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Abstract

Ancient DNA research has developed rapidly over the past few decades due to the improvement in PCR and next-generation

sequencing (NGS) technologies, but challenges still exist. One major challenge in relation to ancient DNA research is to recover

genuine endogenous ancient DNA sequences from the raw sequencing data. This is often difficult due to the degradation of

ancient DNA and high levels of contamination, especially homologous contamination. In this study, we collected whole genome

sequencing (WGS) data from 6 ancient samples to compare different mapping algorithms. To further explore more effective

methods to separate endogenous DNA from the homologous contaminations, we attempted to recover reads based on the ancient

DNA specific characteristics of deamination, depurination, and DNA fragmentation with different parameters. We propose a

quick and improved pipeline for separating endogenous ancient DNA while simultaneously decreasing the homologous contam-

inations to a very low proportion. Overall, these recommendations for ancient DNA mapping and separation of endogenous

DNA in this study could facilitate future studies of ancient DNA.

1. Introduction

Ancient DNA research provides direct evidence to reconstruct the prehistoric biogeography and biodiversity,
which can further help to explain long-standing questions in evolution, phylogeny, taxonomy, and adaptations
(1-5). Ancient DNA research has developed rapidly over the past thirty years due to the improvement in PCR
and next-generation sequencing (NGS) technologies. The first successful attempt to extract ancient DNA
was made by Higuchi et al (1984), where muscle DNA ofEquus quagga was extracted and DNA fragments
of 228 bp were amplified (6, 7). With the advancement in biomolecular techniques, it is now possible to
extract and amplify ancient DNA fragments from different ancient species and biological samples, including
bones, teeth, soft tissue, fur, and fossilized excrements (7, 8). Studies on ancient DNA were previously
restricted to mitochondrial DNA and extremely short nuclear DNA fragments (7, 9). However, the advent
of NGS technology has enabled ancient DNA studies at the whole-genome level. Consequently, the number
of ancient DNA studies has increased exponentially in the last decade(10). The first whole genome of the
woolly mammoth was sequenced in 2008(11). Three Neanderthals’ genomes were also sequenced in 2010,
which revealed an extensive gene flow to modern humans (12). In 2012, the first high coverage genome
(˜30X) of Denisovans was published(13). In 2015, Allentoft et al. (2015) sequenced 101 ancient humans at
the whole genome level (14). At present, more than 1100 ancient human and hominine genomes (15) and
more than 300 ancient animal genomes (2, 16, 17) have been sequenced and published.
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Although great breakthroughs have been made in ancient DNA extraction, library preparation and bioinfor-
matics, there still remain some challenges (18-21). Effective mapping and distinguishing of the present-day
DNA contaminations from the endogenous ancient DNA is still complicated and difficult to perform, and
needs to be improved for ancient DNA analysis. It is particularly difficult to filter the present-day human
DNA contamination from ancient human or hominine DNA (22, 23). Ancient DNA is often degraded into
very small fragments due to physical, chemical or biological factors during the long-term preservation in
unfavorable conditions. These effects always leave valuable marks on ancient DNA to help us distinguish it
from modern DNA, including the C-to-T changes at the ends of ancient DNA fragments induced by deami-
nation, high proportion of purine bases at the first physical position preceding the ancient DNA fragments,
and the severely fragmented nature (4, 21). These unique characteristics of ancient DNA can be used to
identify the true ancient DNA.

Bioinformatics methods have been developed for mapping and extracting endogenous ancient DNA from total
ancient DNA (18, 21). In the mapping procedure for ancient DNA, the software BWA with the parameters
set “aln -l 1024 -n 0.03 ” is usually applied to map ancient sequencing data against the reference genome(18).
However, this process is time-consuming. A newly developed method like BWA mem with theseed-reseed-
extend algorithm, provides new insights for mapping of ancient DNA(24). Meanwhile, Skoglund et al (21)
developed PMDtools to separate genuine endogenous DNA from homologous contaminations. This method
is effective in filtering modern human contaminated DNA from the ancient human DNA. However, it is
difficult for the PMDtools to set an appropriate threshold value of PMDS, when the contamination rate
cannot be accurately evaluated. Besides, the power of PMDtools is further weakened for extremely young
or old ancient samples.

