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Abstract

In this paper, we consider a nonlinear plate (or beam) Petrovsky equation with strong damping and source terms with variable
exponents. The exponents of nonlinearity p([?]) and ¢([?]) are given functions. By using the Banach contraction mapping
principle the local existence of a weak solutions is established under suitable assumptions on the variable exponents p and p.

We also show a finite time blow up result for the solutions with negative initial energy.
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Introduction

Let be © a bounded domain in R™(n > 1) with a sooth boundary 9. We consider the following initial
boundary value problem:

{

e + A2u — Auy + ug|P 72wy = |u|7@ 2y, (2,t) € Q x (0,7T)
u(z,0) = uo(x), ur(x,0) = uy (), x €

u(z,t) = dyu(z,t) =0, x € 0f)
(1)

where v is the unit outer normal to 92 and the expoents p(-) and ¢(-) are given measurable functions on
satisfyning.

2<p <p(x) <pt <p*
2<q <gqz)<qgt<g¢*
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where

p~ = essinf p(z), p" =esssupp(x)
€N z€Q

¢~ = essinf q(z), ¢ =esssupq(x)
z€Q z€eN

and
P q =
0, ifn<4
2n ifn>4

When p (z) and ¢ (z) are constants and without strong damping —Auwu;, become the following the Petrovsky
equation (3). Messaoudi, in (S. A. Messaoudi & nonexistence in a, n.d.), studied the following problem

{

U + A%u+ w2y = [u[P2u in Qr = Q x (0,7)

u=0u/Oov=0 onTr=900x][0,T)

u(z,0) = uo(x), wu(x,0) =wui(x) inQ
established an existence result and showed that the solution continution continues to exist globally if m > p,
and blows up in finite time if m < p and the initial energy is negative. This result was later improved by
Chen and Zhou in (W. Chen, n.d.). For more results related to the plate equations, we refer the reader to
Lagnese (J. Lagnese, 1989), Horn and Lasiecka (1994). Lasiecka (I. Lasiecka & plates like equaions with
nonlinear dissipation on the boundary, 1989).

In recent years, some authors like [8] investigated (3) also the problem (1) with strong damping and p and
q constants, thus,

Ut + AQU, — Aut + |ut|p_2 Uy = |u|q_2u.

(4)

Li et al. (missing citation) showed the existence, decay and blow up of the solutions of the problem (4) and
proved global existence and blow up. In 2013, (E. Pigkin, n.d.) Pigkin and Polat showed the global existence
and the decay of the solutions for (3).

A considerable effort has been devoted to the study of problem (1) in case of constant and variable-exponent
nonlinearities.

In recent years, plate equations with lower order perturbation of p-Laplacian type in the form



g + AN2u — div(d(u)) = Fu, uy)

where ¢(z) ~ |s|(p72) s, p > 2, and F(u,u;) representing additional damping and forcing terms. This
attracted attention of several authors. It is a prototype for some important models in real-world applications.

In the absence of the viscoelastic term (¢ = 0) and replacing the p(z,t)-Laplacian by Apu =
div(<|vu\p72 vu)) (p = const > 2), the equation

gy + AN — div(<|Vu|p_2 \V/ u)) — Ay = h(z,u,u)
(5)

has been extensively studied and results concerning existence, nonexistence and long-time behaviour have
been established. See in this regard in (2003),(327AD).

In one-dimension, Eq. (4) without damping or forcing terms is related to the model
puss + Clgrze +a(u), =0, a>0and (= const >0

which describes elastoplastic-microstructure flows as discussed in (1994), (1995).

In two dimensions, with p = 4 and weak damping, Eq.(4) corresponds to the so called model for nonlinear
plates

g + AN*u — div K|vu\2 \V/ u)] + kuy = o A(u?) — f(u)

This is indeed a limit of the Mindlin—Timoshenko plates as the shear modulus tends to infinity, as shows in
(CHUESHOV, 2008). Remarkable results were obtained in (CHUESHOV, 2008), (2006), where the existence
of finite-dimensional global attractors under a weak damping ku;, instead of —Aw,, was proved. Recently,
(E. Pigkin, n.d.) proved the blow up of solutions for a nonlinear viscoelastic wave equations with variable
exponents the following equation.

wpe — Au+ [y g(t —7)Au(r)dr + [ue[PP % up = [u] 120, (2,t) € Q x (0,T)
In the presence of the viscoelastic term (g # 0) , the problem (1) with memory was first studied in (2012).

