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Abstract

Klinkenberg-corrected gas permeability (k) estimation in tight-gas sandstones is essential for gas exploration and production

in low-permeability porous rocks. Most models for estimating k are a function of porosity ( ), tortuosity (τ), pore shape

factor (s) and a characteristic length scale (lc). Estimation of the latter, however, has been the subject of debate in the

literature. Here we invoke two different upscaling approaches from statistical physics: (1) the EMA and (2) critical path

analysis (CPA) to estimate lc from pore throat-size distribution derived from mercury intrusion capillary pressure (MICP)

curve. τ is approximated from: (1) concepts of percolation theory and (2) formation resistivity factor measurements (F = τ/

). We then estimate k of eighteen tight-gas sandstones from lc, τ, and by assuming two different pore shapes: cylindrical

and slit-shaped. Comparison with Klinkenberg-corrected k measurements showed that τ was estimated more accurately from F

measurements than from percolation theory. Generally speaking, our results implied that the EMA estimated k within a factor

of two of the measurements and more precisely than CPA. We further found that the assumption of cylindrical pores yielded

more accurate k estimates when τ was estimated from concepts of percolation theory than the assumption of slit-shaped pores.

However, the EMA with slit-shaped pores estimated k more precisely than that with cylindrical pores when τ was estimated

from F measurements.
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Factors	affecting	gas	permeability	in	tight	media
• Connectivity
• Pore-throat	size	distribution
• Slip	flow	and	Knudsen	diffusion
• Tortuosity
• Porosity
• Pore	shape	geometry
• Gas	characteristics

Theoretical	upscaling	techniques
§ Bundle	of	capillary	tubes	approach
§ Effective-medium	theory	(EMA)
§ Critical	path	analysis	(CPA)
§ Perturbation	theory
§ Volume	averaging	method
§ Mean-field	theory
§ Renormalization	group	theory
§ …

Objectives
ü To	evaluate	the	EMA’s	reliability	to	estimate	the	

Klinkenberg-corrected	gas	permeability	k from	pore-
throat	size	distribution,	tortuosity,	and	porosity.

ü To	estimate	k from	pore-throat	size	distribution	and	
electrical	conductivity	measurements.

ü To	compare	EMA	results	to	those	obtained	from	
critical	path	analysis	in	tight-gas	sandstones.

Assumptions
q Pores	are	cylindrical	or	slit-shaped.
q The	influence	of	pore	pressure	on	k in	our	samples	is	

small	because	all	permeability	measurements	were	
Klinkenberg-corrected.

q Contact	angle	is	about	140◦ for	mercury.
q The	air-mercury	interfacial	tension	is	485	mN/m.

Hydraulic	and	electrical	conductances
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The	effective-medium	approximation	(EMA)
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An	upscaling	technique	from	statistical	physics	appropriate	in	homogeneous	and	relatively	heterogeneous	porous	
rocks.	
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Effective	hydraulic	and	electrical	pore	sizes	are	determined	from	the	following	EMA	governing	equation:
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As	a	first-order	approximation,	the	following	geometrical	tortuosity	model	
may	be	used	to	approximate	𝜏* and	𝜏" with	the	geometrical	tortuosity	𝜏>
(Ghanbarian	et	al.,	2013):
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Critical	path	analysis	(CPA)
Another	upscaling	technique	from	statistical	physics	appropriate	in	heterogeneous	porous	media	with	broad	pore-
throat	size	distribution.	
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EMA-Slit	shaped
RMSLE	=	0.42
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CPA-Cylindrical
RMSLE	=	0.47
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CPA-Slit	shaped
RMSLE	=	0.65

y =	0.74	(Skaggs,	2011)

The	eighteen	tight-gas	sandstones	used	in	this	study	were	cut	from	whole	cores	retrieved	from	a	tight-gas	sandstone	
formation	located	in	East	Texas.	In	all	samples,	gas	permeability	was	measured	using	the	transient	pulse	technique	at	
a	net	confining	stress	of	2500	psi	and	corrected	by	extrapolating	to	infinite	pressure	using	the	Klinkenbergmethod.
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Estimating	sb/sf and	k via	EMA	from	MICP,	porosity	
and	tortuosity	assuming	that	pores	are	cylindrical

Estimating	sb/sf and	k via	EMA	from	MICP,	porosity	
and	tortuosity	assuming	that	pores	are	Slit-shaped
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q EMA	with	slit-shaped	pores	estimated	k
slightly	more	precisely	than	CPA	with	
cylindrical	pores,	although	both	method	
estimations	were	mainly	within	a	factor	of	
two	of	the	measurements.

q Depending	on	input	parameters	and	upscaling	
methods,	the	assumption	of	cylindrical	pores	
could	yield	more	accurate	𝜎./𝜎, and	k
estimates	than	the	assumption	of	slit-shaped	
pores	and	vice	versa.
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