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Abstract

Mountain System Recharge (MRS) processes are the natural recharge pathways in arid and semi-arid mountainous regions.

However, MSR processes are often poorly understood and characterized in hydrologic models. Mountains are the primary

source of water supply to valley aquifers via multiple pathways including lateral groundwater flow from the mountain block

(Mountain-block Recharge, MBR) and focused recharge from mountain streams contributing to mountain front recharge (MFR)

at the piedmont zone. Here, we present a multi-tool isogeochemical approach to characterize mountain flow paths and MSR

processes in the northern Tulare basin, California. We used groundwater chemistry data to delineate hydrochemical facies and

explain the chemical evolution of groundwater from the Sierra Nevada to the Central Valley aquifer. Isotope tracers helped to

validate MSR processes. Novel application of End-Member Mixing Analysis (EMMA) using conservative chemical components

revealed three MSR end-members: (1) evaporated Ca-HCO3 water type associated with MFR, (2) non-evaporated Ca-HCO3

and Na-HCO3 water types with short residence times associated with shallow MBR, and (3) Na-HCO3 groundwater type with

long residence time associated with deep MBR. We quantified the contribution of each MSR process to the valley aquifer

using mixing ratio calculation (MIX). Our results show that deep MBR is a significant component of recharge representing

more than 50% of the valley groundwater. Greater hydraulic connectivity between the Sierra Nevada and Central Valley has

significant implications for parameterizing Central Valley groundwater flow models and improving groundwater management.

Our framework is useful for understanding MSR processes in other snow-dominated mountain watersheds.
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Abstract 28 

Mountain System Recharge (MRS) processes are the natural recharge pathways in arid and semi-29 
arid mountainous regions. However, MSR processes are often poorly understood and 30 
characterized in hydrologic models. Mountains are the primary source of water supply to valley 31 
aquifers via multiple pathways including lateral groundwater flow from the mountain block 32 
(Mountain-block Recharge, MBR) and focused recharge from mountain streams contributing to 33 
mountain front recharge (MFR) at the piedmont zone. Here, we present a multi-tool 34 
isogeochemical approach to characterize mountain flow paths and MSR processes in the northern 35 
Tulare basin, California. We used groundwater chemistry data to delineate hydrochemical facies 36 
and explain the chemical evolution of groundwater from the Sierra Nevada to the Central Valley 37 
aquifer. Isotope tracers helped to validate MSR processes. Novel application of End-Member 38 
Mixing Analysis (EMMA) using conservative chemical components revealed three MSR end-39 
members: (1) evaporated Ca-HCO3 water type associated with MFR, (2) non-evaporated Ca-40 
HCO3 and Na-HCO3 water types with short residence times associated with shallow MBR, and 41 
(3) Na-HCO3 groundwater type with long residence time associated with deep MBR. We 42 
quantified the contribution of each MSR process to the valley aquifer using mixing ratio 43 
calculation (MIX). Our results show that deep MBR is a significant component of recharge 44 
representing more than 50% of the valley groundwater. Greater hydraulic connectivity between 45 
the Sierra Nevada and Central Valley has significant implications for parameterizing Central 46 
Valley groundwater flow models and improving groundwater management. Our framework is 47 
useful for understanding MSR processes in other snow-dominated mountain watersheds. 48 