The general decay of weak solutions u = u(z,t) for a class of plate equations with memory term and lower
order perturbation of p(z,t) -Laplacian type. Precisely, we consider the following problem (for exemplo, see
(FERREIRA et al., 2014)).

uy = div (|[ul” 7 u)
(6)

with the constant exponent of nonlinearity p € (1,00). During the last decades Eq.(5) was intensively studied
and was casted for the role of a touchstone in the nonlinear PDEs. There is an extensive literature devoted
to Eq.(5). The existence of global solution without an additional dissipation term is an still open problem.



We also mention the very important contribution by (S. Antontsev et al., 2011), where the author proved
the existence and blow up for the weak solution of a wave equation with p(z,t)-Laplacian and damping
terms given by

ugy = div (a(x, | vufC T gutey ut) +b(x,t) [ul” "+ f(a,t),

u(z,0) = uo(x), wu(x,0)=wui(x), z=€Q,

U‘FT =0 FT =00 x (O,T)

where the coefficients a, b, f and the exponents p, ¢ are given measurable functions and € = const > 0.

Such equations (with variable exponents of nonlinearities) are usually referred as equations with nonstandard
growth conditions.

Equations with nonstandard growth conditions occur in the mathematical modelling of various physical
phenomena, e.g., the flows of electro-rheological fluids or fluids with temperature-dependent viscosity, non-
linear viscoelasticity, processes of filtration through a porous media and the image processing see (2009) and
references therein.

It is to be noted here that in all papers (referring to the case p # 0) the viscous term eAwu, plays a key role
in the proof of local and global existence (even if p = const # 2). The principal difficulty remains in proving
an existence theorem by considering the term —Ag, ;yu. The viscous term eAu, (e > 0) facilitates the proof
of existence theorem.

In (1147), the authors improved the results from (2012) by establishing local and global existence, as well as
the uniqueness of the weak solution w(z,t) to problem (1).

Recently in (S. A. Messaoudi, 2020), the author established the decay of solutions of a damped quasilinear
wave equation with variable-exponent nonlinearities.

Rivera et al. (1996) considered the following equation
g — YAuy + A%y — fot gt — 8)A%u(s)ds =0 in Qr =2 x (0,7T),

together with initial and dynamical boundary conditions and proved that the sum of the first and second
energies decays exponentially (respectively polynomially) if the kernel g decays exponentially (respectively
polynomially). Alabau-Boussouira et al. (2008) looked into the following problem

{
g + A%y — fotg(t — 5)A2u(s)ds = f(u) in Qr = Q x (0,T)
u=0u/0v=0 onlp=90x][0,T)
u(z,0) =uo(x), w(x,0) =wui(x) inQ
and established exponential and polynomial decay results for sufficiently small initial data. Lin and Li in
(Article Id 419717, 25 Pages, Http://dx.doi.org/10.1155, 2012), discussed
upe — YAuy + A%u — fot g(t — s)A%u(s)ds = div(C(f(Vu)Vu)) in Qr = Q x (0,7)

together with initial and dynamical boundary conditions similar to those imposed by Rivera et al. (1996),
and established similar decay results. Yang in (2003), considered the problem

{

upy + A%u+ Ay = Y0 8%“0,» (g;t) in@Q, =2x(0,T)
u=0u/0v=0 onlp=00x][0,T)
u(z,0) = up(x), ui(z,0) =wui(x) inQ




for A > 0 and o; nonlinear functions. He proved, under some conditions on nonlinear terms and initial data,
that the problem admits a global weak solution and the solution decays exponentially to zero as t — oo .

Motivated by [8,11,16], we considered the local existence and blow up of solutions for nonlinear Petrovsky
equation with variable exponents and strong damping.

To the best of our knowledge, this is the first work dealing with (1) subject to the with variable exponents
and strong damping.

This paper is organized as follows. Before the main results, In Section 2, we recall the definitions of the
variable-exponent Lebesgue spaces LP()(€2), the Sobolev spaces WP()(Q), and some of their properties. In
Section 3, the statement and the proof of local existence and blow-up result for solutions with negative initial
energy are given.

Preliminaries

In this part, we state some results about the variable exponent Lebesgue and Sobolev spaces LP(*) (Q) and
Wr) (Q) (see 7777?).

