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Abstract

It has been widely recognized that tropical cyclone (TC) genesis requires favorable large-scale environmental conditions. Based

on these linkages, numerous efforts have been made to establish an empirical relationship between seasonal TC activities

and large-scale environmental favorabilities in a quantitative way, which lead to conceptual functions such as the TC genesis

index. However, due to the limited amount of reliable TC observations and complexity of the climate system, a simple

analytic function may not be an accurate portrait of the empirical relation between TCs and their ambiences. In this research,

we use convolution neural networks (CNNs) to disentangle this complex relationship. To circumvent the limited amount

of seasonal TC observation records, we implement transfer-learning technique to train ensembles of CNNs first on suites of

high-resolution climate simulations with realistic seasonal TC activities and large-scale environmental conditions, and then

subsequently on the state-of-the-art reanalysis from 1950 to 2019. Our CNNs can remarkably reproduce the historical TC

records, and yields significant seasonal prediction skills when the large-scale environmental inputs are provided by operational

climate forecasts. Furthermore, by forcing the ensemble CNNs with 20th century reanalysis products and phase 6 of the Coupled

Model Intercomparison Project (CMIP6) experiments, we attempted to investigate TC variabilities and their changes in the

past and future climates. Specifically, our ensemble CNNs project a decreasing trend of global mean TC activity in the future

warming scenario, which is consistent with our dynamic projections using TC-permitting high-resolution coupled climate model.
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Key points:  10	

• Ensemble convolutional neural networks (CNNs) are trained to emulate seasonal 11	

tropical cyclone (TC) activity using large-scale environmental inputs. 12	

• The trained CNNs can be utilized to study seasonal TC variabilities, and their changes in 13	

the past, current and future climates. 14	

• Skillful seasonal TC predictions can be made using CNN based statistical-dynamical 15	

hybrid framework.  16	

  17	
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Abstract 18	

It has been widely recognized that tropical cyclone (TC) genesis requires favorable 19	

large-scale environmental conditions. Based on these linkages, numerous efforts have been 20	

made to establish an empirical relationship between seasonal TC activities and large-scale 21	

environmental favorabilities in a quantitative way, which lead to conceptual functions such as 22	

the TC genesis index. However, due to the limited amount of reliable TC observations and 23	

complexity of the climate system, a simple analytic function may not be an accurate portrait 24	

of the empirical relation between TCs and their ambiences. In this research, we use 25	

convolution neural networks (CNNs) to disentangle this complex relationship. To circumvent 26	

the limited amount of seasonal TC observation records, we implement transfer-learning 27	

technique to train ensembles of CNNs first on suites of high-resolution climate simulations 28	

with realistic seasonal TC activities and large-scale environmental conditions, and then 29	

subsequently on the state-of-the-art reanalysis from 1950 to 2019. Our CNNs can remarkably 30	

reproduce the historical TC records, and yields significant seasonal prediction skills when the 31	

large-scale environmental inputs are provided by operational climate forecasts. Furthermore, 32	

by forcing the ensemble CNNs with 20th century reanalysis products and phase 6 of the 33	

Coupled Model Intercomparison Project (CMIP6) experiments, we attempted to investigate 34	

TC variabilities and their changes in the past and future climates. Specifically, our ensemble 35	

CNNs project a decreasing trend of global mean TC activity in the future warming scenario, 36	

which is consistent with our dynamic projections using TC-permitting high-resolution 37	

coupled climate model.  38	

  39	
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Plain Language Summary  40	

Tropical cyclone (TC) requires favorable large-scale environmental conditions to generate. 41	

Pioneer studies suggested that these constructive conditions include but not limit to warm sea 42	

surface temperatures (SSTs), sufficient low-level vorticities, mid-level humilities, and 43	

weak-to-moderate vertical wind shears. Several follow-up studies have devoted to improving 44	

the empirical linkage between number of TC and environmental conditions and developed 45	

sets of TC genesis index based on conventional statistical methods. Although these indices 46	

can capture climatology of TC spatial distributions and seasonal cycle reasonably well, their 47	

performances in representing the interannual TC variability are significantly decreased. Aim 48	

to better represent TC interannual variability and long-term trend using large-scale 49	

environmental conditions, we trained ensembles of convolution neural networks (CNNs) 50	

based on the combination of observations and large sets of high-resolution dynamical climate 51	

simulations. The trained CNNs perform significantly well in capturing observed TC 52	

interannual-to-multidecadal variability, and are broadly applicable to many areas of seasonal 53	

TC activities. Using deep learning technique, this paper introduces a new potential avenue to 54	

improve our understanding of TC variability and future changes.     55	

  56	
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1. Introduction 57	

Mounting observational and modeling evidences have suggested that tropical cyclone 58	

(TC) genesis requires certain conducive large-scale environmental conditions. Pioneering 59	

work of Gray (1968) summarized the geographic distributions and annual cycle climatology 60	

of TC genesis, and also trailblazed the potential linkages between TC genesis events and 61	

large-scale environmental factors. Gray (1979) proposed Yearly Genesis Parameter (YGP) 62	

and elucidated the constructive environmental factors for TC genesis include warm sea 63	

surface temperature (SST) and deep oceanic mixed layer, preexisting low-level cyclonic 64	

vorticity, moist mid-troposphere, weak vertical wind shear, and weak atmospheric stability. 65	

Substantial progresses have been made since then to improve the quantitative linkage 66	

between TC genesis and large-scale environmental favorabilities, and other well-known TC 67	

genesis indices have been developed (Emanuel and Nolan 2004, Tippett et al. 2011, Bruyère 68	

et al. 2012, Wang and Murakami 2020).  69	

These genesis indices are based on the same principal, which assumes that the favorable 70	

large-scale environmental conditions to TC genesis are products of dynamical potentials 71	

alone or the combination of dynamical and thermal potentials with different formulations. For 72	

example, genesis potential index developed by Emanuel and Nolan (2004; hereafter GPI2004) 73	

describes a nonlinear multiplication of four major large-scale climate variables in triggering 74	

TC genesis, including absolute vorticity at 850 hPa, relative humidity at 600 hPa, vertical 75	

wind shear between 850 and 200 hPa, and theoretical TC maximum potential intensity (Bister 76	

and Emanuel 1998). Moreover, Emanuel (2010) modified GPI2004 by replacing mid-level 77	

relative humidity with the moist entropy deficient and updated the nonlinear multiplication 78	

formulation, which has particular importance in relation to issues of climate change. Broadly 79	

following Gray (1978), Emanuel and Nolan (2004), and Emanuel (2010), Tippett et al. (2011) 80	

later proposed an improved variant of TC genesis index using similar dynamical and thermal 81	

variables but with Poisson regression, and highlighted the contributions from low-level 82	

absolute vorticity to TC genesis are capped off when they exceed certain thresholds. All 83	

aforementioned TC genesis indices employed both dynamical and thermal climate variables 84	
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in their formulations, but the relative roles of thermal versus dynamical potentials in TC 85	

genesis remain elusive. More recently, Wang and Murakami (2020) developed dynamical 86	

genesis potential index (hereafter, DGPI) for recognition of TC genesis potentials, which is 87	

purely based on the large-scale dynamical factors, and showed improved skills in 88	

representing TC genesis variations especially under future warmer climate.  89	

Although these empirical TC genesis indices were able to replicate the seasonal cycle 90	

and spatial distribution of observed TC genesis over the globe, their skills in representing the 91	

TC interannual variability in various ocean basins are degraded and highly basin-dependent 92	

