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ABSTRACT 

After the credit crisis, credit valuation adjustment (CVA) has become a significant 

contributor to the daily P&L of trading books.  As a result, it is crucial for banks to 

closely monitor the risk associated with CVA and set risk limit in place for a robust 

oversight and risk management framework. This paper presents a new approach for 

accurately calculating credit value adjustment (CVA). The model can achieve a high 

order of accuracy with a relatively easy implementation. Moreover, the model can 

naturally capture wrong or right way risk. 

 

Key Words: credit value adjustment (CVA), wrong way risk, right way risk, credit risk modeling, 

least square Monte Carlo, derivative valuation, collateralization, margin and netting. 
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Following the global financial crisis, different adjustments have been introduced to the valuation 

of derivative contracts to account for counterparty and funding risk. Credit Valuation Adjustment 

(CVA) is an adjustment to the valuation of a portfolio in order to explicitly account for the credit 

worthiness of our counterparties. The CVA of an OTC derivatives portfolio with a given 

counterparty is the market value of the credit risk due to any failure to perform on agreements with 

that counterparty. This adjustment can be either positive or negative, depending on which of the 

two counterparties bears the larger burden to the other of exposure and of counterparty default 

likelihood. 

CVA allows institutions not only to quantify counterparty risk as a single measurable P&L 

number, but also to dynamically manage, price and hedge counterparty risk. The benefits of CVA 

are widely acknowledged. Many banks have set up internal credit risk trading desks to manage 

counterparty risk on derivatives. 

CVA, by definition, is the difference between the risk-free portfolio value and the risky 

portfolio value that takes into account the possibility of a counterparty’s default. The risk-free 

portfolio value is what brokers quote or what trading systems or models normally report. The risky 

portfolio value, however, is a relatively less explored and less transparent area, which is the main 

challenge and core theme for CVA.  

Previous CVA models involve the default time explicitly. Most CVA models in the 

literature (Brigo and Capponi (2008), Lipton and Sepp (2009), Pykhtin and Zhu (2006) and Gregory 

(2009), etc.) are based on this approach.  

Although those models are very intuitive, they have the disadvantage that it explicitly 

involves the default time. We are very unlikely to have complete information about a firm’s default 

point, which is often inaccessible (see Duffie and Huang (1996), Jarrow and Protter (2004), etc.). 

Usually, valuation under the DTA is performed via Monte Carlo simulation. On the other hand, 
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however, the DPA relies on the probability distribution of the default time rather than the default 

time itself. Sometimes the DPA yields simple closed form solutions. 

Joshi and Kwon (2016) propose a nested Monte Carlo simulation or least square technique 

to compute CVA. Graaf employ a finite-difference method and Monte Carlo simulation to solve a 

partial differential equation (PDE) and to estimate the mean exposure respectively. Borovykh et al. 

(2018) use a fast Fourier transform approach to calculate CVA. 

This paper presents a framework for risky valuation and CVA. In contrast to previous 

studies, the model relies on the probability distribution of the default time rather than the default 

time itself.  

After the credit crisis, a simplified assumption of independent default no longer holds 

especially when CVA is calculated against other financial institutions. The current framework 

should be further enhanced by embedding default correlations. 

Wrong way risk occurs when exposure to a counterparty is adversely correlated with the 

credit quality of that counterparty, while right way risk occurs when exposure to a counterparty is 

positively correlated with the credit quality of that counterparty. For example, in wrong way risk 

exposure tends to increase when counterparty credit quality worsens, while in right way risk 

exposure tends to decrease when counterparty credit quality declines. Wrong/right way risk, as an 

additional source of risk, is rightly of concern to banks and regulators. Since this new model allows 

us to incorporate correlated and potentially simultaneous defaults into risky valuation, it can 

naturally capture wrong/right way risk. 

The rest of this paper is organized as follows: Section 2 discusses risky valuation and CVA. 

Section 2 presents numerical results. The conclusions are given in Section 3. All proofs and a 

practical framework that embraces netting agreements, margining agreements and wrong/right way 

risk are contained in the appendices. 