Let p :  — [1,00] be a measurable function, where 2 is a domain of R". We define the variable exponent
Lebesgue space by

LP@) (Q) = { u: Q — R, u is measurable and /|u|p(’”) dr < ooy,
O

endowed with the Luxemburg norm

. u|P
[ull(z) = inf )\>0:/ \
Q

LP@) (Q) is a Banach space.
The variable exponent Sobolev space W?(*) (Q) is defined by

whrE) (Q) = {u € LP®) (Q) : Vu exists and |Vu| € LP®) (Q)} .

Variable exponent Sobolev space is a Banach space with respect to the norm

[l pay = Nl + 1Vl -

The space Wy ') (Q) is defined as the closure of C§° () in W) (Q) with respect to the norm llell1 pay -

For u € WO1 p(@) (©), we can define an equivalent norm

ully pay = VUl -



Let the variable exponent p(.) satisfy the log-Holder continuity condition:

A
——, forall z,y € Q with |z —y| <, (7)

p(@) =Pl < ——1—
08 To—y]

where A > 0and 0 < 4§ < 1.
(Poincare inequality) Let Q be a bounded domain of R™ and p(.) satisfies log-Holder condition, then

1,
lull 0y < eIVt for all u e Wy ™ (),

where ¢ = ¢ (p~,pt,|Q]) > 0.
Let p(.) e C (ﬁ) and ¢ : @ — [1,00) be a measurable function and satisfy
essinf (p* (z) — ¢ (x)) > 0.

e

Then the Sobolev embedding W, ” (@) () < L™ (Q) is continuous and compact. Where

p(z) ={

n”_pp_, ifp~ <n
oo, if p~ >n.

We denote by ¢ various positive constants which may be different at different occurrences. Also, throughout
this paper, we use the embedding

HZ(Q) — H} (Q) — LP(Q)

which implies

lull, < cllvull < cl[Aull,

where 2 <p<oo (n=1,2),2<p< 2% (n>3).

Local existence

In this part, the aim is to prove the local existence result for (1). Firstly, we state the following lemma which
can be obtained by exploiting the Feado-Galerkin method and using the similar arguments as in 77.

Suppose that the exponent p (.) satisfies (2), (7) and initial data ug € H3 (), u; € L? (), then there exists
a unique local solution u of



U + A2 — Ay + |ug [P 2wy = £ (L), (2,t) €Qx (0,T),
u(z,0) =up (x), us (x,0) =u (z), x € 9, (8)satistying
u(x,t) = Oyu (z,t) =0, x € 09,

we L ((0,T), HZ (), ue € L>®((0,T),L*(Q)) NLFY (2 x(0,T)),
where f € L% (Q x (0,T)).
Suppose that p(.) satisfies (2), (7) and ¢ (.) satisfies (??) and

2(n—2)

2<p spl@)<ph < ——

(n>4).

Assume further that vy € HZ (Q2), u; € L? (). Then the problem (2) has a unique local solution

we L ((0,T), HZ (), ue € L ((0,T),L*(Q)) N LFY (2 x (0,7)).

Existence: Let v € L> ((0,T),H} () and f (v) = 0|92 . We have

I @2 = / 20D g
Q

< /|v|2(q_71) dm+/\v|2(q+7l) dr < oo,
Q Q
since
Q(q_—1)<2(q+—1)< 2n .
- T n—2

Thus, for each v € L ((0,T), Hg (2)) , there exists a unique

we L ((0,T), HZ (), ue € L®((0,T),L*(Q)) N LY (2 x (0,7)),
satisfying the following problem

{
e + A2 — Aug + | PP 2wy = f(v),  (z,6) € Qx (0,T),
U($70)ZUQ((E),ut($,0)2u1($)7 LUEQ,
u(z,t) = Oyu(z,t) =0, x € 0L
(9)

Define the following space

Xp={w: weL®((0,T);H (), we L®((0,T);L* () }.



Xr is Banach space with respect to the norm

lwlly, = ||w||Loo((0,T);Hg(Q)) +lwll poe 0,7y 22()) -
We define the nonlinear mapping S in the following way. For v € Xp, u = Sv is the unique solution (9).
We shall show that there exist T' > 0, such that
(i) S: Xr — Xr
(i) S is a contraction mapping in Xr.