(Menkes et al. 2012). For instance, GPI2004 can capture TC interannual variability 93	

reasonably well in the North Atlantic and eastern North Pacific, but fail in the western North 94	

Pacific (Yu et al. 2018). On the other hand, DGPI can skillfully represent the western North 95	

Pacific and North Atlantic TC interannual variability, but it is degraded in the eastern North 96	

Pacific (Wang and Murakami 2020). Current TC genesis indices generally have very poor 97	

skills in reflecting TC interannual variability in the Indian Ocean. These failures and 98	

contrasts in capturing TC interannual variability might be attributable to several reasons. First 99	

of all, existing TC genesis indices were derived from the climatological mean values, thus the 100	

information of interannual variability were intrinsically not incorporated. Nonetheless, these 101	

indices can acceptably reproduce the spatial shift pattern of TC activity modulated by El 102	

Niño-Southern Oscillation (ENSO) as in the observations, which is a major driver of TC 103	

interannual variability. In addition, the derivation of current TC genesis indices did not 104	

consider the spatial variations among different TC-active basins, casting doubt on the 105	

applicability of their global usage. For instance, TC genesis mechanisms in the western North 106	

Pacific differ from those involved in the North Atlantic due to strong convections over the 107	

warm pool area. Murakami and Wang (2010) developed a variant version of GPI2004, by 108	

incorporating 500hPa vertical velocity as an additional term into the original formulation, 109	

which leads to a significant improvement in the western North Pacific. Similarly, in the more 110	

recent paper of Wang and Murakami (2020), they noted that the selected dynamic potential 111	

factors through stepwise regression method are basin-dependent, and it is worthwhile to 112	
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derive variant versions of DGPIs for different ocean basins to optimize the accuracy. As such, 113	

using single formulation to represent TC genesis all over the globe would further confound 114	

the TC interannual variability.  115	

TC genesis indices are also extensively investigated to understand future changes of TC 116	

activities, however, the relevance of the thermodynamic factors of TC genesis indices in 117	

explaining TC changes under global warming has been questioned. Recent studies by 118	

Camargo et al. (2014) and Lee et al. (2020) reported two divergent projections of future TC 119	

activity due to the different choices of thermodynamic variables in the TC genesis index. 120	

Projections using saturation deficit indicate a decreasing trend, while those using column 121	

relative humidity indicate an increasing trend. There is no established theory that can account 122	

for this discrepancy, given that both indices yield similar results for the historical period. We 123	

hypothesize that an improved representation of TC genesis indices in delineating TC 124	

year-to-year variations might facilitate to reduce the uncertainties in TC future projections. 125	

Along this line, we attempted to incorporate information of the TC interannual variability 126	

into the derivation of new TC genesis index, and use deep learning technique, specifically, 127	

convolutional neural network (CNN), to overcome the aforementioned limitations in the 128	

current TC genesis indices.  129	

In recent years, CNN has been widely utilized in the climate and weather sciences. 130	

Research communities use it as a powerful tool to reveal the linkages between 131	

three-dimensional predictor fields and the predictand classifications or physical indices (Liu 132	

et al. 2016, Chapman et al. 2019, Ham et al. 2019, Bolton and Zanna 2019, Chattopadhyay et 133	

al. 2020a, 2020b, Davenport et al. 2021, Weynet al. 2019, 2021, McGuire and Moore 2022). 134	

In the context of climate study, pioneering work by Ham et al. (2019) innovatively applied 135	

CNNs for multi-year ENSO predictions. In their work, three consecutive months of SST 136	

anomalies and ocean heat content anomalies over 0°–360°E, 55°S–60°N were provided to the 137	

CNN as the three-dimension predictors, while three-month-averaged Niño3.4 index in the 138	

following 23 months were predicted. Inspired by Ham et al. (2019) and previous studies on 139	

TC genesis potential indices, in the present study, we aim to develop CNN-based frameworks 140	
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to emulate basin-integrated seasonal TC activity using the concurrent large-scale 141	

environmental factors. Take one step further from classic TC genesis index; our CNN models 142	

use seasonal averaged thermal and dynamical large-scale environmental factors as predictors, 143	

and the basin-integrated seasonal mean TC metrics, such as number of TC (NTC), number of 144	

hurricane (NHU; TCs with lifetime maximum intensity ≥65knots), and Accumulated Cyclone 145	

Energy (ACE; Bell et al. 2000), as predictands to depict seasonal TC activities. As such, our 146	

framework cannot only emulate TC numbers, but also averaged intensity at a given season. 147	

We anticipate that our CNN framework can significantly improve the representation of TC 148	

interannual-to-multidecadal variabilities. Of particular interest is to explore the applicability 149	

of the new CNN frameworks derived from the present-day climate to the seasonal predictions, 150	

reconstructions of past historical records, and future climate projections.  151	

The structure of the paper is as follows. In Section 2, the CNN-based TC emulation 152	

framework, including the architecture, training and interpretation, are discussed. Applications 153	

of CNN framework to seasonal TC prediction, 20th century historical reconstructions, and 154	

future projections are presented in Section 3, 4, and 5, respectively. The summary and 155	

discussion are given in Section 6. 156	

 157	

2. CNN model development 158	

2.1 Data for CNN training 159	

As discussed earlier in Section 1, large-scale environmental favorabilities on seasonal 160	

TC activity are geographic-dependent. As such, we trained various CNNs targeted for seven 161	

different TC active basins, including North Atlantic (NAT), eastern North Pacific (ENP), 162	

western North Pacific (WNP), North Indian Ocean (NIO), South Indian Ocean (SIO), South 163	

Pacific Ocean (SPO), and South Atlantic (SAT), and for three different seasonal mean TC 164	

metrics (i.e., NTC, NHU and ACE; total of 21 CNN models). Figure 1a illustrates the 165	

boundary of each basin. For the Northern (Southern) Hemisphere basins, we only focus on 166	

the June-November (December-May), which is conventionally defined as hurricane season. 167	

Following pioneering TC genesis index works, we used 4 environmental factors as the 168	
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predictors, namely, SST anomalies, saturation deficient (SD; Camargo et al. 2014) anomalies, 169	

850 hPa relative vorticity anomalies, and vertical wind shear anomalies between 850 and 200 170	

hPa. We also tested the sensitivity of using column-integral relative humidity (CRH; Tippett 171	

et al. 2011) anomalies as an alternative humidity environmental factor to replace SD in our 172	

CNN model (details in Section 5). Both SD and CRH are calculated following Bretherton et 173	

al. (2014). To derive these environmental factors, we firstly interpolate the related prognostic 174	

monthly mean data (i.e., temperature, humidity and wind velocities) to 2°×2° resolution grid, 175	

then make the diagnostic calculations and seasonal average. Anomalies are finally calculated 176	

as the departures from the seasonal mean. These four seasonal averaged predictors are then 177	

concatenated as the three-dimensional (i.e., longitude, latitude and variables) inputs to the 178	

CNN (Figure 1b). We note that, actual data matrices, rather than images, were implemented 179	

as the CNN inputs in our framework. The dimension of the output is one, which depicts the 180	

seasonal mean NTC, NHU or ACE, respectively.   181	

One big important barrier to implementing deep learning for climate study is the limited 182	

sample size of observational data for proper model training (Ham et al. 2019). Due to relative 183	

short period of reliable TC observation records, we used transfer-learning technique 184	