1. Introduction 49 

Seasonal snowpacks and glaciers supply water to more than 16% of the global population 50 
(Barnett, 2005), and 24% of lowland populations rely on runoff from mountainous watersheds 51 
(Viviroli et al., 2020). While the contribution of mountain watersheds to streamflow is well 52 
known (Viviroli et al., 2020), the mechanisms of groundwater recharge processes in high-53 
elevation mountain ranges are poorly understood (Gleeson and Manning, 2008). Likewise, the 54 
degree of hydraulic connectivity between the mountains and valley-fill aquifers is still uncertain 55 
(de Vries and Simmers, 2002). Prolonged droughts and reduced snowpack in the western US 56 
have increased reliance on groundwater (Scanlon et al., 2005), causing overexploitation of major 57 
aquifers, e.g., California’s Central Valley aquifer. Projected increases in the frequency and 58 
intensity of droughts, warmer temperatures (Seager et al., 2007; Diffenbaugh et al., 2015), and 59 
snow to rain transition (Berghuijs et al., 2014) are expected to alter the magnitude and direction 60 
of recharge rates. However, our ability to accurately estimate recharge in mountain catchments is 61 
limited due to the complexity of recharge processes and lack of direct recharge observations 62 
(Ajami et al., 2011; Bales et al., 2006). 63 
 64 
Various terminologies have been used to describe recharge processes in a mountain-valley 65 
aquifer system (Markovich et al., 2019). Conceptually, a mountain-valley aquifer system consists 66 
of two units: a mountain aquifer unit extending from headwaters to the piedmont zone where 67 
mountains intersect alluvial deposits (Welch and Allen, 2012), and a valley bottom aquifer unit 68 
with boundaries starting at the piedmont zone. We define five recharge pathways along the 69 
mountain-valley aquifer continuum (Figure 1). The two main recharge pathways recharging the 70 
mountain aquifer are diffuse and focused Mountain Aquifer Recharge (MAR). Diffuse MAR 71 
results from snowmelt and rainfall infiltration into the mountain block and focused MAR is from 72 
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mountain wells. Alternately, the chloride mass balance method (CMB) has been extensively used 103 
to estimate recharge rates in mountain catchments (Aishlin & McNamara, 2011). Chloride is 104 
considered a conservative solute as it is rarely present in the mountain bedrock and is neither 105 
evaporated nor transpired. Bazuhair & Wood (1996) used the CMB method to estimate MBR 106 
from the western Saudi Arabia mountains to arid alluvial aquifers. Annual MBR was 3 to 4% of 107 
mean annual precipitation with 30 to 50% error in the short-term dataset. In the Dry Creek 108 
watershed in Idaho, CMB results showed that 14% of precipitation and 44% of headwater areas 109 
contribute to MBR (Aishlin and McNamara, 2011). Annual MBR estimates from the Yucca 110 
Mountain in Nevada and Black Mesa in Arizona were 3 to 15 % and 3 to 7% of mean annual 111 
precipitation, respectively (Zhu et al., 2003).   Application of the CMB method in recharge 112 
studies is challenging as chloride retention in soils is not well understood (Shaw et al., 2014), 113 
and in low electrical conductivity environments such as snow-dominated mountain systems, 114 
chloride is not entirely conservative (Shaw et al., 2014).  Furthermore, the CMB method only 115 
accounts for a single tracer and more than one tracer is usually needed to describe mixing 116 
dynamics in complex mountain-valley systems.  117 
 118 
Christopherson and Hooper (1992) and Hooper et al. (1990) combined multiple tracers using a 119 
multivariate statistical analysis method, (EMMA), to identify water sources in streamflow. The 120 
application of EMMA has been instrumental in identifying MSR sources (e.g., Wahi et al., 2008) 121 
and its partitioning. Wahi and others (2008) applied a mixing model using oxygen and hydrogen 122 
isotopes in the Upper San Pedro River Basin, Arizona, attributing 70% of the MSR, to winter 123 
and 30% to summer precipitation. Peng et al. (2018) applied EMMA to oxygen and hydrogen 124 
groundwater isotopes and electrical conductivity (EC) data from three alluvial fans in eastern 125 
Taiwan. They attributed 70 % of the MSR to MFR and MBR, and the remainder to VAR. They 126 
showed MBR is mainly controlled by the degree of mountain bedrock fracturing, while MFR is 127 
impacted by streambed permeability and slope. Liu and Yamanaka (2012) applied EMMA to 128 
oxygen and hydrogen groundwater isotopes and major dissolved solutes, and identified distance 129 
from the river and topography as important factors controlling MFR. Frisbee et al. (2011) applied 130 
EMMA to EC, calcium, magnesium, potassium, silica, and δ18O and δ2H of groundwater in two 131 
mountain watersheds in the Southwestern United States. They determined a deep circulation 132 
flow depth of 1 to 1.5 km depth, controlling stream chemistry and flow dynamics across the 133 
watershed. 134 
 135 
Although EMMA has been successfully implemented in many studies, its application depends on 136 
selecting conservative tracers (Christophersen and Hooper, 1992; Hooper, 2003; Carrera et al., 137 
2004; Barthold et al., 2011). Choosing conservative tracers is often challenging, mainly due to 138 
water-rock reactions and anthropogenic pollution affecting groundwater chemistry (Parkhurst, 139 
1997; Carrera et al., 2004). The non-conservative behavior of species significantly decreases 140 
dataset size, reducing the representativeness of the groundwater system (Rueedi et al., 2015). To 141 
broaden the application of EMMA using non-conservative tracers, Pelizardi et al. (2017) 142 
combined non-conservative solutes to create conservative chemical components. The 143 
conservative components are created by defining the chemical system in a stoichiometric matrix, 144 
S. The S matrix contains the reactions, the species, and the stoichiometric coefficients. MIX 145 
estimates mixing ratios by using conservative species concentration while acknowledging 146 
uncertainty in end-member concentrations using a maximum likelihood method.  147 
 148 
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In the California Central Valley aquifer system, more than 75% of agricultural water supply 149 
derives from precipitation in the Sierra Nevada (Rosenthal and Dozier, 1996), and MSR from the 150 
Sierra Nevada constitutes a significant recharge component, 20% compared to 11% from diffuse 151 
recharge (Meixner et al., 2016). However, significant uncertainties exist in the Sierra Nevada’s 152 
MSR estimates, and no information about groundwater flow paths from headwaters to the 153 
Central Valley aquifer system is available. Our objective is to address this critical knowledge gap 154 
by using multiple tracers and EMMA to characterize groundwater flow paths from the southern 155 
Sierra Nevada mountain aquifers to the northern Tulare basin in California’s Central Valley and 156 
differentiate MFR, MBR, and VAR processes. The Tulare basin is one of the most over-drafted 157 
basins in California. Groundwater storage decreased by about 3 km3/yr over the last decades 158 
(Alam et al., 2019), and the depletion rate was three times higher during the 2006-2010 and 159 
2012-2016 droughts (Scanlon et al., 2012; Xiao et al., 2017). We used hydrochemical and 160 
isotope data from the US Geological Survey Groundwater Ambient Monitoring and Assessment 161 
(GAMA) program (Bennett et al., 2017) and implemented a multi-tool isogeochemical approach 162 
combined with EMMA and MIX analysis to answer three main research questions: 1) How does 163 
groundwater chemistry vary in the mountain-valley aquifer system of the northern Tulare basin? 164 
2) How to differentiate MAR, MFR, and MBR processes using major chemical solutes and 165 
isotope tracers?, and 3) What is the hydraulic connectivity between the mountain and valley 166 
groundwater systems? 167 
 168 
2. Materials and Methods 169 

2.1. Study Area 170 

The study area constitutes the northern Tulare Basin in California, with an area of 9,914 km2 171 
extending between the Coastal Range in the west and the Sierra Nevada in the east. The area 172 
encompasses the Kaweah River, Tule River, and Tulare Lake watersheds (Figure 2a). 173 
Historically, the Tule River, Kaweah River, and the Kings River were discharging into the 174 
currently dry Tulare Lake. Elevation varies from 4421 masl on Mount Whitney to below sea 175 
level in the valley significantly impacting the climate. Lowlands (< 1,500 m elevation) and mid-176 
elevation montane regions (1,500 – 2,500 m) have Mediterranean to semi-arid desert climate 177 
with hot and dry summers and cold winters (Boiano et al., 2005). Regions above 2,500 m 178 
elevation have Alpine climate with mean temperature lower than 10oC (Boiano et al., 2005). 179 
Mean annual precipitation varies between 150 mm in Lowlands to over 1000 mm at elevations 180 
above 2500 m, and mainly occurs from November to March (Faunt et al., 2016; NOAA, 2022).   181 
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from bottom to top in the valley: (1) Marine semi-consolidated deposits (Tertiary), (2) the Santa 195 
Margarita Formation (Tertiary), (3) Marine siltstone deposits (Tertiary), (4) Lacustrine and 196 
flood-plain deposits (Quaternary), (5) Oxidized continental deposits (Quaternary), and (6) the 197 
Corcoran clay (Quaternary) (Figure 2b).  198 

• The Marine semi-consolidated deposits with thicknesses between 60 m to 460 m are 199 
Miocene to Eocene age marine sand, silt, and clay sequence (Park and Weddle, 1959; 200 
Hilton et al., 1963). These layers behave as a confined aquifer and contain highly saline 201 
water (Lofren and Klausing, 1969).  202 

• The Santa Margarita Formation (Diepenbrock, 1933) is a Miocene age marine unit with 203 
50 m to 160 m thickness and mainly composed of fine gravel, fine to coarse sand, very 204 
fine green to gray clay, and shale facies (Hoots et al., 1954). This unit is the deepest 205 
freshwater aquifer in the study area used for agriculture (Lofren and Klausing, 1969). 206 

• The marine siltstone Pliocene and Pliocene deposits with 190 m to 800 m thickness are 207 
siltstone diatomaceous deposits partially cemented by clayey siltstone interbedded with 208 
thin sand beds that contain saline water (Klausing and Lohman 1964). The overall 209 
transmissivity of the siltstone unit is exceptionally low.   210 

• The late Pliocene to Holocene reduced clay, silt, and sand green to gray lacustrine and 211 
flood-plain deposits have maximum thicknesses of 1000 m in the west (Frink and Kues, 212 
1954; Davis et al., 1959, Inter-Agency Committee 1958: Lofgren and Klausing, 1969). 213 
Plants and disseminated iron sulfide are well-preserved in them and their saline water is 214 
not suitable for drinking or agricultural uses (Lofgren and Klausing, 1969). 215 