In this study, we collected whole genome sequencing data generated by Illumina Hiseq platform from 6
samples (representing three species) to optimize the ancient DNA mapping, which is critical to improving
the mapping rate of endogenous ancient DNA. Since optimization of ancient DNA mapping may not only
require filtering of present-day contaminations from endogenous ancient DNA, we further explored a more
universal and effective filtration pipeline to filter present-day contaminations based on the ancient DNA
cytosine deamination, depurination and fragmentation using the simulated data. The final recommenda-
tions presented in this study enabled reduction of modern human DNA contamination to an extremely low
level while maintaining a high rate of endogenous DNA. The mapping guidelines coupled with screening
recommendations to control for modern DNA contamination could support future studies on ancient DNA.

2. Materials and Methods

2.1 Samples and Data Resource

We investigated previously sequenced whole-genome sequences from ancient animals in order to exclude the
possibility of missing out any important data. In total, we retrieved whole genome sequencing (WGS) data
from 6 ancient samples derived from different age groups of three species namely four ancient humans (Homo
sapiens )(25-27), one ancient goat (28) and one ancient aurochs (29). The BAM files were downloaded from
NCBI (https://www.ncbi.nlm.nih.gov/). The 6 samples were used to explore the methods for mapping and
separating the endogenous DNA (Table 1). The reference genomes for each species used for genome mapping
are listed in Table S1.

2.2. DNA Damage Analysis and Ancient DNA Simulation

Removing all contaminations present in real ancient data is often difficult, and may lead to inaccurate
evaluation. Therefore, we avoided using the real ancient sequencing data for analysis, but instead used the
simulated ancient sequences with the same damage parameters as those of the real data. With simulated
data, it is possible to clearly determine the true state of the genuine ancient DNA and effectively evaluate the
mapping and separating method of the endogenous DNA. To obtain damage and fragmentation parameters
from the real data, we used mapDamage2.0 (30) to calculate the frequency of C-to-T and G-to-A changes

2
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at the ends of DNA fragments, and the length distribution of the real ancient DNA data we collected. To
simulate the real contaminations, we sequenced an ancient panda (˜ 100 years old, CNP0000732) and mapped
the raw reads by blast using the nucleotide database (31) to obtain the real proportion of contaminated reads.
This contamination consisted of more than twenty thousand modern species including all other possible
contaminates (Figure S1). The real contamination data were added into simulated endogenous ancient DNA
to test for the ancient genome mapping methods, and modern human DNA fragments were mixed with
simulated ancient human DNA to explore the method for filtering the homologues contaminations. Finally,
we used the software gargammel (perl gargammel.pl -n 1000000 –comp 0,cont rate,endo rate -f sizefreq.size
-mapdamagee misincorporation.txt single/double -o data/simulation data/)(32) to simulate FASTQ files
including one million reads of ancient DNA sequences for the above mentioned 6 ancient samples. Nine
different contamination rates were simulated (20%, 40%, 60%, 80%, 90%, 95%, 99%, 99.5% and 99.9%).

2.3. Genome Mapping of Simulated Ancient DNA

We compared the BWA aln (Version: 0.7.17) and BWA mem(Version: 0.7.17) to explore a more effective
mapping method for ancient DNA. Here,“bwa aln -l 1024 -n 0.03”(MS parameters) (18) was compared with
BWA mem to seek a better mapping strategy for ancient DNA.

We defined the valid mapping hits as reads with endogenous ancient DNA tags (all simulated endogenous
ancient DNA were tagged before mapping) and with a mapping quality higher than 30. For the BWA
memalgorithm, the most important part is the seed-reseed-extend strategy which might be suitable for an-
cient DNA. As such, we also tested BWAmem with the minimum seed length (parameter -k: 9/14/19/24/29)
and the maximum seed length without reseeding (parameter -r: 0.5/1/1.5/2/2.5) parameters. In order to
evaluate the mapping effectiveness, we defined three main criteria: 1) CRT: the contamination rate after
treatment (the number of mapped contamination reads / the number of mapped reads); 2) LRE: the loss
rate of endogenous DNA (the number of unmapped endogenous ancient reads / the number of endogenous
ancient reads); 3) MT: the running time of mapping.