 

1. Risky Valuation and CVA 
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CVA effectively computes the expected loss at default of the counterparty within maturity from 

the investor’s point of view (conditional on no previous counterparty default). In fact, the CVA is 

defined as the negated difference of the value of a defaultable cashflow and the value of an 

analogous default-free cashflow. 

The value CVA is composed of the expected loss due to the counterparty defaults 

(within maturity and before the investor default) minus the gain made by the investor in 

the event of its own defaults (before the counterparty default; conditional on no previous 

default for both investor and the counterparty).  

The stopping (or default) time   of a firm is modeled as a Cox arrival process (also known 

as a doubly stochastic Poisson process) whose first jump occurs at default and is defined as, 

 = 
t

s dssht
0

),(:inf      (1) 

where )(th  or ),( tth   denotes the stochastic hazard rate or arrival intensity dependent on an 

exogenous common state 
t , and   is a unit exponential random variable independent of 

t .  

The survival probability from time t to s in this framework is defined by 







−== 

s

t
duuhZtsPstp )(exp),|(:),(                   (2a) 

 The default probability for the period (t, s) in this framework is defined by 







−−=−== 

s

t
duuhstpZtsPstq )(exp1),(1),|(:),(               (2b) 

Two counterparties are denoted as A and B. Let valuation date be t. Consider a financial 

contract that promises to pay a 0TX  from party B to party A at maturity date T, and nothing 

before date T. All calculations in the paper are from the perspective of party A. The risk free value 

of the financial contract is given by 

 tFT
F XTtDEtV ),()( =                (3a) 
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where 





−=  duurTtD

T

t
)(exp),(     (3b) 

where  tE F•  denotes the expectation conditional on the tF , ),( TtD denotes the risk-free 

discount factor at time t for the maturity T and )(ur denotes the risk-free short rate at time u 

( Tut  ). 

Next, we turn to risky valuation. In a unilateral credit risk case, we assume that party A is 

default-free and party B is defaultable.  

If there has been no default before time T (i.e., T ), the value of the contract at T is the 

payoff 
TX . If a default happens before T (i.e., Tt  ), a recovery payoff is made at the default 

time   as a fraction of the market value given by )(V  where   is the default recovery rate and 

)(V  is the market value at default. Under a risk-neutral measure, the value of this defaultable 

contract is the discounted expectation of all the payoffs and is given by 

( ) tTTT VtDXTtDEtV F|1)(),(1),()(  +=                    (4) 

where Y  is an indicator function that is equal to one if Y is true and zero otherwise. 

Valuation can also rely on the probability distribution of the default time rather than the 

default time itself. We divide the time period (t, T) into n very small time intervals ( t ) and assume 

that a default may occur only at the end of each very small period. In our derivation, we use the 

approximation ( ) yy +1exp  for very small y. The survival and the default probabilities for the 

period ( t , tt + ) are given by 

( ) tthtthtttptp −−=+= )(1)(exp),(:)(ˆ               (5a) 

( ) tthtthtttqtq −−=+= )()(exp1),(:)(ˆ               (5b) 

The binomial default rule considers only two possible states: default or survival. For the 

one-period ),( ttt +  economy, at time tt + the asset either defaults with the default probability 
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),( tttq +  or survives with the survival probability ),( tttp + . The survival payoff is equal to 

the market value )( ttV +  and the default payoff is a fraction of the market value: 

)()( ttVtt ++ . Under a risk-neutral measure, the value of the asset at t is the expectation of all 

the payoffs discounted at the risk-free rate and is given by 

( )    ( ) tt ttVttyEttVtqttpttrEtV FF )()(exp)()(ˆ)()(ˆ)(exp)( +−++−=                 (6) 

where ( ) )()()(1)()()( tctrtthtrty +=−+=   denotes the risky rate and ( ))(1)()( tthtc −=  is called 

the (short) credit spread.  

