 Ho1Ni1Si2 639505 0.785
17 As2Mn2O7 69003 0.75 Ca2Sb1 154 0.644 La1Mg3 657966 0.625 Ba1Ga1Ge1 615870 0.784
18 Cr2Hg1Se4 626182 0.747 Al4Na4P12Sr8 409319 0.637 Gd1Zn5 104150 0.624 Eu1Ge1Zn1 246865 0.78
19 B2Be1C2 418618 0.747 Al2Ge2Sr1 608014 0.632 Sn1 52487 0.617 Mg5Tl2 150631 0.777
20 Sn1Te1Zr1 80190 0.746 C7Lu4 83382 0.628 Fe1Sb1Zn1 90397 0.613 Dy1Ni1Si2 658585 0.775

Figure 10: Largest connected component of materials network that includes Si (ICSD 150530) containing 82
materials and 116 edges obtained for 0.82 cutoff of weighted Pearson coefficient with adjustment computed
over negative energy region. The nodes are colored according to the band gap: red - metals (0 eV), green -
semiconductors (0-1.5 eV), blue - insulators (>1.5 eV).

Tables 3 and 4 report top 20 similar materials, according to the weighted Pearson coefficient similarity score,
for each of the aforementioned four materials over negative and positive energy regions. A close inspection
of the density of states of these materials leads to the following observations.

i. The behavior of the DOS of all these materials is indeed very similar to that of the prototype in both
the negative and positive energy region, mostly close to the top of the valence or bottom of conduction
band (this is indeed enforced by the choice of the weighted Pearson metric).

ii. The set contains entries that indeed belong to the same class of materials of the prototype (CSn, CGe,
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Table 4: Top 20 similar materials according to our similarity score to Ba1O3Ti1 (ICSD 183932) and Co1Sb3
(ICSD 164980) over negative and positive energy regions.

Ba1O3Ti1 (ICSD 183932) Co1Sb3 (ICSD 164980)
Negative Positive Negative Positive

Rank Material ICSD Score Material ICSD Score Material ICSD Score Material ICSD Score
1 Ba1O3Ti1 100804 0.989 Ba1O3Ti1 100804 0.936 Fe4P12Th1 200827 0.538 B1H4Li1 95208 0.392
2 Ba1O3Ti1 186462 0.974 Ba1O3Ti1 73639 0.833 As3Co1 610045 0.458 P2Pd3S8 35361 0.376
3 Ba1O3Ti1 73639 0.886 O3Sr1Tc1 183451 0.766 As12Os4Th1 611145 0.443 Ba1Ga2P2 380479 0.357
4 Ba1Mg0.333O3Ta0.667 95495 0.667 B1F3 24783 0.752 Ga2Os1 103785 0.436 F1Lu1O3Se1 417449 0.349
5 Ba3Mg1O9Ta2 240279 0.655 Ba1O3Ti1 186462 0.742 As3Ir1 610737 0.425 Er6I10Ni1 424429 0.344
6 Hf1O3Sr1 89386 0.611 Br1Ce3S8Si2 88691 0.714 Ga2Ru1 635228 0.424 O6Se2Ti1 200203 0.339
7 Ba1Mg0.333Nb0.667O3 95406 0.583 Ag1Hg2O4P1 2208 0.713 Ni3Ta1 105390 0.405 O9Re2V1 92317 0.338
8 Ba3Mg1Nb2O9 240277 0.579 F1O3P1Sn1 2039 0.664 In2Ni3S2 640135 0.404 Pt3Rb2S4 26267 0.335
9 Hf1O3Sr1 161594 0.573 H4Hg2O9P2 413085 0.654 H1Ho1Se1 78957 0.403 Cl6Hg3Te2U1 419437 0.332
10 Bi1In1S3 290195 0.571 O7Sr3Ti2 20294 0.654 La1S2 641808 0.402 B1H4Na1 165835 0.326
11 Br1Cl1 424850 0.559 C1O2 188891 0.651 Ga3Ta1 103976 0.401 Ge4Se10Tl4 26415 0.324
12 Be4N4Sr2 413356 0.549 Bi1Cl2Cu1S1 413289 0.645 In2P2Sr1 260563 0.4 Al2Ru1 609234 0.318
13 Bi2Se3 171571 0.544 C1O2 188893 0.635 H1Se1Y1 72008 0.399 Ba1C1Cl1N1S1 94400 0.312
14 As2Te3 54097 0.526 Br2Ge1 100088 0.635 Nb1Ni3 105175 0.398 Ca2Fe1O6W1 81204 0.308
15 Bi1I1Te1 74501 0.522 Mo1O3 80577 0.634 Ho1Te2Tl1 639771 0.396 C2I1K1N2 40370 0.306
16 Na1O3Ta1 280101 0.518 C1F3H5O5S1 2007 0.629 Sb2Zr1 651784 0.391 F1O3Se1Y1 418898 0.303
17 Al1F3 202681 0.518 Cs3Ni1O2 424578 0.627 Te2Tl1Y1 653098 0.391 Mn1O5Se2 73936 0.303
18 I5In1Sn2 151996 0.515 Ag1Bi1Cl2S1 413290 0.626 Ni3V1 105443 0.391 P1Ru1S1 648023 0.302
19 Mg1Te1 642883 0.505 O3Sr1Ti1 65089 0.615 Hf1Ni3 2415 0.39 Mn1Mo1O4 15615 0.3
20 Ba3Ni1O9Ta2 240281 0.498 Hg2Mo1O4 90084 0.609 Co2Hf1Si2 623793 0.39 Cl2O6Pb1 40286 0.299