• The Holocene oxidized continental alluvial deposits are yellow to brown highly 216 
weathered sand, silt, and sandy clay feldspar grains (Frink and Kues, 1954; Davis et al., 217 
1959, Inter-Agency Committee 1958: Lofgren and Klausing, 1969). The thickness of 218 
these highly weathered sediments is 90-200 m, and the unit is overlaid by 60-80 m of 219 
slightly weathered, highly calcareous permeable alluvial deposits. These calcareous 220 
deposits represent a time-lapse and a transition in the weathering regime (Lofgren and 221 
Klausing, 1969), and constitute the principal aquifer in the study area. 222 

• The Corcoran Clay deposits are silty clay to clayey silt diatomaceous Pleistocene deposits 223 
occupying half of the study area in the western side. They are principal confining 224 
formation beneath the alluvial deposits and flood plain with thicknesses ranging from 0 m 225 
in the east to more than 30 m in the west (Lofgren and Klausing, 1969).  226 

The regional groundwater flow is from east to west, following the Sierra Nevada streams. The 227 
oxidized alluvial deposits form the principal unconfined aquifer in the eastern part of the study 228 
area transitions to semiconfined and confined aquifers in the west because of the Corcoran Clay. 229 
In the east, the saline water has naturally been replaced by fresh water forming a secondary 230 
confined aquifer in the Santa Margarita Formation. The low-quality high salinity groundwater is 231 
in the western part of the confined Pliocene sediments aquifer and the confined Santa Margarita 232 
Formation aquifer (Lofgren and Klausing, 1969).  233 

2.3. Hydrochemical and Isotopic Data  234 

We used hydrochemical and isotopic data from domestic wells sampled as part of the US 235 
Geological Survey (GAMA) Program (Bennett et al., 2017). The dataset includes 95 wells 236 
sampled from November 2014 to April 2015. Among multiple groundwater-quality parameters, 237 
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we used pH, temperature (T), alkalinity, major ions (Ca, Mg, Na, K, Cl, SO4), NO3, Br, stable 238 
isotopic ratios of hydrogen (2H), oxygen (18O), and carbon (13C), and tritium (3H). The quality 239 
criterion for the chemical analyses was cation-anion imbalances of ≤ 10%. Unfortunately, only 240 
40% of the wells (41 wells) had ion imbalance errors of smaller than 10%, and the remainder (54 241 
wells) had higher errors and were discarded from the chemical analysis. These 54 wells were 242 
included for pH, temperature, stable hydrogen (2H), oxygen (18O), and tritium (3H) 243 
analysis. Rainwater isotopic content was obtained from previous studies in California (Visser et 244 
al., 2018; Friedman et al., 1992; Rose et al., 1996). Meltwater isotopic signatures were from a 2-245 
year study in the Marble Fork of the Kaweah (Figure 1a) watershed (Huth et al., 2004). 246 

The studied groundwater system was divided into four aquifer regions. The Mountain Range 247 
Aquifer (MRA) includes 18 wells at 181 to 876 m elevations with depths varying from 30 to 182 248 
m. The Upper Valley Aquifer (UVA) comprises the unconfined regions of the Central Valley 249 
aquifer and includes 37 wells at elevations from 61 to 149 m and depths of less than 100 m (17- 250 
98m). The Lower Valley Aquifer (LVA) comprises the semi-confined to confined areas of the 251 
Central Valley aquifer and includes 23 wells with depths greater than 100 m (107-453 m) and 252 
elevations from 64 to 214 m. The 100 m separation depth for differentiating UVA from the LVA 253 
was based on the geological cross-section A-A’ (Figure 2a) of Lofgren and Klausing (1969) and 254 
was confirmed by a recent large-scale geophysical investigation (Kang et al., 2022). This 255 
division was not applied to the Western Valley Aquifer (WVA) wells close to the historical 256 
Tulare Lake. Elevation of the 15 WVA wells ranges from 66 to 81 m, with depths from 24 to 257 
91m.  Nearly all shallow wells are pumping fresh water from the continental oxidized alluvial 258 
deposits. Only WVA and western LVA wells are extracting water from the continental lacustrine 259 
deposits. Eastern LVA wells are pumping freshwater from saline Tertiary deposits which saline 260 
formation water has been flushed out. 261 

2.4.  Isogeochemical Analysis and Modeling  262 

2.4.1. Characterizing Chemical and Stable Carbon (13C) Isotopic Signatures of the Mountain-263 
Valley Aquifer system  264 

We employed a multi-tool approach using hydrochemical data to determine groundwater 265 
chemical facies of aquifers. After identifying temperature and pH ranges of wells, groundwater 266 
chemical facies were determined by Stiff diagrams. The potential processes driving each facie 267 
were determined using a Piper diagram and later validated using multiple approaches. The 268 
influence of evaporation and cation exchange processes were evaluated using two models built in 269 
PHREEQC version 3 (Parkhurst & Appelo, 2013). In the first model, evaporation was the main 270 
process driving dissolved cations in the MRA. The evaporation effect was assessed by 271 
calculating a concentration factor (Cf) using the Giant Forest Rain station data in the Kaweah 272 
River watershed (Figure 2a) (NADP, 2022). Assuming Cl was conservative, the Cf was obtained 273 
by comparing the average Cl concentrations in the MRA groundwater and volume-weighted 274 
precipitation accounting for wet and dry deposition from the 1980-2020 period. In the second 275 
model, evaporation and cation exchange were considered. The average exchangeable base 276 
concentrations were obtained using soil information from two sites in the Tokopah Watershed 277 
located in the Kaweah River basin (Figure 2a) (Table S1). The average exchangeable base 278 
concentrations were converted from meq/100g to eq/kg using sediment porosity of 0.45 and soil 279 
bulk density of 2.6 g/cm3. Exchange equilibrium constants were from Appelo & Postma (2005) 280 
following the Gaines-Thomas convention. The plausibility of both models was assessed by 281 



manuscript submitted to Water Resources Research 

9 
 

comparing the estimated dissolved cations concentrations to the average measured concentration 282 
in the MRA. 283 