To show (i), multiplying (9) by w; and integrating over  x (0,t), we obtain

t t
1 1 =
el + 5 180l + [ 1warl®dr+ [ [ur doar
0

0 0
1 1 /
= 3 ||u1||2 + B ||Au0||2 + // |v\q(z)_2 vu,dzdr. (10)
0 Q

By the Young’s and Sobolev-Poincare’s inequalities, we get

_ 5 1 B
/Iv\qu) 2oude < Z/ugdx+g/|v|zq<m) 2 5.
° Q

Q
< Ol + 5 / oD o [P0
Q
< Sl + S (18P0 4 )Y ), (1)

Thus, by (10) and (11), we have

t t
1 1
el + 5 180l + [ 1war®ar+ [ [ur doar
0

0 Q

IN

t
1 1 0
3 lall+ 5 18wl + 3 [l ar
0
t
C _ _
+5 [ (180 2ol Y o
0

which implies that

oT
2 2 2 2 2
sup lfuel® + 1 2ul® | < flual® + 1200l + 5 supfu
te(0,T t€(0,T)

cr 2(q™—1 2(qt -1
+ 5 [ et



By taking ‘STT <1, we have

9 cT 2(q™ -1 2(qt—1
e, < A+ S (Il ™ 4 el |

where A = |Ju1||* 4 || Auol|” . At this point we choose M large enough, such that [vllx, <M. Then

T
lul%, <A+ %M2(q+*1) < M2

2_
A< M2and T < T, < % Thus we have S : X7 — Xr.

Next, we show S is a contraction mapping in Xp. For this purpose, we let u; = Sv; and uy = Svs, then
u = u1 — ug satisfies

g+ A% = Dy + | [ure 7wy — Jusi PO uy | = 01|10y — [ 192 0,
u(z,0) =up (x), u(x,0) =up (x), x €, (12)Multiplying (12)
u(z,t) = Oyu (z,t) =0, x € 0f.

by u; = u1r — ugr and integrating over 2 x (0,t), we obtain

t
1 2 1 2 2
5 luell™ + 5 [|Au]l™ + [ I7ur | dr
2 2
0

t
+// {|U1t|p(x)72 Uge — |U2t|p(x)72 Ut } (u1s — ugy) dadr
0O

¢
1 1
< glulP 51wl + [ [ (o)~ f () wdsdr (13)
0 0
Since |u1t|p(g”)_2 Ups — |u2t|p(g”)_2 uge | (u1¢ — uge) > 0 then (13) yields

t
1 2 1 2 2
el + 5 18ul® + [ Iurl®ar

0
¢
1 9 1 2
< Sl g Iaul® + [ (f @) = f (w2) wdzdr. (14
0 Q
We estimate the last term on the right-hand side of (14) as follows

/|f<v1>—f<v2>||ut|dx:/\f/ ()] [o] ] di,
Q Q

where v = v1 — vy and € = av; + (1 —a)vz, 0 < a < 1. Thanks to Young’s inequality and since f (v) =

10]7® =2y we obtain



0
J1r@) = reoltudde = 5 [luldo+ 55 [17 ©F o do
Q Q

Q
) —1)? -
< Sl + P o+ (- @) PO o e
2 26
Q
n—2 9
b) : "
2n
< 5 ||ut||2 +c /Mm dr /|Oﬂ/1 + (1 _ a) Uz|n(q(3c)—2) da
Y Q
n—2 r 2
5 2 2
2n +
= 5”“t”2+0 /I’Ulmdw /\av1+(1fa)v2|"(q -2) 4
Q2 |\
" / vy + (1= )" x| | (15)
Q

Since 2 <p~ <p(z) <p" < =2 (> 4), we get

J1£ 0= sElludde < 5 lul?® +clsol . [Jau P07 + 2020
Q

1 80a] 207D 4 [0, 202 |

0
5 lluell® + 4car?"=2) Aol (16)

By the combining (14) and (16), we obtain

1 2 é 2 +_ 2
5 Il < STollulk, +4ed 2Ty ol .

By choosing ¢ small enough, we have

2 +_ 2
lull%, < 8eM?@ =2 o)%, .

Now, we choose T sufficent enough so that

0 < 8eM2(P" =2)7y < 1.

Thus, the map S is contraction. The Banach fixed point theorem implies the existence of a unique u € Xp
satisfying S (u) = u. Obviously, it is a solution of (1).