(Yosinski et al. 2014) to circumvent the limited amount of training datasets and increased the 185	

number of training data, in a similar manner as in Ham et al. (2019). We collected suites of 186	

high-resolution Community Earth System Model version 1.3 (CESM1.3; ~0.25° resolution 187	

for atmosphere/land and ~0.1° resolution for ocean/sea-ice) simulations, including 1850 188	

preindustrial control and historical transient climate simulations (Chang et al. 2020), High 189	

Resolution Model Intercomparison Project (HighResMIP) 1950s control and historical 190	

transient climate simulations (Roberts et al. 2020), and decadal prediction simulations 191	

(Yeager et al. 2022), together with Weather Research and Forecast (WRF) based tropical 192	

channel model (TCM; 27km) large ensemble hindcast simulations (Fu et al. 2019), to 193	

increase the training samples. Both high-resolution CESM1.3 and WRF TCM can faithfully 194	

capture the climatology and interannual variability of seasonal mean TC activity and 195	

associated large-scale ambient environments (Figure 1a; refer Chang et al. 2020 and Fu et al. 196	
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2019 for details). We combined these TC-permitting high-resolution climate simulation 197	

results with state-of-the-science European Centre for Medium Range Weather Forecasts 198	

(ECMWF) Reanalysis v5 (ERA5; Hersbach et al. 2020) and observed TC records from the 199	

International Best Tracks Archive for Climate Stewardship (IBTrACS) dataset v04 (Knapp et 200	

al. 2010) to optimally train the CNN. It is necessary to point out that we only used the 201	

high-resolution CESM1.3 simulations forced with historical condition (climate 1850s/1950s 202	

control simulations and transient simulation years before 1979) to train our CNN model, 203	

although our transient climate simulations projected the future climate changes up to 2100 204	

(Representative Concentration Pathway 8.5 for 2006-2100). We implement our future climate 205	

simulations as additional segments for testing processes, aiming to explore the feasibility of 206	

applying our CNN model to the future climate projections. Table 1 summarizes the sample 207	

size of each datasets utilized in CNN training. We note that simulations conducted by WRF 208	

TCM only cover Northern Hemisphere; therefore, 2906 (1506) samples are used to train the 209	

CNN models for the Northern (Southern) Hemisphere.  210	

 211	

2.2 CNN architecture 212	

We first trained the CNN model on our high-resolution climate simulations from scratch, 213	

and the trained weights are then transferred to the new training processes as initial weights to 214	

formulate the fine-tuned CNN model using ERA5 reanalysis and IBTrACS TC observations. 215	

Figure 1b illustrated the architecture of our CNN model. Input layer has 4 variables 216	

containing seasonal mean SST, SD (or CRH), 850 hPa relative vorticity, and vertical wind 217	

shear anomalies. Sizes of input layer vary from basin-to-basin (refer Figure 1a for actual 218	

sizes). 4 Convolutional processes involve the extraction of local characteristics from the 219	

previous layers, with 8, 16, 32 and 32 filters, respectively. Each filter has a kernel size of 3×3. 220	

In each convolutional layer, zero padding around the borders of inputs is used to maintain the 221	

size before and after applying the filters. Mean-pooling processes reduce the sample size by 222	

extracting the mean value from each 2×2 grid with stride of 1. The Scaled Exponential Linear 223	

Unit (SELU; Klambauer et al. 2017) is used as the activation function to introduce 224	
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nonlinearity in the extracted features. The fourth convolutional layer is linked to dropout 225	

regularization with dropout probability of 0.2 to reduce the overfitting (Srivastava et al. 2014). 226	

The CNN constructs the final prediction through a linear regression output layer, which 227	

regresses the desired output onto the intermediate results from the fully connected layer. 228	

CNN is trained using a form of stochastic gradient descent, namely, the Adaptive Movement 229	

Estimation (Adam) optimization algorithm (Kingma and Ba, 2014), which minimizes the loss 230	

function of mean square error (MSE) between the outputs of the CNN and the desired targets. 231	

Table 2 lists the key parameters of our CNN model. 232	

To minimize the CNN regression output layer model uncertainty due to random weight 233	

initialization and stochastic gradient descent, we conducted the ensemble learning. For each 234	

targeted basin and TC metric, we independently trained the CNN for 50 times (50-member 235	

ensemble) with the same configuration and different initial random weights on the same 236	

dataset. Hence, 1050 sets of CNN were trained based on the high-resolution climate model 237	

simulations to cover 50-member ensemble of 3 different seasonal mean TC metrics in 7 238	

different ocean basins. These trained weights were then used as initial weights to formulate 239	

the final CNN model with the training sets confined to the ERA5 reanalysis and IBTrACS 240	

observation for the period 1950 to 2019. We note that TC observations are highly uncertain 241	

in the pre-satellite era without the support from geostationary satellite imagery (i.e. 1960s) 242	

and may significantly underestimate seasonal TC activity (Landsea 2007; Landsea et al. 2008, 243	

2014; Vecchi and Knutson 2008, 2010; Vecchi et al. 2021). However, we still include these 244	

records in our CNN training processes to enlarge the sample size. We used entire observation 245	

data as the training and validation sets (70% for training and 30% for validation, shuffled 246	

during each training epoch), and we used leave-one-out cross validation method (LOOCV; 247	

Elsner and Jagger 2013) to evaluate the CNN model skills and avoid overfitting due to 248	

excessive learning parameters and convolutional layers. LOOCV has been extensively used 249	

in the seasonal TC activity training (Li et al. 2013; Murakami et al. 2016). In the LOOCV, we 250	

first exclude a single year of observations and predictors; then, we determine the CNN model 251	

using the remaining years. Using the model, the seasonal TC metrics for the excluded year 252	
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are predicted. This is done for 70 years, removing each year’s data point successively. In 253	

addition, we also cross validate CNN using 20th century reanalysis products, instead of ERA5, 254	

focusing on the NAT TC activities before 1950, which were excluded in the training 255	

processes. The details are discussed in Section 4. 256	

For each of climate model pre-trained CNN, we further deployed 12-member ensemble 257	

trainings during the transfer-learning processes on ERA5 and IBTrACS. Although the initial 258	

training weights and biases are identical, stochastic Adam optimizer results in deviated CNN 259	

regression models due to random choice of mini-batch. In total, for each of TC-active ocean 260	

basins and each of seasonal mean TC metrics, we trained ensemble of CNN with 261	

600-members. Each model is then used to make a prediction and the actual prediction skill is 262	

evaluated by averaging all ensembles, while the ensemble spread indicate the prediction 263	

uncertainties.  264	

 265	

2.3 CNN training, validation and interpretation  266	

In the rest of this paper, for the sake of clarity, CNN emulated NTC, NHU and ACE 267	

were plotted in blue, red and yellow, respectively. Figure 2 illustrates the training and 268	

LOOCV skills of seasonal NTC in each TC active ocean basin. It exhibits significant high 269	

skills in reproducing NTC variability, in terms of high Pearson correlation coefficient, 270	

mean-square skill score (MSSS; Kim et al., 2012; Li et al. 2013) and low root mean square 271	

errors (RMSE) over all basins except for NIO. For the NIO, although LOOCV correlation 272	

coefficient is still statistically significant at 99% level, it is notably degraded comparing to 273	

the trainings and LOOCVs in other TC active basins, which may imply that some nontrivial 274	

large-scale environmental factors were not involved in the current CNN predictor variables. 275	