While evaporation and cation exchange primarily relate to soil driven processes within the 284 
unsaturated zone, groundwater chemistry is highly influenced by mineral dissolution and 285 
precipitation processes. These processes were evaluated using mineral saturation indices (SI). SI 286 
indicates how far groundwater is from the mineral equilibrium and determines the dissolution or 287 
precipitation potential of a specific mineral. SI was computed with PHREEQC using in-situ 288 
temperature, pH, and alkalinity measurements. Mineral equilibrium was assumed within ± 0.5 of 289 
SI. Complementary to the SI, mineral dissolution was assessed by bivariate analysis of 290 
groundwater dissolved solutes. The bivariate analysis of reaction products is instrumental when 291 
dissolution and precipitation processes cannot be identified by the SI. For example, as silicate 292 
dissolution is slow, silicates are expected to be far from equilibrium indicating sub-saturation. In 293 
addition, silicates are usually altered to other minerals with a different chemical structure and 294 
composition. A well-known example is weathering of the Sierra Nevada granite studied by Feth 295 
et al. (1964) and Garrels and McKenzie (1967). In these studies, granite silicates including 296 
andesine 𝑁𝑎଴.଺ଶ𝐶𝑎଴.ଷ଼𝐴𝑙ଵ.ଷ଼𝑆𝑖ଶ.଺ଶ𝑂଼, K-feldespar and biotite 𝐾𝑀𝑔ଷ𝐴𝑙𝑆𝑖ଷ𝑂ଵ଴(𝑂𝐻)ଶ were altered 297 
to kaolinite 𝐴𝑙ଶ𝑆𝑖ଶ𝑂ଷ(𝑂𝐻)ସ, releasing Na+, Ca+2, K+, HCO3

- and SiO2 as follows: 298 1.77𝐴𝑛𝑑𝑒𝑠𝑖𝑛𝑒 + 2.44𝐶𝑂ଶ + 3.67𝐻ଶ𝑂 → 1.23𝐾𝑎𝑜𝑙𝑖𝑛𝑖𝑡𝑒 + 1.10𝑁𝑎ା + 0.68𝐶𝑎ଶା + 2.44𝐻𝐶𝑂ଷି +299 2.20𝑆𝑖𝑂ଶ                                                                                                                                                                Eq. 1 300 0.13𝐾 − 𝑓𝑒𝑙𝑑𝑒𝑠𝑝𝑎𝑟 + 0.13𝐶𝑂ଶ + 0.195𝐻ଶ𝑂 → 0.065𝐾𝑎𝑜𝑙𝑖𝑛𝑖𝑡𝑒 +  1.13𝐾ା  +  0.13𝐻𝐶𝑂ଷି +301 0.26𝑆𝑖𝑂ଶ                                                                                                                                                                 Eq. 2 302 0.037𝐵𝑖𝑜𝑡𝑖𝑡𝑒 + 0.51𝐶𝑂ଶ + 0.26𝐻ଶ𝑂 → 0.037𝐾𝑎𝑜𝑙𝑖𝑛𝑖𝑡𝑒 + 0.073𝐾ା  +  0.22𝑀𝑔ଶା  +  0.51𝐻𝐶𝑂ଷି +303 0.15𝑆𝑖𝑂ଶ                                                                                                                                                                 Eq. 3 304 

Bivariate analysis was fundamental to understand water-rock reactions in the aquifer systems. 305 
Moreover, it was used to identify: (1) pollution from the agriculture fields through the NO3-SO4 306 
relation, and (2) seawater mixing from the Tertiary marine deposits through the Na-Cl and SO4-307 
Cl relations. 308 

2.4.2. Characterizing MSR Processes with Stable Oxygen (18O) and Hydrogen (2H) Isotopes 309 
and Tritium (3H) 310 

Stable 18O and 2H groundwater isotopes were used to differentiate focused from diffuse MAR in 311 
the MRA wells. Focused MAR mainly occurs via streamflow infiltration and seepage from lakes 312 
through the mountain block, and groundwater samples are expected to express isotopic 313 
fractionation due to evaporation. Stable isotopic data from the evaporated MRA wells 314 
representative of focused MAR in the Sierra Nevada were used to build a Local Evaporation 315 
Line (LEL). To identify recharge sources (rain, snowmelt, and surface water) in the MRA wells, 316 
stable isotopic values of fourteen MRA wells located in four different transects across the 317 
elevation gradient (Figure 2a) were used.   318 

The MFR was attributed to shallow wells at the mountain front with the isotopic signature of 319 
evaporated Sierra Nevada rivers (focused MAR) and the chemical signature of unsaturated zone 320 
processes. The deep MBR was attributed to deep wells with the chemical signature of water-321 
granite reactions and long residence times (tritium concentrations are ≤0.5 tritium units (TU)).  322 
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 323 

2.4.3. Quantifying the Connectivity between the Mountain and Valley Groundwater Systems 324 

The proportion of MFR and MBR in valley aquifer wells was computed using the (1) End-325 
Member Mixing Analysis (EMMA) (Christophersen and Hooper, 1992; Hooper, 2003) and (2) 326 
mixing ratio calculation (MIX) (Carrera et al., 2004). EMMA is based on the principal 327 
component analysis, aiming to find the composition and a minimum number of end-members 328 
needed to explain the variability of measured concentrations within water samples. MIX 329 
calculates the mixing ratios of the identified end-members in each sample using the 330 
concentrations of conservative species. A detailed description of MIX can be found in Carrera et 331 
al. (2004), and a summary is provided below. The mass balance equation of a sample (mixture) p 332 
for species s is defined as (Carrera et al., 2004): 333 
 334 𝑦௣௦ = ∑ 𝛿௣௘𝑥௘௦ + 𝜀௣௦௡௘௘ିଵ              𝑤ℎ𝑒𝑟𝑒 𝑠 = 1, … , 𝑛𝑠                                Eq. 4 335 
 336 
Where 𝑦௣௦ and 𝑥௘௦ are the concentrations of species s in sample p and end-member e, 337 
respectively, 𝛿௣௘ is the proportion of end-member e in mixture p, and 𝜀௣௦ accounts for 338 
measurement and conceptual errors caused by the non-constant concentration of an end-member. 339 
When the end-member concentrations are known, the errors in simulated concentrations can be 340 
calculated using an objective function. 341 
 342 
Correct application of EMMA and MIX requires selection of conservative species, and end-343 
members with significant differences in species concentrations (Christophersen and Hooper, 344 
1992; Hooper, 2003; Carrera et al., 2004; Barthold et al., 2011). As achieving conservative 345 
condition due to water-rock reactions in groundwater is challenging (Parkhurst, 1997; Carrera et 346 
al., 2004), we followed the Pelizardi et al. (2017) approach by linearly combining non-347 
conservative species with conservative chemical components. Components are linear 348 
combinations of species that remain unchanged by reactions. For example, the component 349 𝑈௚௬௣௦௨௠ =  𝐶𝑎ାଶ − 𝑆𝑂ସି ଶ will not change by gypsum dissolution (Eq. 5), and the exact amount 350 
of Ca+2 and SO4

-2 release by gypsum dissolution is predicted by:  351 
 352  𝐶𝑎𝑆𝑂ସ(௦) ↔ 𝐶𝑎ାଶ + 𝑆𝑂ସି ଶ                                                    Eq. 5 353 
 354 
Therefore, subtracting the molar concentration of SO4