Uniqueness: Suppose that (1) have two solutions u and v. Then w = u — v satisfies

{

Wiy + A%w — Awg + Jug [P 2 up — 0P 0 = u| T 20— o] 7P, (2,8) € Q x (0,T),

w(x,0) =0, wy (x,0) =0, x € Q,

w(z,t) = dpw (x,t) =0, x € 09,
Multiplying by w; and integrate over  x (0,t), we get

10



t
1 2 1 2 2
3 el + 5 1wl + [ 7w dr
0

¢
+// (|ut|p(m)_2 Up — |vt|p(m)_2 Ut> wedxdT
0 Q

t
= //(|u|q<x)_2u—|v|q<x)_20) wedxdT.
0 O

Similarly (15), we have

t
funl + 128wl < [ [ (lun O + |dw () dadr
0 Q
Thanks to Gronwall inequality, we get

lwell* + [ Aw]* = 0.
Thus w = 0. The proof is completed.

Blow up of solutions
In this part, we are going to consider the blow up of the solution for problem (1). Firstly, we give following
lemma.

(S. A. Messaoudi, n.d.). If ¢ : © — [1,00) is a measurable function and

2<q <qx)<qt<oo; n<,4
2<q¢ <qz)<qt <2 n>4

— — n—27

i

(17)holds. Then, we have following inequalities:

s

piy ) < ¢ (I1Aul + pyy ().

(18)

ii)

- < e (Il aul® + Jlull2),
(19)

11



iii)

s

pacy () < ¢ (T 01+ ull® + pycy ()

(20)

iv)

s 2 -
lully- < e (1 @]+ el + ]2 )

ellull < pyy (u) (22)

for any u € H3 () and 2 < s < ¢~. Where ¢ > 1 a positive constant and H (t) = —E (t).

Now, we state and prove our blow up result.
Letr the assumptions of Theorem 4, and the initial energy F (0) < 0 hold. Then the solution (1) blows up

in finite time 7%, and

e 7
§oUT= (0)
where ¥ (¢) and o are given in (26) and (27) respectively.

Multiplying u; on two sides of the problem (1), and integrating by part, we have

d 1, 2 1 2 1 (@) / 1 (@) 2
el et Z A _ q _ P _
G |l + 10 = [ ) sl o = [V
Q Q
B0 =~ [ ooyl (23)
p(z)
Q
where
R TTC I 2 [ 1 | @
B0) = g lul® + 5180 = [ =" do
Q
(24)

12



Set

H(t)=—-FE(t)
then F (0) < 0 and (23) gives H (t) > H (0) > 0. Also, by the definition H (¢), we have

1 2 1 2 (2)
H@) = —2uw)P-Lia a
0 = —glhul® = 5120 + [ s
Q
/ 1 |u|q($)d:r
q(x)
Q
1
< = () (25)
Define
W (t) = H7 (t)—i—g/ wndz + & [Vul?, (26)
Q

where € small to be chosen later and

O<U§min{ d P 4 }

(pt—=1)q" 2¢-
(27)

Differentiating W (¢) with respect to ¢, and using Eq. (1), we have

V() = (1—-o)H (t)H (t)+s/Q (uf + wug) dx+s/QVuVutdm

(1—0) H™ (&) H' (1) + ¢ ue]|* = || Aull?

+€/ |u\q(')dx—£/ wug Jug P2 d. (28)
o) o)

By using the definition of the H (t), it follows that

e -9 = O Oy
e (1—) [ 1O g
e (1 f’!q@' d, (29)

where 0 < &£ < 1.

13



Adding and subtracting (29) into (28), we obtain

V() = (1—o)H 7 (O)H () +eq (1= H(1)

e <<2) ) lue® + ¢ (‘1_(12_5) - 1) | Aul?

+€§/ |u|Q(') dx — 6/ ug |ut|p(')_2 dzx.
Q Q

Then, for ¢ small enough, we get

V(1) > B [H )+ a1 Aul? + pg ()]

SO o) B (O) H (t) — g/ ity g2 da
Q

where

(-8 | (-9
2 ’ 2

ﬁ:min{q_(l—f),ga —|—1}>O

and

P (1) = /\urf(-) dz.