2.4. Separating Endogenous DNA from the Contaminations

To explore a more universal and effective pipeline to separate endogenous ancient DNA from homologous
contaminations, we first screened reads with at least “DeamNum” C-to-T or G-to-A mutations within the
first or last “DetectRange” base pair at 3’ and/or 5’ ends (“DoubleOrSingle”). For the “DeamNum” (which
represents the number of C-to-T or G-to-A mutations), one, two and three were tested. For the “De-
tectRange” (which represents the base number), five, ten and fifteen were tested. For the “DoubleOrS-
ingle”, either 3’ or 5’ end (parameter “or”) and both ends (parameter “and”) were included. We ex-
plored all 18 possible screening conditions by adjusting the parameter combinations (“DeamNum”, “De-
tectRange”, “DoubleOrSingle”) (Table S2). We wrote a program using Python to simplify this pipeline
(home page:https://github.com/tianminglan/AncFil). One can test more possible conditions by adjusting
parameters “-DeamNum”, “-DetectRange” and “-DoubleOrSingle” Secondly, given that there is a natural
tendency of depurination at the 5’ ends of ancient DNA fragments (33), we screened reads with an A or
G at the position preceding the first base of the 5’end. 3Finally, the effects of the length of ancient DNA
fragments on separating endogenous DNA was evaluated. Here, two criteria’s were used to evaluate this
pipeline: 1) CRT: the contamination rate after treatment (the number of contamination reads after filtering
/ the number of reads after filtering); 2) LRE: the loss rate of true endogenous DNA (the number of filtered
endogenous ancient reads / the number of endogenous ancient reads before filtering);

Finally, PMDtools (21) were used to filter the homologous contaminations using the same data and evaluating
criteria used to evaluate our recommended method above. Meanwhile, the “-threshold” is one of the most
important parameters in PMDtools for adjusting the strictness of the filtration. To make a comprehensive
comparison, we tested five threshold values (one, two, three, four and five) to adjust the PMD scores by
setting “-threshold”.
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3. Results

3.1 Description of Samples and the Simulated Data

The average length of ancient DNA data that we collected ranged from 45bp to 58bp (Table 1). The age of
samples ranged from ˜2.7 kyr BP (Before Present) to ˜50 kyr BP, which provided a good basis to evaluate
the influence of age on ancient DNA mapping and separation of homologous contaminations. The DNA
damage analysis showed an obvious increase of deaminated substitutions with the frequency of C-to-T and
G-to-A at ends of DNA fragments ranging from 2% to 80 % (Figure. S2). We simulated a total of 54 ancient
DNA data set containing the same length distribution and damage pattern as the real data set (Table 1).
One million reads were finally simulated under each condition.

3.2 Comparing different Mapping Algorithms on Ancient DNA

Ancient DNA damage, especially C-to-T changes, can result in mis-mapping when ancient DNA fragments
are mapped to the reference genome. The mapping methods and parameters used for modern DNA are not
always suitable for ancient DNA. We compared BWA aln and BWA memto explore a more effective mapping
strategy based on the characteristics of ancient DNA damage.

The comparison was achieved by calculating the CRT, LRE and MT for each dataset, and performing
Repeated Measurement Analysis of Variance. The average and median value of CRT, LRE and MT of the
two algorithms with different contamination rates are shown in Table S3. The analysis showed no significant
differences in CRT (F = 1.42, P = 0.2870) and LRE (F = 0.44, P = 0.5344). However, Significant differences
were found in MT (F = 41.57, P = 0.0013) and BWA aln with the MS parameter taking 8.13-fold time
than BWAmem by default (Table S4). We further evaluated the influence of different samples and different
contaminations rates on ancient DNA mapping. As shown in Table S5 and Figure 1, the CRT maintained
the same level in different samples. The mean values of LRE were stable between different contamination
rates but not when contamination rate was close to 100%.

The seed-reseed-extend strategy is one of the most important aspects of the BWA mem algorithm. This
strategy is mainly supported by two parameters including the minimum seed length (parameter -k) and the
maximum seed length without reseeding (parameter -r). Additionally, the algorithm searches for internal
seeds inside a seed longer than x bp (x=[-k] * [-r]). In this study, we tried to optimize these two parameters
to further explore more effective mapping parameters for ancient DNA mapping.