In the context of global mean TC activity, the correlation coefficients between observation 276	

and ensemble mean CNN training and LOOCV is 0.98, and 0.93, respectively. RMSE 277	

between observation and CNN emulated global NTC is 2.27 and 4.95 in training and 278	

LOOCV ensemble mean, both of which are significantly smaller than the observed NTC 279	

climatology of 79.27 and standard deviation of 12.85. The ensemble spreads of training and 280	
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LOOCV, which we define as the entire range across 600-member ensemble CNNs and shown 281	

as the shadings in Figure 2, are also considerably small among all TC active basins. Similar 282	

high skills can also be obtained in the ensemble CNNs that depict seasonal NHU (Figure 3) 283	

and ACE (Figure 4) for the period of 1950-2019. All of these promising assessment results 284	

are encouraging for proceeding forward with further applications using our CNN framework.  285	

Although our trained CNN ensemble frameworks illustrate substantial high skills in 286	

reproducing seasonal TC variability in the observational records, an often-cited caveat of 287	

machine learning is the challenge of physical interpretability compared to the more 288	

conventional method. The potential lack of interpretability has implications for the perceived 289	

credibility of the model, where machine learning models may achieve promising results for 290	

the wrong reasons (Lapuschkin et al. 2019). To decipher these “black boxes” and gain an 291	

insight of what predictor features that predominate CNN’s regression output, we further 292	

conducted occlusion sensitivity analysis (Zeiler and Fergus 2014).  293	

The general concept of our occlusion sensitivity analysis is to check if the trained CNNs 294	

can truly identify the physical meaningful spatial patterns in the input layer by systematically 295	

occluding different portions of the predictor variables with an occluding mask, and measuring 296	

the change degree as a function of the mask position. Intuitively, if a portion of input layer is 297	

trivial to the prediction accuracy, and one synthetically mask this portion with “gray patch”, 298	

one can expect the degradation of prediction skill is also relatively small, and vice versa. As 299	

such, we can explore the relative importance of each predictor variables at different 300	

geographical locations in determining seasonal TC variability. In practice, for each of four 301	

predictor variables during 1950-2019, the patch of 6°×6° (i.e. 3×3 grid) box mask is replaced 302	

by its own time-independent climatological values, and new predictions are conducted by the 303	

original trained CNN with the altered inputs. Therefore, we obtained the new predictions of 304	

seasonal TC variability variability as functions of mask geographical locations and predictor 305	

variables. We measure the change in prediction skills as the RMSE between new predictions 306	

and original training during 1950-2019, through which we highlight the spatial portion of the 307	

predictor variables are the most important to the prediction skills for our trained CNN 308	
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framework: when that portion of the predictor is occluded to the climatology, the 309	

representation of seasonal TC variability will be significantly degraded. 310	

Figure 5 shows occlusion sensitivity maps that highlight the relative importance of 311	

predictors in emulating the NTC in different ocean basins. Similar occlusion sensitivity maps 312	

that decipher the NHU and ACE emulations are illustrated in Supplementary Figure 1 and 2, 313	

respectively. As noted earlier in the Section1, it is not surprising to see that the relative 314	

importance of each predictor is different among the various TC active basins. Our occlusion 315	

sensitivity analysis broadly suggests that large-scale dynamical factors, especially 850hPa 316	

vorticity, contribute more than thermal factors in determining NTC and NHU in each basin, 317	

and this is physically consistent with the TC dynamic genesis potential index that recently 318	

proposed by Wang and Murakami (2021). Take NAT NTC as an example (Figure 5m-p), 319	

850hPa vorticity at North Atlantic subtropical gyre and Gulf of Mexico region contributes 320	

most to the NAT NTC interannual variability, followed by vertical wind shear in the TC main 321	

developed region and Gulf of Mexico, while SST and SD’s contributions are relative small. 322	

We emphasize that these occlusion sensitivity results does not imply SST are insignificant for 323	

regulating seasonal NTC and NHU, because local dynamical factors can be influenced by the 324	

remote SST forcing. For example, extensive observational and modeling studies found that 325	

Atlantic hurricane seasons are remotely influenced by tropical Pacific SST variability via 326	

ENSO teleconnection patterns through both a Walker Circulation type response and an upper 327	

tropospheric temperature response (Tang and Neelin, 2004; Smith et al., 2007; Patricola et al., 328	

2016), while Atlantic SST variability can also remotely influence ENP TC activity through a 329	

Walker Circulation type response analogous to the ENSO-Atlantic TC teleconnection 330	

(Patricola et al., 2017). 331	

Interestingly, the relative importance of thermal factors is increased subcutaneously in 332	

the CNN ACE emulation. We hypothesized these enhanced thermal contributions may imply 333	

local SST and SD are more effective in influencing seasonal mean TC intensity than the TC 334	

occurrence. This hypothesis has been partially examined by the Murakami et al. (2018), who 335	

found that the hyperactive six major hurricanes during 2017 NAT hurricane season is 336	
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primarily attributed to the local record high SST anomaly confined to the tropical Atlantic, 337	

while the remote influences caused by the moderate La Niña condition in the Pacific played 338	

the minor role. More rigorous analysis is planed in the future study. Nonetheless, Occlusion 339	

sensitivity analysis provides interpretability to the presented high CNN emulation fidelity, 340	

which raises our confidence that our trained CNN frameworks are capable of learning 341	

physically plausible mechanism, not only acting just as “black boxes”, to account for 342	

seasonal TC activities. 343	

 344	

3. CNN based statistical-dynamical hybrid seasonal TC prediction 345	

With the properly developed CNN framework to emulate seasonal TC activity, in the 346	

following sections, we propose a number of different pathways that we anticipate our 347	

machine learning model as a starting point to shed light on the future TC studies. We will 348	

start with the application of ensemble CNNs in the seasonal TC prediction.  349	

Seasonal prediction methods can be broadly categorized into dynamical, statistical, or 350	

statistical-dynamical hybrid approach (i.e., dynamical models combined with statistical 351	

approaches). As our CNN framework is designed to depict the concurrent empirical 352	

relationship between seasonal averaged large-scale environmental factors and TC activities, 353	

we can apply the trained ensemble CNNs to the operational seasonal forecast systems that are 354	

capable to forecast CNN predictors at various lead times to predict the subsequent seasonal 355	

TC activities. In this study, we utilized the National Center for Environmental (NCEP) 356	

Prediction Climate Forecast System version 2 (CFSv2; Saha et al., 2014) and ECMWF 357	

seasonal forecasting system 5 (SEAS5; Johnson et al., 2019) to drive the proposed CNN 358	

based statistical-dynamical hybrid predictions for seasonal TC activity. 359	

Both NCEP CFSv2 and ECMWF SEAS5 are atmosphere–ocean–land fully coupled 360	

models that aimed for operational seasonal forecasting. But due to the relative coarse 361	

resolutions and dynamical model intrinsic biases, CFSv2 and SEAS5 are not capable to 362	

faithfully resolve seasonal TC activities. There are 16 CFSv2 runs per day in operations; four 363	

out to ~9 months, three out to 3 seasons, and nine out to 45 days. Focusing on our seasonal 364	
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prediction scope, we only implement those ~9 months long forecasts. CFSv2 hindcast 365	

simulations were ran from December 1981 to March 2011, with initial conditions of the 00, 366	