-2 from Ca+2 will always give the same 355 
result, maintaining 𝑈௚௬௣௦௨௠ constant. In order to build chemical components, the chemical 356 
reactions and species must be defined in a stoichiometric matrix (Eq. 6), and components are 357 
built following Eq. 7. 358 
 359 𝑆 = 𝑁௥ × 𝑁௦                                                                     Eq. 6 360 

 361 𝑈 = (𝑁௦ − 𝑁௥) × 𝑁௦                                                             Eq. 7 362  363 
Where S is the stoichiometric matrix containing the stoichiometric coefficients of the reactions, 364 𝑁௥ is the number of reactions,  𝑁௦ is the number of species, and U is a component. A detailed 365 
description of the component and stoichiometric matrices can be found in Molins et al. (2004) 366 
and Pelizardi et al. (2017), respectively. We also used components to validate processes 367 
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identified in Section 2.4.1. In EMMA, changes in species concentrations are presented via 368 
eigenvectors. Therefore, an eigenvector accounts for gypsum dissolution would contribute to 369 
Ca+2 and SO4

-2 in the same direction, either positive or negative, and the contribution will be the 370 
same due to the stoichiometry of  Eq. 1 and range from 0 to 1. In general, more eigenvectors 371 
explain more variance of the sample composition as more species are considered.  372 
 373 
In this study, end-members are representative samples of each main chemical groundwater type 374 
associated with MSR processes. A number of EMMA models were developed using different 375 
end-members, solutes, isotope tracers, and chemical reactions. The variance, R2, and root mean 376 
squared error (RMSE) were jointly used to determine the best model (i.e., the model with the 377 
highest variance and  the best fit between measured and modeled concentrations). Slope (m) 378 
identified the direction of those differences. Finally, the best-performing EMMA model was 379 
selected to run with MIX to obtain the percentage of MSR processes in each well, and quantify 380 
the connectivity between the mountain and valley groundwater. 381 
 382 

3. Results and discussion 383 

3.1. Characterizing Chemical and Stable Carbon (13C) Isotopic Signatures of the 384 
Mountain-Valley Aquifer system  385 

The average groundwater temperature in the study area is 20oC. Temperature ranges are 17 – 386 
23oC (average = 20oC) in the MRA wells, and the UVA wells, 19 – 28oC (average= 23oC) in the 387 
LVA wells, and 19 to 23oC (average= 20oC) in the WVA wells. Only the LVA samples are three 388 
degrees warmer than the average groundwater temperature (Figure 3c). pH ranges in the MRA 389 
are 6.1 to 7.8 (average = 6.9), 6.9 to 8.5 (average= 7.6) in the UVA wells, 7.1 to 8.4 (average= 390 
8.0) in the LVA wells, and 7.2 to 9.1 (average= 7.7) in the WVA wells (Table S1). On average 391 
the MRA wells (pH= 6.9) have lower mean pH than the study area average (pH= 7.7), indicating 392 
newly recharged groundwater with pH values closer to the average rainwater (pH ~ 5.5 for the 393 
1980-2020 period). The LVA samples have a slightly higher pH and temperature (on average 394 
3oC warmer than other regions) suggesting longer residence time.  395 

Stiff diagrams indicate the presence of two major and three minor chemical facies (Figure 3a). 396 
Major groundwater types are Ca-HCO3 and Na-HCO3 as HCO3 is the dominant anion of the 397 
entire dataset. In some samples (n=6, Figure 3a) SO4 and HCO3 are similar, leading to the minor 398 
chemical facie Na-HCO3SO4. Higher dissolved Cl concentration relative to HCO3 in five 399 
samples results in two additional minor chemical facies, Na-Cl and Ca-Cl groundwater types. 400 
These wells are KAW04 in the UVA, TLE03 in the LVA, and TLA13, 14, and 15 in the WVA 401 
(Figure 3a). Cl only increases in a few samples (arrow c in Figure 3b) suggesting the influence of 402 
local processes driving Cl concentration. In contrast, SO4 increases without exceeding HCO3 403 
(arrow b in Figure 3b) in all the aquifer regions except the MRA suggesting the role of regional 404 
processes on SO4 concentrations. 405 

Regarding the cations, the Ca-HCO3 groundwater type dominates MRA and UVA regions except 406 
for 1 out of 10 (HLS14, Figure 3a), and 5 out of 16 Na-dominated samples. In the LVA and 407 
WVA regions, groundwater has evolved to Na-HCO3 except for 4 out of 12 Ca-dominated 408 
samples in the LVA, and one Ca-Cl sample in the WVA (TLA13, Figure 3a). The Ca-HCO3 409 
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amount of cations released in Model B is less than Model A that only considers 436 
evapoconcentration. However, evapoconcentration only accounts for 40% of dissolved Ca in 437 
MRA groundwater, and other processes such as calcite dissolution and silicate weathering should 438 
be considered.   439 
 440 
Table 1. Average chemical composition of the volume-weighted average rainfall at the Giant Forest Rain station 441 
during the 1980-2020 period (first row), and average cation and Cl concentrations in the MRA region (mg/L). 442 
Calculated cation and Cl concentrations from Model A and B by considering evapoconcentration, and 443 
evapoconcentration and cation exchange processes, respectively. 444 
 445 

  Ca Mg K Na Cl 
VWA Rainfall (1980-2020) 0.05 0.01 0.02 0.06 0.11 
Mean MRA samples 60.0 16.8 4.2 39.10 34.30 
Model A – Evapoconcentration 14.36 3.52 5.79 19.91 34.30 
Model B – Evapoconcentration + 
Cation Exchange 10.96 2.05 9.17 24.59 34.30 

 446 

The contribution of calcite dissolution to Ca concentration in surface water bodies and shallow 447 
groundwater in the Sierra Nevada is controversial. Some studies demonstrated that more than 448 
half of Ca in surface water is released by calcite dissolution (Mast et al. 1990; Clow et al. 1997). 449 
A recent study also showed that isolated small karst systems in the Sequoia National Park 450 
contribute to 65-86% of baseflow in the North and East Fork of the Kaweah River during the dry 451 
season, leading to increases in Ca (Tobin and Schwartz, 2020). White et al. (1999) attributed Ca 452 
concentration in the Northern Sierra Nevada groundwater to accessory calcite in fresh granitoid 453 
rocks, and Garrels and Mackenzie (1967) attributed 70% of Ca variability in the perennial 454 
springs to calcite dissolution and the remainder to evapoconcentration. Other studies indicated 455 
that silicate weathering is the main source of Ca (Feth et al., 1964; Wahrhafting, 1965; Melack et 456 
al., 2021; Williams et al., 1990; Williams et al., 1993). Among the main Sierra Nevada 457 
granodiorites, andesine, quartz, K-feldspar, and biotite, only andesine has the potential to release 458 
Ca in groundwater (Feth et al., 1964; Garrels and Mackenzie, 1967; Sisson et al., 1984; Clow et 459 
al., 1996). However, andesine weathering cannot solely explain high Ca concentration. Andesine 460 
has a molar Ca/Na ratio of <1. Figure 3a shows that Na increases due to andesine weathering are 461 
associated with decreases in CO2 as expected by Eq. 2. (Table S2). Ca/Na ratio of surface water 462 
and shallow groundwater of the Sierra Nevada is greater than 1, so andesine is the primary 463 
source of Na.   464 