Similarly, we have 

( ) ttttVtttyEttV +++−=+ F)2()(exp)(                    (7) 

Note that ( )tty − )(exp  is ttF + -measurable. By definition, an ttF + -measurable random 

variable is a random variable whose value is known at time tt + . Based on the taking out what 

is known and tower properties of conditional expectation, we have 

( ) 
( ) ( )  

( ) ti

ttt

t

ttVttityE

ttVtttyEttyE

ttVttyEtV

F

FF

F

)2())(exp

)2()(exp)(exp

)()(exp)(

1

0
++−=

++−−=

+−=

 =

+                  (8) 

By recursively deriving from t forward over T and taking the limit as t  approaches zero, 

the risky value of the asset can be expressed as 













−=  t

T

t
TVduuyEtV F)()(exp)(            (9) 

 We may think of )(uy  as the risk-adjusted short rate.  

For a derivative contract, usually its payoff may be either an asset or a liability to each 

party. Thus, we further relax the assumption and suppose that  may be positive or negative. 

In the case of , the survival value is equal to the payoff 
TX  and the default payoff 

is a fraction of the payoff 
TX . Whereas in the case of 0TX , the contract value is the payoff 

TX

0TX
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itself, because the default risk of party B is irrelevant for unilateral risky valuation in this case. 

Therefore, we have 

Proposition 1: The unilateral risky value of the single-payment contract in a discrete-time setting 

is given by 

 tFTXTtFEtV ),()( =      (10a) 

where 

( ) )(1),(11),(),( 0 TTtqTtDTtF
TX −−= 

    (10b) 

Proof: See the appendix. 

Here ),( TtF  can be regarded as a risk-adjusted discount factor. Proposition 1 says that the 

unilateral risky valuation of the single payoff contract has a dependence on the sign of the payoff. 

If the payoff is positive, the risky value is equal to the risk-free value minus the discounted potential 

loss. Otherwise, the risky value is equal to the risk-free value. 

Proposition 1 can be easily extended from one-period to multiple-periods. Suppose that a 

defaultable contract has m cash flows. Let the m cash flows be represented as 1X ,…, mX  with 

payment dates 1T ,…, mT . Each cash flow may be positive or negative. We have the following 

proposition. 

Proposition 2: The unilateral risky value of the multiple-payment contract is given by 

( )  =

−

= +=
m

i ti

i

j jj XTTFEtV
1

1

0 1),()( F        (11a) 

where 0
Tt =  and 

( ) )(1),(11),(),( 110))((11 11 +++++ −−=
++ jjjTVXjjjj TTTqTTDTTF

jj
        (11b) 

Proof: See the appendix. 

The CVA, by definition, can be expressed as 

( )  =

−

= +−=−=
m

i ti

i

j jji

F XTTFTtDEtVtVtCVA
1

1

0 1),(),()()()( F       (12) 
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Proposition 2 provides a general form for pricing a unilateral defaultable contract. 

Applying it to a particular situation in which we assume that all the payoffs are nonnegative, we 

derive the following corollary: 

Corollary 1: If all the payoffs are nonnegative, the risky value of the multiple-payments contract is 

given by 

( )  =

−

= +=
m

i ti

i

j jj XTTFEtV
1

1

0 1),()( F     (13a) 

where 0
Tt =  and 

( ) )(1),(1),(),( 1111 ++++ −−= jjjjjjj TTTqTTDTTF                 (13b) 

The proof of this corollary is easily obtained according to Proposition 2 by setting 

( ) 0)( 11 + ++ jj TVX , since the value of the contract at any time is also nonnegative. 