Q

In order to estimate the last term in (31), we make use of the following Young inequality

skxk syt
+

where X,Y >0, § >0, k,I € Rt such that % + % = 1. Consequently, applying the previous we have

_ 1 e
/ ulu PO e < /—1 §7@) | [P@) gy 4 / plz) -1 O [P da
Q J p(2) S r@

Q

XY <

IN

* / 7@ [uP@ g 4 P
=

(31)

(32)

where § is constant depending on the time ¢ and specified later. Inserting estimate (32) into (31), we get

V() = eB[H )+ el + [ Aul + pyq) ()]
+(1—0o)H™ 7 (t)H' (1)

+ — x
L / 5P |y P@ g — P~ 1 / 5T |y [P dee
P~ pt
Q Q

14



Let us choose ¢ so that

(x)
57T =k H O (8),

where k1, ko > 0 are specified later, we obtain

(1)

%

=6 [H (1) + Jurll” + [ 8ul + pycy ()]
+(1—0o)H 7 (t)H' (t) —ekoH 7 (t) H' (1)

1

_ —1
e / ki p(m)Ho(p(m)fl) (t) |U‘P(m) de — ¢

Q Q
=B [H (1) + Juill® + [ 8ul + pycy ()]
+(1—0—cke) H 7 (t) H' (1)

kP +t 1
fsli_H”(w*l) (t) / [P dx — ¢ (p - ) kiH~
p

p
Q
£ [H (1) + llwall® + 1 8ul® + py (w)]

+ {(1—0—51@2)—5 <p++_1) /ﬁ] H (t)H' (¢)

kl’ B .
— p= o(p-1) /|u\p )dx

v

%

(34)

By using (22) and (25), we get

Hopt-1) (t) |u‘p($) dx
/

IN

«:-u

IN

gopt-1) (t)c lul? da
/
= H) @ [l + ]

< ¢ <qlpq<.> (U)>U(p+_1) [(pqo ()

/ ley H™7 (£) Jug|P™ da

o (t)/|ut|P(ﬂ7) dx

Q

o(v*-1) /|u|p da:+/\u|p dx

T

q

/\u|q dx



where Q_ ={z € Q:|u| <1} and Qy ={x € Q: |u| > 1}.
We then use Lemma 6 and (27), for

s=p 4+oq (p"—1)<q

and

s=p"+oq (pt-1)<q,
to deduce, from (35),

Ho(P 1) (1) / ™ dz < ¢ [HAUHQ +040) (u)] :
Q

(36)

Thus, inserting estimate (36) into (34), we have

1-p~
ky

V() = 8(6— ch[H@»+me+nAw2+p%mm}

-1

+{(1ask2)5<pp+ >k1} H™ (t)H' ().

Let us choose kq large enough so that

kP
’y:ﬁ_ ! Cl>03
p

and picking € small enough such that

+
(1—0—5k2)—€<pp+ )k1>0

and

U (t) > W (0)=H"7(0) +5/ wourde + % Vol > 0, ¥t > 0.
Q

Consequently, (37) yields

v (t)

%

&7 [H () + el + 112ul* + pygy (w)]

%

2 2 -
e [H (8) + lluel* + |5l + [lull2” ],

16



due to (22). Therefore we get

U (t) > ¥ (0) >0, for all t > 0.

On the other hand, applying Hélder inequality, we obtain

/ uurdx
Q

1

1—0o

1 _1
[l 7= flue =7

= 1
c (nunq“ el ) .

IN

IN

Young inequality gives

1
v T 6
< C (JJull = + Jul =),

=
/ uurdx
Q

for i + 4 =1. We take § =2 (1 — o), to obtain 2= = 1% < ¢~ by (27). Therefore, (40) becomes

1—0o
/ uurde
Q

< ¢~ . By using (21), we get

2 s
< C (Jluel® + - )

_2
where -5

1
1
/ uurde
Q

Thus, using exploiting the inequality

< C (el + llull & + H (0)) -

(a1 4 az + ... 4+ ap)* < 207D/ (at + a3 + ... +ap),),

(a1,a2,...;a, >0, A > 1), we have

1

U () = {Hl_" (t)+s/ﬂuutd:c+;||w|2} B
< 21%% (H(t)+€1—1<’ /uutdﬂﬁ 4)
Q
< O (luel®+ 2+ H @)
< 0 (H@)+ ful?+ 120 + ul2)

By combining of (39) and (41), we arrive

1

U (t) > 0T (1),

17

(40)

(42)



where £ is a positive constant.

A simple integration of (42) over (0,t) yields WT°7 (t) > —————— which implies that the solution

N ﬁ(o),ﬂ’

1—0o

blows up in a finite time 7%, with

T < 1_7(,0
§ov =7 (0)

This completes the proof of the theorem.
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