06, 12 and 18 UTC cycles for every 5th day starting 00 UTC 1 January of every year (i.e., 292 367	

forecasts for every year during 1982-2010). Operational real-time forecasts were available 368	

since 1 April 2011, and were operated 4 cycles everyday. For the details of CFSv2 system 369	

design, we refer to Saha et al. (2014) for further reading. To obtain the dynamical model 370	

forecasted CNN predictors for Northern (Southern) Hemisphere TC seasons of 371	

June-November (December-May) seasonal mean, the earliest CFSv2 operational predictions 372	

should be initialized at 00 UTC 27 January (July). Here, we defined hybrid forecasts from 373	

January (July), February (August), …, May (November) CFSv2 initial conditions as the lead 374	

month (LM) 5, 4, …, 1 forecasts for the predictions of Northern (Southern) Hemisphere TC 375	

activity in the subsequent TC seasons. To minimize the CFSv2 prediction uncertainties, 20 376	

ensemble members (initial conditions from 4 cycles of the last 5 calendar days of 377	

January/July) were taken to derive the CNN predictors for the LM5 predictions, and 40 378	

ensemble members (initial conditions from 4 cycles of the first 10 calendar days) were used 379	

to obtain the predictors for the LM4-LM1 CNN hybrid predictions. For the LM0 hybrid 380	

prediction, which we defined as the forecasts initialized in each June (December) 1st, we 381	

deployed the dynamical prediction system from ECMWF SEAS5. Different from CFSv2, 382	

SEAS5 was initialized on the first day of each month, and ran for 7 months. During the 383	

hindcast period of 1981-2016, 25 ensemble forecast members were constructed, and it 384	

increased to 51 ensemble members for the operational forecast period from 2017 up to 385	

present.  386	

For all CFSv2 and SEAS5 dynamical ensemble forecasts, we firstly interpolated the 387	

monthly mean prognostic variables (i.e., temperature, humidity and wind velocities) from 388	

each of ensemble member to the uniform 2°×2° resolution grid, and then calculated the 389	

anomalies based on the 1993-2016 hindcast climatology. These monthly CFSv2 and SEAS5 390	

anomalies were further added onto ERA5 1993-2016 climatology to reconstruct the 391	

“bias-corrected” predictions, in a similar manner as in Bruyère et al. (2014). We then 392	
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computed CNN predictor variables based on the bias-corrected monthly mean CFSv2 and 393	

SEAS5 predictions, and conducted 6-month seasonal average and ensemble average to obtain 394	

the CNN inputs. We utilized these ensemble averaged predicted large-scale environmental 395	

factors to drive each of 600-member ensemble CNN emulations, therefore, the uncertainty of 396	

our hybrid seasonal TC predictions were determined by the ensemble CNNs, rather than from 397	

dynamical model. The actual hybrid prediction skills of 6-month seasonal TC activity depend 398	

on both the fidelity of our CNN machine learning model and the CFSv2/SEAS5 dynamical 399	

prediction accuracy. 400	

Table 3 summarizes the hybrid prediction ensemble mean skills in different TC-active 401	

basins. Figures 6, 7 and 8 illustrate the prediction uncertainties of NTC, NHU and ACE, 402	

respectively. In general, our hybrid prediction framework yields promising seasonal 403	

prediction skills in NAT, ENP, WNP and SPO. For the NAT predictions, the hybrid 404	

prediction outperforms persistence predictions and provides skillful forecasts with the 405	

correlation coefficient p-values smaller than 0.05 since February initialization. Correlation 406	

generally increases with the decrease of prediction lead month with the exception for the June 407	

initialization, which might be attributable to the different dynamical model skills in the NAT 408	

between CFSv2 and SEAS5. May initialization exhibits the highest skills, with the 409	

correlation of the NTC, NHU and ACE of 0.72, 0.69, and 0.67 (Table 3).. For reference, the 410	

statistical forecasts issued by Colorado State University (CSU) reported that the prediction 411	

correlation coefficients of the NAT NTC, NHU and ACE from their June (April) initialized 412	

forecasts during 1982–2021 (1995-2021) are 0.71 (0.31), 0.41 (0.00) and 0.41 (0.02), 413	

respectively (data is available from https://tropical.colostate.edu/archive.html#verification). 414	

Using hybrid technique with the aid from the Geophysical Fluid Dynamical Laboratory 415	

(GFDL) Forecast-Oriented Low Ocean Resolution (FLOR) model, Murakami et al. (2016) 416	

reported a high correlation coefficient of 0.75 for the seasonal NAT NTC predictions when 417	

their hybrid model was initialized in June, while their targeted forecast season is 418	

July-November over the 1980-2014 period.. Comparing to the CSU and GFDL, our hybrid 419	

predictions are capable of competing with or even slightly outperforming these pioneering 420	
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seasonal prediction works in the NAT sector, which demonstrates the feasibility of our hybrid 421	

framework in seasonal TC predictions. 422	

Similar robust prediction skills can also be obtained in the ENP and WNP. In contrast to 423	

the NAT, June initializations exhibit highest prediction skills in terms of correlation and 424	

MSSS in these two basins. We highlight the significant high ACE (NHU) correlations of 0.85 425	

(0.75), and 0.85 (0.76) for the June initialized predictions in the ENP and WNP (Table 3). To 426	

the best of our knowledge, these high fidelities have never been reported in the previous 427	

studies yet. Skillful June-November ACE predictions can be obtained since January (Figure 428	

8b,c), and skillful NTC and NHU predictions can be made as early as in April (Figure 6b,c 429	

and Figure 7b,c). These robust prediction skills make our hybrid prediction model an 430	

invaluable tool for North Pacific TC seasonal predictions. 431	

However, skillful seasonal predictions in the SPO can only be obtained just ahead of the 432	

TC season, December-May (Table 3), and the hybrid framework performs very poorly in the 433	

SIO predictions. For the NIO, although hybrid framework fails to produce skillful NTC 434	

predictions, it offers skillful NHU prediction in June initialization and ACE predictions at the 435	

lead month of 1-4. As we noted earlier, the skillful hybrid seasonal TC predictions presented 436	

here are contributed jointly from the dynamical seasonal predictions and the trained ensemble 437	

CNN models. In the future studies, we plan to implement multi-model seasonal forecasts 438	

from Copernicus Climate Change Service (C3S) Climate Data Store (CDS), including but not 439	

limit to, UK Met Office, Météo France, and JMA, and apply the ensemble CNNs in order to 440	

see if we are able to obtain higher prediction skills by using the multi-model ensembles.   441	

  442	

4. Reconstruct historical TC records using CNN and 20th century reanalysis 443	

Another novel application of our CNN framework can be the reconstruction of historical 444	

TC activity using the 20th century reanalysis products. Although the IBTrACS NAT TC 445	

record can trace back to 1851, before routine airborne reconnaissance in the 1940s and 446	

geostationary satellite imagery in 1960s, mounting papers suggested that TC climatology is 447	

underestimated before 1970s (Landsea 2007; Vecchi and Knutson 2008, 2011; Vecchi et al., 448	
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2021; Emanuel 2010), and numerous efforts have been made to correct for missing TCs. 449	

More importantly, TC observations outside the NAT were generally sparse before the 450	

satellite era, which impede the robust detection of climate change trend. An innovative 451	

approach to remedy this uncertainty is to leverage state-of-the-art 20th century historical 452	

reanalysis to either directly identify TC-like structures (Truchelut et al., 2013; Chand et al. 453	