The CVA in this case is given by 

( )( )  =

−

= ++ −−−=−=
m

i ti

i

j jjji

F XTTTqTtDEtVtVtCVA
1

1

0 11 ))(1)(,(11),()()()( F   (14) 

 

Given 
2

>t (
0
>t), it follows from [Error! Reference source not found.] that the unilateral 

CVA0 from the investor’s point of view (CVA2) from the counterparty’s point of view) is given by  

 CVA
0

 = ( ) − +

  1[1 2 tR E  (15) 

 CVA
2

 = )(−− +

  1[)1( 0 tR E  (16) 

The default of a firm’s counterparty might affect its own default probability. Thus, default 

correlation and dependence arise due to the counterparty relations. Default correlation can be 

positive or negative. The effect of positive correlation is usually called contagion, whereas the latter 

is referred to as competition effect. 
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In theory, risk neutral default correlation should be given by parameter value calibrated 

from basket CDS. However, it is impossible to find price quotes as these are not market traded 

instruments.  

The solution is to use proxy by correlation between credit spreads. Given the liquidity of 

5-year spreads, correlation can be estimated based on historical spreads per rating and per sector. 

Alternatively, a weighted average of spread correlation across various terms can be used.  

Consider a pair of random variables ( AY , BY ) that has a bivariate Bernoulli distribution. 

The joint probability representations are given by 

ABBABA ppYYPp +==== )0,0(:00      (15a) 

ABBABA qpYYPp −==== )1,0(:01      (15b) 

 ABBABA pqYYPp −==== )0,1(:10      (15c) 

 ABBABA qqYYPp +==== )1,1(:11      (15d) 

where 
jj qYE =)( ,

jjj qp=2 ,   BBAAABBAABBBAAAB pqpqqYqYE  ==−−= ))((:  where AB  

denotes the default correlation coefficient and  
AB  denotes the default covariance. 

Suppose that a financial contract that promises to pay a TX  from party B to party A at 

maturity date T, and nothing before date T where tT  . The payoff TX  may be positive or 

negative, i.e. the contract may be either an asset or a liability to each party. All calculations are 

from the perspective of party A. 

At time T, there are a total of four ( 422 = ) possible states shown in Table 1. The risky 

value of the contract is the discounted expectation of the payoffs and is given by the following 

proposition. 

Proposition 3: The bilateral risky value of the single-payment contract is given by 

  ( ) tt FF TAXBXT XTtkTtkTtDEXTtKEtV
TT

),(1),(1),(),()( 00  +==   (16a) 

where 



10 

 

( ))()()(1),(),(),()(

),(),()(),(),()(),(),(),(

TTTTtTtqTtqT

TtqTtpTTtpTtqTTtpTtpTtk

ABBBABABAB

ABBABBABB





+−−++

++=
  (16b) 

( ))()()(1),(),(),()(

),(),()(),(),()(),(),(),(

TTTTtTtqTtqT

TtqTtpTTtpTtqTTtpTtpTtk

ABAAABABAB

BAABAAABA





+−−++

++=
  (16c) 

Let =
0 2

. Given >t, it follows from [Error! Reference source not found.] that the 

bilateral CVA of the investor CVA0 is given by: 

     

)(−−−−= +

=

+

=   tt RRCVA )1(1[)1( 20 E  (3) 

 

The value CVA0 is composed of the expected loss due to the counterparty defaults (within maturity 

and before the investor default) minus the gain made by the investor in the event of its own defaults 

(before the counterparty default; conditional on no previous default for both investor and the 

counterparty).  

 

Let’s compute the following  

 E
t
[1

{=
2
T}
A

+


2
]=E

t
[1

{
0


2
T}
A

+


2
] 

 =

0

T

 E
t
[1

{
0
u}
A

+


2
|

2
=u]dP(

2
u) 

Under the assumption of independence of 
2
and 

0
 the expectation can be expressed as 

  = 

0

T

 P(
0
u)E

t
[A

+


2
|

2
=u]dP(

2
u) 

Under the assumption that E
t
[A

+

2
|

2
=u]=E

t
[A

+
u].,, the expectation can be expressed as 
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  = 

0

T

 P(
0
u)E

t
[A

+

u]dP(
2
u) 

The integral can be approximated using numerical integration. 