We calculated the CRT, LRE and MT using different parameters –k (9/14/19/24/29) (Figure. 2) and
performed Repeated Measurement Analysis of Variance Analysis to compare the results generated under
different parameters. There were significant differences in CRT (F = 644.61, P < 0.0001), LRE (F = 17.99,
P = 0.0057) and MT (F = 146.75, P < 0.0001) (Table S6). The significant differences of LRE were found
between “-k 29” and the other values. The MT remarkably increased at “–k 9” and was significantly longer
than all other tests. Moreover, “–k 14” consumed more running time than that of “-k 14” and “-k 29” (Table
S7).

We evaluated the parameter –r (0.5/1/1.5/2/2.5) with the same method used to evaluate the parameter –k
(Figure. 3). Significant differences were found in CRT (F = 392.45, P < 0.0001), LRE (F = 45.11, P =
0.0010) and MT (F = 9.19, P = 0.0002) (Table S8). A significant decrease in LRE was observed when the
set values of “-r” were greater than 1.5. MT was significantly higher with “-r 0.5” than that of all other
“-r” options. Similarly, there was a significant decrease in MT between “-r 1.0” and the other “-r” options
(except “-r 0.5”), but no significant differences were found between other pairwise comparisons (Table S9).

3.3 Separation of endogenous DNA

The unique ancient DNA characteristics, especially the C-to-T and/or G-to-A changes at ends of DNA
fragments help to improve the filtering of contaminated present-day DNA. Using these characteristics, we
tried to decrease the homologous contamination rate to a very low level through screening of DNA fragments
with C-to-T and G-to-A changes within the first or last “DetectRange” base pair at 3’ and/or 5’ ends (Figure.
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4). The mean values of CRT and LRE are shown in the Table S10. No significant differences were found in
CRT (F = 3.27, P = 0.1097) and LRE (F = 1.11, P= 0.3893) (Table S11).

We further tested the influence of parameter “DeamNum” on separating endogenous DNA. Significant dif-
ferences were found in CRT (F = 26.01, P = 0.0011) and LRE (F = 24.03, P = 0.0152) (Table S12). We
found that an increase of “DeamNum” could lower the CRT, but result in a higher LRE (Figure S3). We
also calculated CRT and LRE to evaluate the influence of the parameter “DoubleOrSingle” on ancient DNA
mapping (Figure. S4). Significant difference was found in the CRT (F = 44.97, P = 0.0068) but not in the
LRE (F = 7.20, P = 0.0748) (Table S13). The result showed a nearly 10-fold decrease of CRT when screening
the reads with C-to-T or G-to-A on single end (-DoubleOrSingle=or) compared to screening on both 3’ and
5’ ends (-DoubleOrSingle=and) (Table S10). The homologous contamination rate can be kept to an average
of 0.92% by using the filtering strategy with “-DetectRange=15 -DeamNum=1 -DoubleOrSingle=or”.

We further compared our method with the software PMDtools. These two methods were run in parallel
using the same dataset, and the results generated by the PMDtools with different parameters are shown
in the Table S14. To make the comparison fairer, the LRE of the tested dataset were kept similar in both
our pipeline and the PMDtools. We found no significant differences in the CRT (Z = -1.171, P =0.241)
between the two methods. However, the running time of our method was 6.48 times shorter than that of
PMDtools, and the difference was significant (Difference=2.3mins, Z=-6.50, P=8.28E-11). Although this
comparison could not show the superiority of our method to PDMtools, we at least demonstrate a fast and
reliable complement to the PDMtools.

Furthermore, we tried to screen reads with G or A residues preceding the first base at 5’ end. The average
homologous contamination rate was 2.25% after filtering using the depurination characteristic.

4. Discussion

4.1 Comparing BWA aln and BWA mem to improve ancient DNA mapping

BWA aln with the MS parameters has proved to be effective in ancient DNA mapping by disabling the
seed function and decreasing the difference tolerance in mapping (18). However, we did not find significant
differences in CRT (F = 1.42, P = 0.2870) between the Schubert’s method and the BWA mem algorithm.
It indicated that BWA mem with default parameters (BWA mem -k 19 -r 1.5) was able to perform ancient
genome mapping as well as BWAaln with the MS parameter. Additionally, the seed-reseed-extend strategy
in BWA mem can help to accelerate the mapping process, and it resulted in an 8.13-fold decrease of MT
than the BWA alnalgorithm. Therefore, BWA mem can reduce the contamination rate and improve the
accuracy of ancient genome analysis while consuming a short time to run the mapping process. Additionally,
the CRT was maintained at the same level among different samples, demonstrating the universal property
on ancient genome mapping.