Although andesine is the most prevalent silicate in the Sierra Nevada, biotite is the most easily 465 
weathered silicate, and about 1%-2% of the biotite is altered to clay minerals (Wahrhafting 1965; 466 
Meade 1967). Therefore, biotite weathering and evaporation are the likely sources of dissolved 467 
Mg in groundwater (Eq. 6), and silicate weathering and calcite dissolution are sources of Ca and 468 
Na in the MRA groundwater. Silicate weathering and calcite dissolution reactions also account 469 
for groundwater alkalinity as shown by the HCO3 release in Eq.1, Eq.2, Eq.3, Eq.4, and Eq.8. 470 𝐶𝑎𝐶𝑂ଷ + 𝐶𝑂ଶ + 𝐻ଶ𝑂 ↔ 𝐶𝑎ାଶ + 2𝐻𝐶𝑂ଷି                                                                                           Eq. 8 471 

 472 
In summary, andesine is the primary source of Na in the MAR, and biotite and evaporation are 473 
the sources of Mg. The primary source of K seems to be evaporated rainfall, even though biotite 474 
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linear relationship between SO4-NO3 will suggest SO4 anthropogenic pollution. However, no 533 
correlation (R2=0.01) between the SO4 and NO3 concentrations is found eliminating 534 
anthropogenic sources for SO4 (Figure 6a).  535 

 536 
Figure 6. a) Relation between dissolved SO4 (mmol/L) and dissolved NO3 (mmol/L). b) Relation between dissolved 537 
SO4 and dissolved Cl (mmol/L). Labeled samples are Na-Cl, Ca-Cl groundwater type. C) Relation between the SI of 538 
gypsum (CaSO4) and dissolved Cl (mg/L). 539 

Seawater mixing was evaluated through the mixing model. Most groundwater samples including 540 
the Na-Cl dominated samples (labeled samples in Figure 6b) are plotted higher than the Cl-SO4 541 
seawater mixing line indicating higher dissolved SO4 than expected by the seawater mixing 542 
(Figure 6b). Higher SO4 concentrations in KAW23 and TLA13 samples are related to gypsum 543 
dissolution. The Ca-Cl samples have lower SO4 values than expected by the seawater mixing, 544 
potentially due to sulfate reduction processes. Only KAW04 sample seems to be affected by the 545 
seawater mixing. Therefore, even if seawater mixing is responsible for higher dissolved SO4 in 546 
some samples, other processes are the main drivers of SO4 concentration in groundwater.  547 

Gypsum dissolution was evaluated by computing the gypsum Saturation Index (SIgypsum). Results 548 
shows that all groundwater samples are sub-saturated. Saturation indices of the MRA samples 549 
are higher than average (average SIgypsum=-2.1) (Table S2), but small differences are observed 550 
among the UVA (SIgypsum=-2.8), LVA (SIgypsum=-2.7), and WVA (SIgypsum=-2.5) samples (Table 551 
S1). Feth et al. (1964) reported sulfate nearby fault zones in the Sierra Nevada. In addition, 552 
Lofren and Klausing (1969) and Meade (1967) reported sulfate and ion sulfides in the 553 
Quaternary sediments. Petrographic evidence suggests that part of the sulfate from the iron 554 
sulfide oxidation reacts with calcite forming gypsum in the Quaternary sediments (Meade 1967). 555 
The absence of chloride in sediments agrees with our results that the SO4 increase is not followed 556 
by a dissolved Cl increase (Figure 6b).  Although gypsum equilibrium is not observed in our 557 
samples, gypsum dissolution is likely to occur locally at the fault zones and valley sediments 558 
explaining the wide range of dissolved SO4 in groundwater. However, sulfur isotope analysis is 559 
needed to confirm this hypothesis. 560 

The evolution of δ13C-HCO3(‰) in groundwater is used to evaluate the gypsum dissolution 561 
hypothesis. Gypsum dissolution (CaSO4) increases dissolved Ca without changing δ13C (‰) 562 
content in groundwater. However, calcite (CaCO3) dissolution results in less depleted δ13C (‰) 563 
values (i.e., δ13C of calcite is close to 0 ‰).  564 
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To further confirm the long residence time of MBR recharging the confined aquifer groundwater 624 
tritium (3H) content was used.  Tritium has a half-life of 12.5 yr. implying complete decay (i.e., 625 
tritium units (TU) = 0) after 50 years. Groundwater 3H content ranges from 20 to 0 TU (Table 626 
S1). The LVA and WVA samples from wells with depths greater than 150 m have 0 TU (Figure 627 
9) and are Na-HCO3 with the exception of Ca-HCO3 LVA sample (TLE21). These results agree 628 
with Visser et al. (2016) that predict 3 to 0 TU in California wells with depths greater than 122 629 
m. Wells with depths greater than 150 m and residence times longer than 50 years that contain 630 
evaporated Na-HCO3 groundwater type are recharged by focused MAR. This result highlights 631 
the contribution of mountain rivers and lakes to confined aquifer recharge. LVA wells with more 632 
than 0 TU that have long-screens with the screen top in the unconfined aquifer (Table S1) are the 633 
result of mixing with shallower young groundwater. Five UVA wells with depths less than 150 634 
m (samples TLA14, KAW12, TLA03, KAW09, and TLE09) have also 0 TU and are Na-HCO3 635 
indicating shallow MBR recharge with long residence time. Shallow MBR is a result of complex 636 
geology of mountain ranges and presence of faults and fractures impacting flow direction.  637 