 =  
i

 P(
0
T

i
)[P(

2
T

i
)−P(

2
T

i−1
)]E

t
[A

+

T
i
] 

Another way to look at it is as follows. Let us partition the [0,T] interval to T
0
=t,T

1
,T

2
,...,T

n
=T , 

then we have  

 E
t
[1

{=
2
T}
A

+


2
] = E

t
[1

{
0
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2
T}
A

+


2
] 

  = 
i

 E
t
[1

{
0


2
,T
i−1

<
2
T
i
}
A

+


2
] 

 

  

2. Numerical Results 

In this section, we present some numerical results for CVA calculation based on the theory 

described above. First, we study the impact of margin agreements on CVA. The testing portfolio 

consists of a number of interest rate and equity derivatives. The number of simulation scenarios (or 

paths) is 20,000. The time buckets are set weekly. If the computational requirements exceed the 

system limit, one can reduce both the number of scenarios and the number of time buckets. The 

time buckets can be designed fine-granularity at the short end (e.g., daily and then weekly) and 

coarse-granularity at the far end (e.g. monthly and then yearly). The rationale is that the calculation 

becomes less accurate due to the accumulated error from simulation discretization, and inherited 

errors from calibration of the underlying models, such as those due to the change of macro-

economic climate. The collateral margin period of risk is assumed to be 14 days (2 weeks). 
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For risk-neutral simulation, we use a Hull-White model for interest rate and a CIR (Cox-

Ingersoll-Ross) model for hazard rate scenario generations a modified GBM (Geometric Brownian 

Motion) model for equity and collateral evolution. The results are presented in the following tables. 

Table 2 illustrates that if party A has an infinite collateral threshold =AH  i.e., no collateral 

requirement on A, the CVA value increases while the threshold BH  increases. Table 3 shows that 

if party B has an infinite collateral threshold =BH , the CVA value actually decreases while the 

threshold AH  increases. This reflects the bilateral impact of the collaterals on the CVA. The 

impact is mixed in Table 4 when both parties have finite collateral thresholds. 

 

Table 2. The impact of collateral threshold BH  on the CVA 

This table shows that given an infinite AH , the CVA increases while BH  increases, where BH  

denotes the collateral threshold of party B and AH  denotes the collateral threshold of party A. 

Collateral Threshold BH  10.1 Mil 15.1 Mil 20.1 Mil Infinite ( ) 

CVA 19,550.91 20,528.65 21,368.44 22,059.30 

 

Table 3. The impact of collateral threshold AH  on the CVA 

This table shows that given an infinite BH , the CVA decreases while AH  increases, where BH  

denotes the collateral threshold of party B and AH  denotes the collateral threshold of party A. 

Collateral Threshold AH  10.1 Mil 15.1 Mil 20.1 Mil Infinite ( ) 

CVA 28,283.64 25,608.92 23,979.11 22,059.30 

 

Table 4. The impact of the both collateral thresholds on the CVA 

The CVA may increase or decrease while both collateral thresholds change, where BH  denotes 

the collateral threshold of party B and AH  denotes the collateral threshold of party A. This reflects 

the fact that the collaterals have bilateral impacts on the CVA.  
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Collateral Threshold BH  10.1 Mil 15.1 Mil 20.1 Mil Infinite ( ) 

Collateral Threshold AH  10.1 Mil 15.1 Mil 20.1 Mil Infinite ( ) 

CVA 25,752.98 22,448.45 23,288.24 22,059.30 

 

Next, we examine the impact of wrong way risk. Wrong way risk occurs when exposure to 

a counterparty is adversely correlated with the credit quality of that counterparty, while right way 

risk occurs when exposure to a counterparty is positively correlated with the credit quality of that 

counterparty. Wrong/right way risk, as an additional source of risk, is rightly of concern to banks 

and regulators. 

Some financial markets are closely interlinked, while others are not. For example, CDS 

price movements have a feedback effect on the equity market, as a trading strategy commonly 

employed by banks and other market participants consists of selling a CDS on a reference entity 

and hedging the resulting credit exposure by shorting the stock. On the other hand, Moody’s 

Investor’s Service (2000) presents statistics that suggest that the correlations between interest rates 

and CDS spreads are very small. The shape of 5-year credit spread is shown below. 
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 To capture wrong/right way risk, we need to determine the dependency between 

counterparties and to correlate the credit spreads or hazard rates with the other market risk factors, 

e.g. equities, commodities, etc., in the scenario generation. 