etc.); however,

iii. A close look at the overall electronic properties of the materials set shows that the behavior of the
DOS is not sufficient to properly predict the behavior of a given system in an actual application.

As an example of Observation iii, although Si and Cr5Cs1S8 do show a high degree of similarity in the top
of the valence bands in terms of the shape of the DOS, they are very dissimilar materials otherwise. This
indicates that a predictive descriptor of materials properties based on electronic structure has to take into
account the topological characteristics of the band structure beyond the “mean field” picture of the density
of states. Observation ii on the other hand, indicates that if one restricts the search space to systems that
have, for instance, the same geometry, then the classification becomes extremely accurate and the systems
share basically the same (or similar) physical properties. Table 5 illustrates this point by providing the list of
10 materials most similar (according to our similarity score) to Si (ICSD 150530) and Al (ICSD 43492) over
negative and positive energy regions with the same number of atoms per cell and geometry. Table 6 gives a
similar list for Ba1O3Ti1 (ICSD 183932) and Co1Sb3 (ICSD 164980). The materials in the neighborhood

Table 5: Top 10 similar materials according to our similarity score to Si (ICSD 150530) and Al (ICSD 43492)
over negative and positive energy regions with the same number of atoms per cell and geometry (FCC for
both materials).

Si (ICSD 150530) Al (ICSD 43492)
Negative Positive Negative Positive

Rank Material ICSD Score Material ICSD Score Material ICSD Score Material ICSD Score
1 C1Sn1 182365 0.893 B1Sb1 184571 0.679 Ta1 41520 0.482 Tl1 104199 0.64
2 C1Ge1 182363 0.802 As1Sc1 44057 0.589 Nb1 41512 0.461 Ne1 65897 0.492
3 Si1Sn1 184676 0.786 B1P1 181291 0.543 Pa1 77862 0.445 C1 28859 0.471
4 Ga1Sb1 635312 0.75 Be1Te1 290008 0.535 Mg1 180453 0.426 Ar1 53814 0.458
5 As1Ga1 184923 0.73 As1B1 181292 0.532 Br1 168177 0.419 Kr1 43726 0.431
6 B1P1 181291 0.706 Sb1Y1 651741 0.532 V1 41504 0.414 U1 181306 0.416
7 Ga1P1 53963 0.679 Bi1Tb1 617162 0.527 Mo1 41513 0.409 Th1 76039 0.408
8 Be1Te1 290008 0.675 Bi1Dy1 58778 0.514 Ti1 168322 0.403 Xe1 426985 0.4
9 B1Sb1 184571 0.641 Bi1Ho1 43545 0.503 U1 181306 0.398 K1 44669 0.392
10 B1Bi1 184569 0.639 P1Sc1 180831 0.495 Th1 76039 0.363 Au1 426925 0.372

of a given material (e.g., Si) are all similar to Si, but they may not be similar to each other. To find
the largest group of materials in the neighborhood of Si that all share pairwise similarities, we compute a
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Table 6: Top 10 similar materials according to our similarity score to Ba1O3Ti1 (ICSD 183932) and Co1Sb3
(ICSD 164980) over negative and positive energy regions with the same number of atoms per cell and
geometry (TET for Ba1O3Ti1 and BCC for Co1Sb3).