 638 
Figure 9. Tritium (Tritium Units, TU) content in groundwater samples in the study. 639 

In summary, rain and meltwater are sources of recharge. The oxygen and hydrogen isotopic 640 
composition of the MRA groundwater is highly influenced by meltwater processes rather than 641 
the topographic isotope effect, and focused MAR is the dominant recharge process. Focused 642 
MAR is the evaporated Ca-HCO3 water type that recharges the first 100 m of the upper valley 643 
aquifer and along with evaporated Na-HCO3 also contributes to deep MBR in the confined 644 
aquifer (Figure 10). As a result, groundwater chemistry at the piedmont zone is influenced by 645 
focused MAR discharging to valley aquifer and focused MFR from mountain streams. Meltwater 646 
from diffuse MAR either becomes Ca-HCO3 water and contributes to shallow MBR in the UVA 647 
region (Figure 10), or infiltrates though the saprolite layer, faults and joints, and recharges the 648 
deeper aquifer and becomes Na-HCO3 water type that contributes to deep MBR in the LVA and 649 
WVA regions (Figure 10). The shallow MBR zone near the foothills represents a mixing zone 650 
that consists of Na-HCO3 water type from the LVA region and Ca-HCO3 water type from the 651 
UVA region (Figure 10). Evapotranspiration, calcite dissolution, and biotite weathering are 652 
responsible for the Ca-HCO3 groundwater, and andesine weathering is responsible for the Na-653 
HCO3 groundwater type. The Na-HCO3SO4 groundwater type is associated with deep MBR and 654 
prolonged exposure to silicate weathering and gypsum dissolution in the western region of the 655 
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MRA representing MFR, a 0-Tritium Na-HCO3 sample (KAW07) from the LVA to represent the 679 
deep MBR, and a Na-HCO3SO4 groundwater type sample (TLA07) from the WVA representing 680 
deep MBR with long exposure to water-rock reactions. In addition to end-members in Model 1, 681 
Model 2 includes a Ca-Cl groundwater sample (TLA13) from the WVA representing mixing 682 
with connate seawater. This sample is not related to the MSR process. All selected end-members 683 
are plotted as empty circles in Figure 3b.  684 

In Model 1, the coefficient of determinations between the measured and modeled values of Mg, 685 
K, and SO4 are large (R2 ≥ 0.75; RMSE ≤ 0.32). However, poor results are obtained for Cl, Na, 686 
alkalinity (RMSE ≥ 1.75), Ca, and pH (R2 ≤ 0.44). Model 2 results are satisfactory for Mg, K, 687 
and pH (R2 ≥ 0.77; RMSE ≤ 0.39) and are significantly better than Model 1 for Ca and Cl (R2 ≥ 688 
0.72; RMSE ≤ 0.6). However, further improvement for estimating Na, alkalinity (RMSE ≥ 1.71), 689 
and pH (R2 ≤ 0.2) is needed. Differences between measured and modeled concentration are 690 
related to overestimation of all solutes, except SO4 (slope, m<1, Table 2). Among all parameters 691 
in Model 2, pH was the only one with a non-acceptable R2 (0.1, Table 2). This result suggests 692 
that multiple non-linear reactions could affect pH. 693 

To improve Model 2 performance different tracers were added or removed resulting in Model 2a 694 
to 2d (Table 2). Removing pH in Model 2a increased the total variance explained by all the 695 
solutes by 4% (Table 2). Stable δ18O (‰), δ2H (‰), and δ13C (‰) isotopes were added in 696 
Models 2b, 2c, and 2d, respectively. However, very poor R2 and RMSE are obtained, and the 697 
total explained variance decreased to 79%. EMMA analysis seems inappropriate for identifying 698 
evaporation using δ18O (‰) and δ2H (‰). In addition, poor results for δ13C (‰) and pH are 699 
attributed to multiple, non-linear processes, and local processes affecting the C and H+ 700 
concentrations in groundwater. Finally, Model 2a is selected for the EMMA analysis which only 701 
considers the chemical differences among the samples. This means that the evaporated Ca-HCO3 702 
end-member is representative of MFR and shallow MBR as it is not possible to distinguish non-703 
evaporated Ca-HCO3.  704 

The composition of three eigenvectors (EG) of Model 2a are plotted in Figure 11 and defined by 705 
EG1, EG2 and EG3 in EG1-EG2 and EG2-EG3 spaces shown in Figure 12. Positive EG 706 
contributions in Figure 11 are related to changes in samples concentrations plotted on the right 707 
side of the 0 value in the EG1-EG2 and EG2-EG3 (Figure 12). Negative contributions are related 708 
to changes in samples concentration are on the left side of the 0 value. 709 

Table 2. Results of EMMA analysis: coefficient of determination (R2), root-mean-squared error (RMSE), slope (m), 710 
and total representative variance (%) of major solutes (mol/L), pH and stable δ18O, δ2H, and δ13C between measured 711 
and modeled concentrations for various models. Only subset of models is shown here. *Statistics computed with 712 
µmol/L due to low H concentration (<0.001 mol/L) and output format of MIX printing values up to 3 significant 713 
digits. 714 

  715 
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  742 

 743 
Figure 12a) Projection of solutes concentrations to the first and second eigenvectors space. B) Projection of solutes 744 
concentrations to the second and third eigenvectors space. Stiff diagrams represent the ion concentrations of selected 745 
end-members. 746 

Based on these results, the main processes that drive Ca-HCO3 groundwater type (representative 747 
of MFR and shallow MBR) are biotite weathering, evapoconcentration, calcite dissolution and 748 
gypsum dissolution (Figure 12a and Figure 12b). Andesine and biotite weathering are the main 749 
processes influencing Na-HCO3 groundwater indicative of MBR (Figure Figure 12a and Figure 750 
12b). The WVA groundwater is represented by the Na-HCO3SO4 groundwater type and is 751 
mainly affected by evapoconcentration, calcite dissolution, gypsum dissolution, andesine 752 
weathering, and sulfate reduction. Finally, the Ca-Cl groundwater type from this same region 753 
represents processes driven by evapoconcentration, calcite dissolution, gypsum dissolution and 754 
seawater mixing. These results agree with results obtained in Section 3.1.1 and confirm 755 
processes identified for each MSR process. 756 

3.3.2. Improving EMMA by Considering Chemical Reactions 757 
To further improve EMMA, main geochemical processes affecting each eigenvector are 758 
identified and chemical reactions are considered in four EMMA models (B, C, D, E and F Table 759 
3). These models aim to reduce the non-conservative behavior of solutes and improve model 760 
performance. The model performance is evaluated using RMSE and R2 instead of the total 761 
explained variance. The total explained variance is useful when comparing models with the same 762 
number of components. Chemical reactions are represented by conservative u components. 763 
Components and chemical reactions of each model are reported in Table 3. 764 
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Table 3. Chemical reactions along with the reacting species and conservative components of each model.  765 

   766 

Highly satisfactory results are obtained by incorporating chemical reactions into EMMA instead 767 
of chemical solutes as indicated by improved R2 and RMSE statistics (Table 2, Table 4, and 768 
Figure S1). Model F has the best results with R2= 0.9, 0.1≤RMSE ≤1.3 and slopes between 0.8 to 769 
1.1. As the number of components is equal to the number of end-members (three), 100% of the 770 
variance is explained by the model. These results further validate all the proposed processes 771 
driving the groundwater chemistry in Section 3.1.1. These results agree with Pelizardi et al. 772 
(2017) where a synthetic model using simple solutes was compared to a synthetic model using 773 
conservative components by computing two objective functions. Their results show that using 774 
conservative components instead of simple solutes decreases the objective functions as species 775 
affected by chemical reactions usually contribute to a higher percentage of the variance. A recent 776 
study by Goyetche et al. (2022) applied the Pelizardi (2017) methodology to a coastal aquifer, by 777 
using two conservative u components and one eigenvector.  The first u component accounted for 778 
four cation exchange and mineral dissolution reactions while the other u component accounted 779 