Soft clipping is one of most important issue to consider when using the BWA mem . To determine whether
soft clipping could help decrease the contamination rate, we counted all soft clipped reads. The results
showed that 7.9% mapped reads were soft clipped during the mapping and 6% soft-clipped reads contained
C-to-T and/or G-to-A changes within soft-clipped regions. In other words, only ˜0.47% (7.9%*0.6%) mapped
reads with damaged patterns were soft clipped, which was a small proportion when considering the large
number of damaged endogenous DNA. As to hard clipping, it’s a special kind of soft clipping to mark the
multiple mapping of a read. But only 0.0036% mapped reads showed damaged pattern. Therefore, the soft
clipping can hardly make a big impact on the further filtering of endogenous DNA by using the deamination
characteristic. In summary, the BWA memperformed equally well as the BWA aln with MS parameters
when considering the contamination rate used in this study, but BWAmem costs less running time than that
of the BWA alnmethod. If we took all the conditions into consideration, BWA memperformed better.

4.2 Exploring more accurate and effective mapping parameters of BWA
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mem

The parameters -k and -r were extremely important for the “seeding and reseeding” mapping stages in BWA
mem (24). The different parameter values of -k and -r could significantly affect the CRT, LRE and MT,
indicating that we can obtain ancient DNA mapping results with a lower contamination rate by optimizing
the parameter values (Table S6, S8). The LER was highest at -k = 29, and it increased as the value of k
increased. The value of LER decreased by˜0.20% from -k = 19 to -k = 9, however, this decrease continued
to ˜4.66% from -k = 29 to -k = 19, which was 23.3 times larger than that between -k = 19 and -k = 9(Table
S7). This means that the decrease of –k resulted to exponential reduction of loss of true endogenous ancient
DNA. Therefore, it is of central importance to choose the appropriate value of -k to map against genome for
ancient DNA. For the parameter –r, the LER reached the lowest level at -r=2.5, which means that it could
avoid losing endogenous reads significantly (Table S9).

In addition, there were significant differences in running time when changing the –k and -r parameters (Table
S6, S8). The running time significantly decreased from -k=9 and –r=0.5 to –k=19 and –r=1.5, but it was
relatively stable and even slightly longer when –k and –r was larger than 19 and 1.5, respectively (Table S7,
Table S9, Figure. 2, Figure. 3). The BWA mem algorithm only found the exact matches in a read while
seeding, and this algorithm could trigger re-seeding with the maximal exact matches (MEMs) to reduce the
loss of mis-mapping if MEMs are larger than [-k*-r] (24). The larger [-k*-r] meant fewer seeds, which can
accelerate the mapping process. However, too long seed would also make seed mapping against genomes
more difficult and eventually more time-consuming. We also found that the running time was more sensitive
to the change of –k parameter rather than the –r (Table S7, Table S9, Figure. 2, Figure. 3), indicating
that the running time was mainly influenced by the minimum seed length. The –r cannot affect the seeding
for MEMs, but the –k can influence both seeding and reseeding procedures, which might be the possible
reason for their influence on the running time. Based on these comparisons, we recommend use of –k=19
and –r=2.5 for BWA mem mapping of ancient DNA.

4.3 Improving the separation of endogenous DNA

Among all kinds of homologous contaminations, the present-day human DNA is the most frequent con-
tamination in ancient human DNA, because it can be easily induced from the time sample are collected to
the time DNA library preparation is performed. These homologous contaminations are extremely difficult
to remove. In our testing, the proportion of homologous contamination that could be removed from the
simulated raw data decreased with the increase in simulated contamination rates, and there was a significant
negative correlation between them (R2 =0.391, P =0.019). However, it was still possible to remove more
than 99% homologous contaminations even when the simulated contamination rate reached 99% (Figure. 5).
It is worth noting that the proportion of homologous contamination increased to 99.9% when the simulated
contamination rate decreased to 95%. On average, 99.07% contamination could be removed using our rec-
ommended screening method (Table S15), which was lower than many other ancient DNA studies (26, 27).
Besides, no significant differences were found in the endogenous DNA rate considering the different samples,
different damage patterns and different contamination rates, demonstrating the universal property of our
recommended method. Using the remaining endogenous ancient reads, we summarized a best combination
with DeamNum=1, DetectRange=15 and DoubleOrSingle=or.