2022) from the background flow or use monthly mean large-scale environmental factors for 454	

dynamical downscaling (Emanuel 2010, 2021). However, these two methods do not provide 455	

consensus on the detection of trends, especially in the NAT basin. In this study, we attempt to 456	

utilize the trained ensemble CNN framework to the historical reanalysis and offer a 457	

complementary insight of historical seasonal TC activities purely from the perspective of 458	

large-scale TC favorable environments.   459	

We applied our trained ensemble CNN framework to two historical reanalysis products 460	

to derive long-term historical records of TCs globally: NOAA 20th Century Reanalysis 461	

Version 3 (1836-2015; Silvinski et al. 2019; hereafter, 20CRv3) and the Coupled ECMWF 462	

Reanalysis of the 20th Century (1901-2010; Laloyaux et al. 2018; hereafter, CERA-20C). 463	

Using an 80-member ensemble Kalman filter, the 20CRv3 reanalysis assimilates only surface 464	

pressure observations, and uses observed monthly mean SST and sea-ice concentration as 465	

boundary conditions to create a comprehensive record of the atmospheric circulation. 466	

CERA-20C is a 10-member ensemble coupled reanalysis of the twentieth century which 467	

assimilates surface pressure and marine wind observations as well as ocean temperature and 468	

salinity profiles. Both reanalysis products have been extensively investigated to explore the 469	

variability and the trends of the past century extreme weather events and climate. Similar 470	

post-processing techniques have been conducted to 20CRv3 and CERA-20C to obtain the 471	

CNN predictor variables: we firstly interpolated the monthly mean thermal and dynamical 472	

variables to 2°×2° resolution grid, then computed the ensemble average and carried out the 473	

diagnostic calculations, and finally derived the 6-month seasonal average as the CNN inputs.  474	

Figure 9 shows the reconstructed TC records back to 1836 using 20CRv3. In the NAT, 475	

Vecchi and Knutson (2008, 2011) and Vecchi et al. (2021) documented the statistical 476	
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adjustments for the missing tropical cyclones before the satellite era based on the estimations 477	

of digitally available ship locations between 1878 and 1965. Combining these statistical 478	

adjustments with original IBTrACS observations, we attempt to qualitatively evaluate the 479	

fidelity of our historical reconstructions. Our CNN transfer learning is based on the ERA5 480	

1950-2019 data; therefore data before 1950 are excluded in the CNN training processes, 481	

which acting as the independent segment for the cross verification of our CNN models. 482	

Although CNN reconstruction suggested a general decreasing trend during 1878-1950 483	

(Figure 9a), which is contrast to the increasing trend in IBTrACS and no trend in Vecchi and 484	

Knutson (2008), but is consistent with Chand et al. (2022), the interannual variability can be 485	

captured remarkably well. After removing the linear trend, correlation of NTC, NHU and 486	

ACE between CNN reconstruction and adjusted observations are 0.66, 0.53 and 0.54, 487	

respectively, all of which are significant at 99% confidence level. Although the ensemble 488	

spreads are increased comparing to the training period of 1950-2019, spreads before 1949 489	

still remain considerably small. These promising cross validations again highlight the fidelity 490	

of our CNN framework. It is worthwhile to note that, although our reconstruction approach is 491	

very different from Vecchi and Knutson (2008, 2011), Truchelut et al. (2013) and Chand et al. 492	

(2022), all our results point to the peak of seasonal TC activity around 1880-1890 (Figure 9a, 493	

b; Figure 8a of Truchelut et al. 2013 and Figure 2g of Chand et al. 2022). Furthermore, these 494	

independent results clearly suggest that the recent increasing trend of NAT TC activity since 495	

1970s is attributed to the multidecadal variability – probably linked to various internal modes 496	

of climate variability and reduced aerosol forcing after the 1970s (Vecchi et al. 2021) instead 497	

of century scale secular trend (Figure 9a-c). If we assume the fidelity of CNN based historical 498	

reconstructions are equally well outside of NAT (unfortunately, TC observations outside the 499	

Atlantic were insufficient for validation), our results suggest global NTC experienced 500	

insignificant upward trend during 1836-1949, but NHU and ACE were significantly 501	

decreased (Figure 9d-f).  502	

Supplementary Figure 3 exhibits the historical reconstruction using CERA-20C. 503	

Cross-validation with adjusted observations also yield significant high correlation 504	
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coefficients and small ensemble spreads. In the context of global TC activity trend, 505	

CERA-20C indicated insignificant downward trend of NTC and NHU during 1901-1949, but 506	

significant downward trend of ACE. Nonetheless, our ensemble CNN framework provides 507	

ancillary and independent method to reconstruct historical TC records in the 19th and 20th 508	

century. Although our results do not suggest robust decreasing trend of global TC activity as 509	

postulated by the recent study (Chand et al. 2022) that used older version (v2c) of NOAA 510	

20CR, it does support the findings that the recent increase in NAT TC activity may not be a 511	

part of long-term climate trend, but more likely dominated by the internal climate variability 512	

and/or aerosol effects (Vecchi and Knutson 2008, 2011; Vecchi et al. 2021). 513	

 514	

5. Explore future TC activity using CNN and CMIP6 projection 515	

Encouraged by the promising fidelities in emulating TC activities in the past historical 516	

and present climate conditions, we further explored the feasibility of applying our trained 517	

CNN framework to the TC future climate projections.  518	

Although broad consensus has emerged about the increased TC intensity and rainfall 519	

rate in the future warmer climates (Patricola and Wehner 2018; Knutson et al. 2020), the 520	

uncertainties of future TC frequencies are poorly constrained. For example, vest majority of 521	

climate model future projections with TC-permitting horizontal-resolution (≤50km) indicate 522	

moderate-to-weak decreasing trend of future TC frequency (IPCC 2013; Zhao et al. 2009, 523	

Knutson 2010, 2020; Walsh et al. 2016), but a few others suggest an increased TC frequency 524	

(Vecchi et al. 2019). Using the statistical-deterministic method developed by Emanuel et al. 525	

(2008), Emanuel et al. (2013) proposed an increasing trend of future TC frequency by 526	

downscaling CMIP5 models, while another Poisson regression model (Tippett et al. 2011) 527	

based statistical downscaling approach projected two diverging TC frequency climate trends, 528	

in which the TC frequency will increase or decrease depending on the selection of the 529	

atmosphere moisture variable (CRH or SD) (Camargo et al. 2014; Lee et al. 2020). 530	

Specifically, SD-based downscaling leads to a decrease of TC activity, while using CRH 531	

results in an increase. The results from the SD choice were consistent with the dynamical 532	
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simulated TC reduction from Zhao et al. (2009), but those from the CRH choice were in 533	

contrast. Given that our CNN is trained devotedly to improve the representation of TC 534	

temporal variability, it is intriguing to examine if our CNN framework, which is also trained 535	

on present-day climate condition, is applicable to project future TC activities. In particular, 536	

we want to test the sensitivity of moisture predictor variables to the sign of projected TC 537	

activity trends, consequently, we repeated the CNN training processes as thoroughly 538	

introduced in Section 2, but replaced SD with CRH for the sensitivity test. In the rest of this 539	

paper, we refer CNN_SD as for the original trained CNN using SD as moisture predictor 540	

variable, and CNN_CRH for the newly established framework using CRH. We also note that, 541	

the transient climate simulations of 1980-2100 conducted by 3-member ensemble of 542	

high-resolution CESM1.3 were excluded from training and validation processes. As the 543	

independent segment for cross validation purposes, we made a comprehensive comparison 544	

between the CNN emulated TC activities computed from high-resolution CESM1.3 545	

large-scale outputs with those directly simulated in 1980-2100. 546	

Supplementary Figure 4 exhibits the comparisons between CNN emulated and 547	

CESM1.3 direct simulated global NTC, NHU and ACE for the period 1980-2100. Huge 548	