Chemical reactions Components

A No chemical reactions

B Andesine dissolution (Eq. 1)

C Andesine dissolution (Eq. 1)

Biotite dissolution (Eq. 3)

D Andesine dissolution (Eq. 1)

Gypsum dissolution (Eq. 5)

E Andesine dissolution (Eq. 1)

Biotite dissolution (Eq. 3)

Gypsum dissolution (Eq. 5)

F Andesine dissolution (Eq. 1)

Biotite dissolution (Eq. 3)

Gypsum dissolution (Eq. 5)

Calcite dissolution (Eq. 8)

𝑼஺௡ௗ௘௦௜௡௘ = 𝐶𝑎 − 0.7𝑁𝑎 
𝑼஺௡ௗ௘௦௜௡௘ = 𝐶𝑎 − 0.7𝑁𝑎𝑼஻௜௢௧௜௧௘ = 𝑀𝑔 − 3𝐾

𝑼஺௡ௗ.ିீ௬௣. = 𝐶𝑎 − 0.7𝑁𝑎 − 𝑆𝑂ସ𝑼஻௜௢௧௜௧௘ = 𝑀𝑔 − 3𝐾

Na, 𝐶𝑎, 𝑀𝑔, 𝐾, 𝐶𝑙, 𝑆𝑂ସ 𝑎𝑛𝑑 𝑎𝑙𝑘𝑎𝑙𝑖𝑛𝑖𝑡𝑦 

𝑼஺௡ௗ.ିீ௬௣.ି஼௔௟௖. = 𝐶𝑎 − 0.7𝑁𝑎 − 𝐶𝑂ଷ − 𝑆𝑂ସ𝑼஻௜௢௧௜௧௘ = 𝑀𝑔 − 3𝐾Cl  

𝑀𝑔, 𝐾, 𝐶𝑙, 𝑆𝑂4 𝑎𝑛𝑑 𝑎𝑙𝑘𝑎𝑙𝑖𝑛𝑖𝑡𝑦 

𝐶𝑙, 𝑆𝑂4 𝑎𝑛𝑑 𝑎𝑙𝑘𝑎𝑙𝑖𝑛𝑖𝑡𝑦 
𝑼஺௡ௗ.ିீ௬௣. = 𝐶𝑎 − 0.7𝑁𝑎 − 𝑆𝑂ସ𝑀𝑔, 𝐾, 𝐶𝑙 𝑎𝑛𝑑 𝑎𝑙𝑘𝑎𝑙𝑖𝑛𝑖𝑡𝑦 

𝐶𝑙 𝑎𝑛𝑑 𝑎𝑙𝑘𝑎𝑙𝑖𝑛𝑖𝑡𝑦 
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for eight redox reactions. Their results showed that 97% of the variance could be explained by 780 
the model. 781 

Table 5. Results of EMMA analysis: coefficient of determination (R2), root-mean-squared error (RMSE), and slope 782 
(m), of major solutes, pH and stable δ18O, δ2H, and δ13C between measured and modeled concentrations for models 783 
B to F. 784 

M
od

el
 Variables   

Cl Alk SO4 Mg K U-Andesine U-Biotite
 

R2 RMSE m R2 RMSE m R2 RMSE m R2 RMSE m R2 RMSE m R2 RMSE m R2 RMSE m 

B 0.8 0.9 0.6 0.6 2.0 0.5 0.7 0.4 0.7 0.8 0.2 0.7 0.5 0.04 0.4 0.8 1.3 0.7       

C 0.6 0.2 0.6 0.6 1.9 0.7 0.6 0.5 1.0           0.6 3.0 0.2 0.6 0.3 0.4

D 0.7 1.5 0.4 0.9 0.7 1.0       0.5 0.3 0.6 0.7 0.03 0.5 0.9 0.9 1.0       

E 0.9 0.7 1.2 0.6 2.0 0.5                 0.9 1.1 0.9 0.8 0.2 0.7

F 0.9 0.7 1.1                       0.9 1.3 0.8 0.9 0.1 0.9

 785 

3.4. Quantifying MBR and MFR Contributions to the Valley Aquifer System 786 

The ratio of each MSR process to total recharge was computed by running MIX for model F 787 
(Figure 13). One of the most important results is the high proportion of deep MBR recharging 788 
the valley aquifer. Deep MBR represents more than 50% of the UVA and LVA groundwater 789 
samples (the Na-HCO3 groundwater type). The high percentage of deep MBR in the UVA wells 790 
supports the hypothesis of a mixing zone in the unconfined and confined aquifer contact (Figure 791 
10). The MBR proportion increases up to 70% when the Na-HCO3SO4 groundwater type is also 792 
considered. On average, MFR and shallow MBR accounts for 28% of recharge in the UVA, 17% 793 
in the LVA, and 20% in the WVA regions.  The MFR and shallow MBR contribution decreases 794 
with increasing well depth and distance from the mountain front. These results are consistent 795 
with the longer flow paths between the WVA wells and the Sierra Nevada. The WVA region has 796 
a higher influence of seawater mixing as expected. Higher MBR contribution suggests greater 797 
connectivity between the Sierra Nevada and the sedimentary basing groundwater. These results 798 
agree with the recent studies highlighting the greater role of MBR compared to MFR (Markovich 799 
et al., 2019; Meixner et al.,  2016; Aishlin & McNamara, 2011; Manning and Solomon, 2003) 800 
and can be used to better constrain future groundwater models for climate change assessment. 801 
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EMMA and MIX analysis revealed the spatial distribution of each recharge process associated 826 
with the major hydrogeochemical processes in groundwater. Considering four end-members in 827 
EMMA produced satisfactory results explaining 86% of the chemical variance. These results 828 
were further improved by considering water-rock reactions using conservative chemical 829 
components,  resulting in significant improvement in model performance. These results highlight 830 
the importance of chemical reactions in EMMA and Mix analysis in cases where identifying 831 
conservative solutes is challenging. Mixing ratios show that more than 50% of the groundwater 832 
system is recharged by MBR originating from the Sierra Nevada. Higher percentage of MBR 833 
contribution  indicate greater connectivity between the Sierra Nevada and the valley aquifer than 834 
previously thought (Meixner et al., 2016). These results have important implications for 835 
groundwater resources availability under climate change due to projected changes in the Sierra 836 
Nevada snowpack.  837 

This study highlights the importance of jointly analyzing groundwater chemistry with isotopes 838 
via a multi-tool approach to understand the main factors controlling groundwater systems and 839 
identify the main recharge processes. To our knowledge, this is the first comprehensive 840 
assessment of mountain block recharge processes in the Sierra Nevada demonstrating the role of 841 
mountain aquifers and deep flow paths in recharging Central Valley.  Similar studies in other 842 
mountain ranges with similar bedrock and geological characteristics will improve understanding 843 
of mountain system recharge processes, leading to sustainable groundwater management.   844 
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