We use an equity swap as an example. Assume the correlation between the underlying 

equity price and the credit quality (hazard rate) of party B is  . The impact of the correlation on 

the CVA is show in Table 5. The results say that the CVA increases when the absolute value of the 

negative correlation increases. 

 

Table 5. The impact of wrong way risk on the CVA 
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This table shows that the CVA increases while the negative correlation  increases in the absolute 

value. We use an equity swap as an example and assume that there is a negative correlation between 

the equity price and the credit quality of party B. 

Correlation   0 -50% -100% 

CVA 165.15 205.95 236.99 

 

As we increase default correlation, we expect a monotonically decreasing trend in EL (for both 

normal and reverse views). This is because as the default correlation increases and given one 

party defaults, the survival probability of the other party would decrease.  

 

3. Conclusion 

The occurrence of CVA is linked to the recent financial crisis.  Financial institutions used 

to disregard, or at least minimize, credit and funding costs. Historically, the funding for taking on 

in-the-money trades and for posting collateral could be achieved through a variety of low-cost 

funding options and this low cost was to some extent offset by the interest paid on collateral by 

the receiving party.  

The financial crisis has changed this view as funding has become more costly, and the 

interest paid on collateral no longer offsets the increased cost. The evaluation and controlling of 

funding costs have therefore become a critical part of the risk management strategy of financial 

institutions. 

This article presents a framework for pricing risky contracts and their CVAs. The model 

relies on the probability distribution of the default jump rather than the default jump itself, because 

the default jump is normally inaccessible. We find that the valuation of risky assets and their CVAs, 

in most situations, has a backward recursive nature and requires a backward induction valuation. 

An intuitive explanation is that two counterparties implicitly sell each other an option to default 

when entering into an OTC derivative transaction. If we assume that a default may occur at any 
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time, the default options are American style options. If we assume that a default may only happen 

on the payment dates, the default options are Bermudan style options. Both Bermudan and 

American options require backward induction valuations.  

Based on our theory, we propose a novel cash-flow-based framework (see appendix) for 

calculating bilateral CVA at the counterparty portfolio level. This framework can easily incorporate 

various credit mitigation techniques, such as netting agreements and margin agreements, and can 

capture wrong/right way risk. Numerical results show that these credit mitigation techniques and 

wrong/right way risk have significant impacts on CVA.  

 

Appendix 

 

A practical framework for calculating bilateral CVA 

 

We developed a practical framework for calculating bilateral CVA at counterparty 

portfolio level based on the theory described above. The framework incorporates netting and 

margin agreements, and captures right/wrong way risk.  

Two parties are denoted as A and B. All calculations are from the perspective of party A. 

Let the valuation date be t. The CVA computation procedure consists of the following steps. 

 

B.1. Risk-neutral Monte Carlo scenario generation 

One core element of the trading credit risk modeling is the Monte Carlo scenario generation 

(market evolution). This must be able to run a large number of scenarios for each risk factor with 

flexibility over parameterization of processes and treatment of correlation between underlying 

factors. Credit exposure may be calculated under real probability measure, while CVA or pricing 

counterparty credit risk should be conducted under risk-neutral probability measure.  
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Due to the extensive computational intensity of pricing counterparty risk, there will 

inevitably be some compromise of limiting the number of market scenarios (paths) and the number 

of simulation dates (also called “time buckets” or “time nodes”). The time buckets are normally 

designed fine-granularity at the short end and coarse-granularity at the far end. The details of 

scenario generation are beyond the scope of this paper. 

 

A.2. Cash flow generation 

For ease of illustration, we choose a vanilla interest rate swap, as interest rate swaps 

collectively account for around two-thirds of both the notional and market value of all outstanding 

derivatives. 