discrepancies can be noticed: although CNN_SD and CNN_CRH broadly indicate same sign 549	

of change, the CNN emulated NTC increase with time while direct dynamical simulations 550	

suggest a significant decreasing trend. Moreover, the ensemble spreads of 600-member 551	

ensemble CNN emulation are substantial huge, which is another aspect of significant 552	

degradation from the proposed applications in the seasonal prediction and historical 553	

reconstruction. These poor performances greatly reduce the potential feasibilities in 554	

investigating TC future projections.  555	

However, it is noteworthy to point out that transfer-learning technique was employed to 556	

both CNN_SD and CNN_CRH, which indicates that CNN_SD and CNN_CRH are strongly 557	

constrained by the recent observations. When these observation-constrained CNNs were 558	

applied to climate model projections, they may produce biased results due to intrinsic model 559	

biases (e.g., SST cold bias, Wang et al. 2014; double ITCZ, Tian et al. 2020) in the climate 560	
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model projections. To focus on the climate change effects based on the high-resolution 561	

CESM1.3 simulations in this study, therefore, we made another sensitivity test that discard 562	

transfer-learning technique in the training processing, and use CNNs trained only on the 563	

climate model simulations with historical forcing (again, 1980-2100 transient climate 564	

simulations were excluded). Figure 10 illustrates similar comparisons but emulated by the 565	

non-transfer-learning CNN_SD and CNN_CRH. Notably, we can detect promising 566	

improvements: both CNN_SD and CNN_CRH correctly capture the decreasing trend of 567	

future TC activity as revealed by the 25-km resolution CESM1.3 simulations, and exhibit 568	

robust correlation coefficients. Furthermore, the uncertainty spreads of CNN emulations are 569	

significantly reduced comparing to those from the observation-constrained transfer-learned 570	

CNNs. Note that, although both CNN_SD and CNN_CRH are trained on the climate 571	

historical forcing, where global warming signal is much weaker than those in the mid and late 572	

21th century, they still work reasonably-well to predict TC activity changes in the future 573	

climate. However, some inconsistencies still exist. For instance, CNN emulated decreasing 574	

trends of NTC and NHU are too strong comparing to those directly resolved in the CESM1.3. 575	

Nonetheless, the presented results provide positive insights that properly trained CNNs only 576	

using present-day climate conditions can still be applicable to investigate the climate change 577	

problem. 578	

Besides the cross validation using high-resolution CESM simulations, we also applied 579	

the non-transfer-learning CNN_SD and CNN_CRH to different 36 CMIP6 models (see 580	

Supplementary Table S1 for a list) that participated to the Scenario Model Intercomparison 581	

Project (ScenarioMIP), aiming to gain multi-model mean of future TC projections. Figure 11 582	

shows the global integrated, and Northern/Southern Hemisphere mean CNN emulated NTC 583	

from 36 CMIP6 models. Large-scale environmental conditions for the period of 1950–2015 584	

are taken from the historical simulations, and those for the periods from 2015 to 2100 are 585	

from future climate simulations under shared socio-economic pathway 5-8.5 (SSP585) 586	

scenario. NHU and ACE emulation are illustrated in Figure 12, and 13, respectively. 587	

Supplementary 5 and 6 further compare the CNN emulations in each individual TC-active 588	
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basin. Consistent with many previous studies based on the dynamical model proejctions 589	

(Knutson et al. 2015, 2020; Walsh et al. 2016; Sugi et al. 2017; Yoshida et al. 2017), our 590	

CNN emulation frameworks also indicate a decrease of seasonal TC activity in the future 591	

warmer climate, either using SD or CRH as moisture predictor variable. Specifically, using 592	

CNN_SD (CNN_CRH), 35 (36) of total 36 CMIP6 models project decreasing of global mean 593	

NTC, which is primarily driven by the significant reduction of NTC in the Southern 594	

Hemisphere (Figure 11). Pinpoint to each basin, both CNN_SD and CNN_CRH emulated 595	

robust NTC decrease in the SIO (Supplementary Figure S5), as also seen in CMIP5 and 596	

HighResMIP studies (Tory et al., 2013; Bell et al., 2019; Roberts et al., 2020). In addition, 597	

NTC will be declined in the WNP and SPO, but increased in the NIO. No significant change 598	

is projected in the ENP, but NAT yields a mixed projection: increase of NTC up to 2050s, but 599	

decrease afterwards. We will explore the plausible physical mechanism for this unusual NAT 600	

NTC projection in the future study.  601	

Our CNN framework project weaker decrease trends of the global integrated NHU and 602	

ACE (Figure 12 and 13). Majority of CMIP6 models project slight increases of NHU and 603	

ACE in the Northern Hemisphere, which compensate the substantial decrease trends in the 604	

Southern Hemisphere. It is intriguing to note that, although our CNN framework is purely 605	

statistical based and the NTC are trained independently from the NHU or ACE, it can still 606	

capture the increasing trend of intense TC fraction (Supplementary Figure 6), which is a 607	

general consensus emerged from the TC-permitting climate model simulations (Knutson et 608	

al., 2020). 609	

 610	

6. Conclusions and discussions 611	

The overarching goal of this study is to extend the pioneer works of TC genesis index, 612	

and to use machine learning technique to better reveal the empirical linkage between 613	

large-scale environmental conditions and temporal TC variability. Leveraging large suites of 614	

TC-permitting high-resolution climate model simulations and reanalysis products, we trained 615	

ensemble of CNNs that yield high fidelity in capturing observed TC 616	
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interannual-to-multidecadal variability. Using occlusion sensitivity analysis, we confirm that 617	

physical plausible mechanisms about TC environmental favorability are properly 618	

implemented in the trained CNN framework. We further demonstrate that this CNN 619	

framework can be applicable to many aspects of TC-climate studies. In particular, our 620	

preliminary applications highlight: 621	

Using large-scale CNN predictors forecasted by the operational NCEP CFSv2, the CNN 622	

based statistical-dynamical hybrid model can make skillful NAT (WNP and ENP) predictions 623	

in early February (late January). In particular, correlation coefficients of the predicted and 624	

observed ENP and WNP ACE reach to 0.85 when the hybrid prediction is initialized in June, 625	

just at the beginning of conventionally defined hurricane season. 626	

By applying CNNs to the NOAA 20CRv3 and ECMWF CERA20C reanalysis products, 627	

we found that the recent increase in NAT TC activity since 1970s may not be a part of 628	

long-term climate trend, but more likely dominated by the internal climate variability and/or 629	

aerosol effects, which agrees with the arguments from previous studies that using entirely 630	

different methods (Vecchi and Knutson 2008, 2011; Vecchi et al., 2021; Chand et al., 2022). 631	

The observation-constrained (transfer-learning-employed) CNNs illustrate big biases in 632	

future climate projections, presumably attribute to the “out-of-sample” error. However, if we 633	

discard transfer-learning technique and train CNN entirely on climate model simulations 634	

forced by the climate historical condition, our CNN frameworks can promisingly capture the 635	

decreasing trend of future TC activity, which is consistent with our direct high-resolution 636	

CESM1.3 projections in TC-permitting 25-km resolution. In addition, this projection is 637	

independent to the choice of CNN moisture predictor variables. We further applied these 638	

non-transfer-learning CNNs to 36 CMIP6 models, and found a robust decrease of global TC 639	

activity in the future climate, as documented by the recent TC and climate change assessment 640	