To explore more possibly effective filtering strategy, we further screened reads with G or A residues pre-
ceding the first base at 5’ end of the DNA fragments. This depurination screening decreased homologous
contamination ratio to 2.25% which meant that this method may enable the recovery of more endogenous
DNA (Table S16). Similar to the deamination screening, no differences were found in relation to sample
ages, which was largely due to the weak correlation between depurination and samples ages. No significant
correlation between samples ages and the extent of DNA fragmentation was recorded. DNA fragments are
usually heavily degraded due to depurination shortly after death (34, 35). However, only 10%-40% of ancient
DNA fragmentation is triggered by depurination, and other factors can also result in DNA fragmentations.
As such, it is difficult to identify more endogenous ancient reads by screening the DNA length. However, we
also offer this option in our python script to support the filtration by depurination and fragmentation.

6
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5. Conclusion

In this study, we found that BWA mem with the parameter –k=19 and –r=2.5 is comparable to the BWA
aln with MS parameters (18) when considering the recovery of ancient DNA, but has a significantly shorter
running time than that of BWA aln with MS parameters. For the recovery of endogenous DNA from
the ancient sequencing data with homologous contaminations, we recommend screening of reads with the
parameter –DeamNum=1, –DetectRange=15 and –DoubleOrSingle=or, which will allow removal of more
than 99% of homologous DNA contaminations from the raw contaminated sequencing data. Overall, these
recommendations for ancient DNA mapping and separation of endogenous DNA will benefit ancient DNA
studies, especially for samples preserved under poor conditions.
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Tables

*. BP: before present

Table 1. The description of samples and sequencing data used for simulating ancient DNA sequences

Species Sample ID Age (kyr BP) Data Sources Reads Number Bases Number Average Length of DNA Fragments

Homo sapiens JK2911 2.7 (26) 2.35 E+06 1.37E+08 58.2
Homo sapiens Villabruna 14 (25) 1.22E+07 6.70E+08 54.9
Homo sapiens AfontovaCava 3 17 (25) 8.88E+05 5.15E+07 58.03
Homo sapiens Denisova 8 >50 (27) 8.26E+05 3.69E+07 44.6
Bos primigenius British aurochs 6.7 (29) 7.51E+07 3.48E+09 46.29
Capra aegagrus hircus Direkli5 11.5 (28) 3.04E+07 1.40E+09 45.94

Figure Legend

Figure 1. Comparison of two mapping strategies. A: Comparison of CRT. B: Comparison of LRE. C:
Comparison of MT. “Bwa mem” were performed using default parameter values. And, “Bwa aln” was used
with MS parameters.

Figure 2. Comparison of BWA mem results with “-k” parameters. A: Comparison of CRT B: Comparison
of LRE. C: Comparison of MT.

Figure 3. Comparison of “BWA mem” results with “-r” parameters. A: Comparison of CRT B: Comparison
of LRE. C: Comparison of MT.

Figure 4. Comparison of deamination filtering with “-DetectRange” parameters. A: Comparison of the CRT
after filtering. B: Comparison of the LRE after filtering.

Figure 5. The homologous contamination rate after filtering by use of the AncFil with the parameters –
DeamNum=15 –DetectRange=1 –DoubleOrSingle=or. X axis means the rate of homologous contamination
which was added in simulation data. Y axis means the rate of homologous contamination which was remaining
after filtering.

Figure S1. Species information of the top 10 simulated exogenous contaminations

Figure S2. the damage pattern distribution of 6 samples

Figure S3. Comparison of deamination filtering with “-DeamNum” parameters. A: Comparison of the CRT
after filtering. B: Comparison of the LRE after filtering.

Figure S4. Comparison of deamination filtering with “-DoubleOrSingle” parameters. A: Comparison of the
CRT after filtering. B: Comparison of the LRE after filtering.

Data availability: Raw sequencing data of the ancient panda have been deposited to the CNSA (CNGB
Nucleotide Sequence Archive) with accession number CNP0000732 (https://db.cngb.org/cnsa/ ).
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