Assume that party A pays a fixed rate, while party B pays a floating-rate. Assume that there 

are M time buckets ( MTTT ,...,, 10 ) in each scenario and N cash flows in the sample swap. Let 

consider scenario j first. 

For swaplet i, there are four important dates: the fixing date fit , , the starting date sit , , the 

ending date eit ,  and the payment date pit , . In general, these dates are not coincidently at the 

simulation time buckets. The time relationship between swaplet i and the simulation time buckets 

is illustrated in Figure B1. 
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Figure B1: An interest rate swaplet 

This figure illustrates the time relationship between an interest rate swaplet and the simulation time 

buckets. The floating leg of the swaplet is reset at the fixing date fit ,  with the starting date sit , , the 

ending date eit , , and the payment date pit , . The simulation time buckets are 11
,...,,

++ kii
TTT . The 

simulated interest rate curve is starting at fit , . Both fixed rate payments and floating-rate payments 

occur on the same payment dates. 

 

The cash flow of swaplet i is determined at the fixing date fit ,  that is assumed to be 

between the simulation time buckets jT  and 1+jT . First, we need to create an interest rate curve 

(see https://finpricing.com/lib/IrCurveIntroduction.html) observed at fit ,  by interpolating the 

interest rate curves simulated at jT  and 1+jT  via either Brownian Bridge or linear interpolation. 

The linear interpolation is the expectation of the Brownian Bridge. Then we can calculate the payoff 

of swaplet i at scenario j as 

( ) ),(),;( ,,,,,, eisieisifiij ttRtttFN  −=     (B1) 

 
jT 1+jT

kT 1+kTfit , sit , eit , pit ,

Terms 

R
ates 

Interest rate curve simulated at fit ,  

https://finpricing.com/lib/IrCurveIntroduction.html
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where N denotes the notional; ),;( ,,, eisifi tttF  denotes the simply compounded forward rate reset at 

fit ,  for the forward period ( sit , , eit , ); ),( ,, eisi tt  denotes the accrual factor or day count fraction 

for the period ( sit , , eit , ) and R denotes the fixed rate. 

The cash flow amount calculated by (B1) is paid on the payment date pit , . This value 

should be allocated into the nearest previous time bucket kT  as: 

 ),(
~

,,,, pikijikj tTD =      (B2) 

where ),( , pik tTD  denotes the risk-free discount factor based on the interest rate curve simulated 

at kT . 

 Cash flow generation for products without early-exercise provision is quite straightforward. 

For early-exercise products, one can use the approach proposed by Longstaff and Schwartz (2001) 

to obtain the optimal exercise boundaries and then the payoffs. 

 

B3.  Aggregation and netting agreements 

When a given portfolio does not allow for cross-product netting, the portfolio level CVA 

is given by the sum of the individual sub-portfolio’s stand alone CVAs. When netting and margin 

agreements are in place and the expected exposure of a counterparty is calculated depending on the 

netting and collateral agreements. 

After generating cash flows for each deal, we need to aggregate them at counterparty 

portfolio level at each scenario and each time bucket. The cash flows are aggregated by either 

netting or nonnetting based on the netting agreements.  

For netting, we add all cash flows together at the same scenario and the same time bucket 

to recognize offsetting. The aggregated cash flow under netting at scenario j and time bucket k is 

given by 
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 =
i

ikjkj ,,,

~~      (B3) 

For nonnetting, we divided cash flows into positive and negative groups and add them 

separately. In other words, the offsetting is not recognized. The aggregated cash flows under 

nonnetting at scenario j and time bucket k are given by 
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    (B4) 

 

 

B4.  CVA Calculation 

 After aggregating all cash flows via netting, one can price a portfolio in the same manner 

as pricing a single deal. We assume that the reader is familiar with the least square Monte Carlo 

valuation model proposed by Longstaff and Schwartz (2001) and thus do not repeat some well-

known procedures for brevity. 

CVA is by definition the difference between the risk-free portfolio value and the true (or 

risky or defaultable) portfolio value. 
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