Ba1O3Ti1 (ICSD 183932) Co1Sb3 (ICSD 164980)
Negative Positive Negative Positive

Rank Material ICSD Score Material ICSD Score Material ICSD Score Material ICSD Score
1 Hf1O3Sr1 161594 0.573 Nb1Te4 601217 0.373 As3Co1 610045 0.458 As3Co1 610045 0.177
2 Na1O3Ta1 280101 0.518 O3Pb1V1 152278 0.337 As3Ir1 610737 0.425 Ni2Zn11 105475 0.094
3 Bi2O3 168807 0.462 O3Pb1Ti1 61169 0.278 Ir1Sb3 640958 0.389 Ir1P3 23713 0.086
4 Na1Nb1O3 280100 0.417 Ga2Mg1Sc2 260213 0.269 Rh1Sb3 650248 0.346 P3Rh1 43724 0.066
5 F4Zr1 35100 0.276 Li1Nd2Si2 642206 0.268 Ni2Zn11 105475 0.316 As3Rh1 611268 0.045
6 Bi2Se3 617096 0.272 Co2P2U1 67932 0.244 As3Rh1 611268 0.278 Rh1Sb3 650248 0.023
7 K1Nb1O3 9535 0.205 C2Mo1Nd2 417666 0.24 Ir1P3 23713 0.221 As3Ir1 610737 0.019
8 I3O1W1 65183 0.195 Si2W3 652552 0.229 O3Re1 55465 0.214 Al12Mo1 58003 0.018
9 Be2Nb3 58722 0.19 Cd1Nd2Ni2 414597 0.226 Co1P3 92393 0.192 Si1V3 52472 0.018
10 B2Ta3 107320 0.189 B2Mo3 614800 0.217 P3Rh1 43724 0.124 Ir1Sb3 640958 0.015

maximum clique in the subgraph induced by the neighborhood of Si. The maximum clique in the network
of 20 neighbors of Si with 0.75 cutoff is the following set of 5 materials:

• C1Sn1 (ICSD 182365) - metal,

• Cr5Cs1S8 (ICSD 2566) - insulator,

• Cr3S5Tl1 (ICSD 23632) - insulator,

• Cr5Se8Tl1 (ICSD 37123), and

• P2Ta1 (ICSD 648187) - metal.

The DOS functions are very similar for all these materials, although they differ largely in terms of the band
gap.

The maximum clique in the neighborhood of Si with 0.7 cutoff with the same geometry (FCC) and number
of atoms per cell (two) consists of the following four materials:

• As1Ga1 (ICSD 184923)

• C1Sn1 (ICSD 182365)

• Ga1Sb1 (ICSD 635312)

• Si1Sn1 (ICSD 184676)

All these belong to the larger family of FCC semiconductors and indeed share same physical characteristics
overall.

Network-based Navigation Tool

Finally, Figure 11
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Figure 11: Two-hop neighbourhood of Si in a prototype AFLOW library navigation tool based on the
developed network representation.

provides an illustration of a prototype of a navigation system for AFLOW library based on the network
representation developed in this paper. The interactive visualization was implemented as HTML document
using JavaScript D3 library (Bostock M, 2011) and allows to conveniently navigate the materials in the data
base in a web browser. In this illustration, the nodes of the network are limited to the two-hop neighborhood
of Si. Pointing the cursor to any node in the network highlights its incident edges that connect it to other
nodes. Clicking on an any node in the network will open a web page in AFLOW library of the corresponding
material for further inspection. We believe that such a natural and intuitive navigation tool will significantly
enhance users’ ability to explore the complex materials data base by visualizing the similarity relationships
between the materials using the proposed network representation.

Conclusion

This paper develops a methodological framework for construction and analysis of materials maps, based
on network representations of a materials database. The proposed network-based approach may provide
a valuable tool not only for visualization and navigation of large materials database, but also for carrying
out application-specific tasks, such as determining groups of candidate materials for substituting a given
material used in a manufacturing process. The work reported in this paper can be viewed as the first step
in this direction, opening up many possibilities for future investigations, including the following. (i) Further
refining the proposed similarity measures, as well as developing alternative quantification of pairwise relations
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between materials that could be used to build a network of materials. (ii) Exploring various combinatorial
objects representing groups of similar materials in the constructed unweighted materials networks as well
as their edge-weighted counterparts, with the edge weights given by the computed similarity scores. Edge-
weighted cliques (The Maximum Edge Weight Clique Problem: Formulations and Solution Approaches, 2017;
Hosseinian S, 2018; Hosseinian S, 2020) and clique relaxation models (The Maximum Independent Union of
Cliques Problem: Complexity and Exact Approaches, 2020; Pattillo J, 2013) are of particular interest in this
regard. (iii) Utilizing the proposed methodology in a context of specific applications, such as determining
suitable materials for manufacturing composites with desired properties.
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