(Knutson et al., 2020). 641	

In addition to these promising applications, one particularly intriguing property of CNNs 642	

is their extreme computational efficiency. Once the CNN predictors are properly computed, 643	

the computational cost of CNN prediction is negligible. Our CNN approach is 644	
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complementary to earlier TC genesis index studies. We suggest that machine learning 645	

approaches, especially deep learning models, may provide a new avenue to improve our 646	

understanding of TC variability and future changes. In the future, it would be desirable to 647	

train deep learning models on multiple climate model large-ensemble simulations that are 648	

able to faithfully reproduce seasonal TC activities, for example, GFDL Seamless System for 649	

Prediction and Earth System Research (SPEAR, Delworth et al., 2020) or MRI-AGCM3.2 650	

“Database for Policy Decision‐Making for Future Climate Change” (d4PDF; Mizuta et al., 651	

2017), in order to test the sensitivity of CNN seasonal TC activity emulations on the training 652	

sets.  653	

Open Research 654	

The data used in this manuscript are available from the following sources: ECMWF 655	

ERA5 (https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels-mont656	

hly-means), SEAS5 (https://cds.climate.copernicus.eu/cdsapp#!/dataset/seasonal-monthly-si657	

ngle-levels), CERA20C (https://apps.ecmwf.int/datasets/data/cera20c/levtype=sfc/type=an/),658	

 NCEP CFSv2 (https://www.ncei.noaa.gov/thredds/model/cfs.html), NOAA 20CRv3 (htt659	

ps://psl.noaa.gov/data/gridded/data.20thC_ReanV3.html), CMIP6 models (https://esgf-node.660	

llnl.gov/search/cmip6/), IBTrACS (https://www.ncdc.noaa.gov/ibtracs/index.php?name=ib-661	

v4-access). High-resolution CESM1.3 simulations are available at https://ihesp.github.io/662	

archive. As part of this paper, we will also release the trained ensemble CNNs for se663	

asonal TC activity to allow future studies once the manuscript is accepted for peer-re664	

viewed publication.  665	

 666	

Acknowledgments 667	

This research is supported by the U.S. Department of Energy under Award Number 668	

DE-SC0020072. 669	

 670	

Conflict of Interest 671	

The authors declare no conflicts of interest relevant to this study. 672	



	 26	

 673	

Reference 674	

Bell, G. D., Halpert, M. S., Schnell, R. C., Higgins, R. W., Lawrimore, J., Kousky, V. E., 675	
Tinker, R., Thiaw, W., Chelliah, M., and Artusa, A. (2000). Climate assessment for 676	
1999. Bulletin of the American Meteorological Society, 81 (6), S1-S50. 677	
doi:10.1175/1520-0477(2000)81[s1:CAF]2.0.CO;2 678	

Bell, S. S., Chand, S. S., Tory, K. J., Dowdy, A. J., Turville, C., & Ye, H. (2019). Projections 679	
of southern hemisphere tropical cyclone track density using CMIP5 models. Climate 680	
Dynamics, 52(9-10), 6065–6079. https://doi.org/10.1007/s00382-018-4497-4 681	

Bolton, T., & Zanna, L. (2019). Applications of deep learning to ocean data inference and 682	
subgrid parameterization. Journal of Advances in Modeling Earth Systems, 11(1), 683	
376-399. 684	

Bruyère, C. L., Done, J. M., Holland, G. J., & Fredrick, S. (2014). Bias corrections of global 685	
models for regional climate simulations of high-impact weather. Climate Dynamics, 686	
43(7), 1847-1856. 687	

Camargo, S. J., Emanuel, K. and Sobel, A. H. (2007a). Use of a genesis potential index to 688	
diagnose ENSO effects on tropical cyclone genesis. J. Clim., 20, 4819–4834. 689	

Camargo, S. J., Sobel, A. H., Barnston, A. G. and Emanuel, K. (2007b). Tropical cyclone 690	
genesis potential index in climate models. Tellus, Ser. A, 59, 428–443. 691	

Camargo, S.J., Tippett, M. K., Sobel, A. H., Vecchi, G. A., and Zhao, M. (2014). Testing the 692	
performance of tropical cyclone genesis indices in future climates using the HiRAM 693	
model. J. Climate, 27, 9171– 9196. https://doi.org/10.1175/JCLI-D-13-00505.1. 694	

Chattopadhyay, A., Hassanzadeh, P. & Pasha, S. (2020a). Predicting clustered weather 695	
patterns: A test case for applications of convolutional neural networks to spatio-temporal 696	
climate data. Sci. Rep., 10, 1317. https://doi.org/10.1038/s41598-020-57897-9 697	

Chattopadhyay, A., Nabizadeh, E., &Hassanzadeh, P. (2020b). Analog forecasting of 698	
extreme-causing weather patterns using deep learning. Journal of Advances in Modeling 699	
EarthSystems,12, e2019MS001958. https://doi.org/10.1029/2019MS001958 700	

Chand, S.S., Walsh, K.J.E., Camargo, S.J. et al. (2022). Declining tropical cyclone frequency 701	
under global warming. Nat. Clim. Chang., 12, 655–661. 702	
https://doi.org/10.1038/s41558-022-01388-4 703	

Chang, C.-C., & Wang, Z. (2018). Relative impacts of local and remote forcing on tropical 704	
cyclone frequency in numerical model simulations. Geophysical Research Letters, 45, 705	
7843–7850. https://doi.org/10.1029/2018GL078606 706	

Chapman, W. E., Subramanian, A. C., Delle Monache, L., Xie, S. P., & Ralph, F. M. (2019). 707	
Improving atmospheric river forecasts with machine learning. Geophysical Research 708	
Letters, 46, 10,627–10,635. https://doi.org/10.1029/ 2019GL083662 709	

Davenport, F. V., & Diffenbaugh, N. S. (2021). Using machine learning to analyze physical 710	
causes of climate change: A case study of U.S. Midwest extreme precipitation. 711	
Geophysical Research Letters, 48, e2021GL093787. 712	
https://doi.org/10.1029/2021GL093787 713	



	 27	

Delworth, T. L., et al. (2020). SPEAR: The Next Generation GFDL Modeling System for 714	
Seasonal to Multidecadal Prediction and Projection. Journal of Advances in Modeling 715	
Earth Systems, 12(3), e2019MS001895. 716	

Elsner, J. B., and Jagger, T. H. (2013). Frequency models. Hurricane Climatology: A Modern 717	
Statistical Guide Using R. Oxford University Press, 161–193. 718	

Emanuel, K., Sundararajan, R., and Williams, J. (2008). Hurricanes and global warming: 719	
Results from downscaling IPCC AR4 simulations. Bull. Amer. Meteor. Soc., 89, 347–720	
368, https:// doi.org/10.1175/BAMS-89-3-347. 721	

Emanuel, K. (2010). Tropical cyclone activity downscaled from NOAA- CIRES Reanalysis, 722	
1908-1958. J. Adv. Model. Earth Syst., 2, 1–12. 723	

Emanuel, K. (2013). Downscaling CMIP5 climate models shows increased tropical cyclone 724	
activity over the 21st century. Proc. Natl. Acad. Sci. USA, 110, 12 219–12 224, 725	
https://doi.org/10.1073/ pnas.1301293110. 726	

Emanuel, K. (2021). Response of global tropical cyclone activity to increasing CO2: results 727	
from downscaling CMIP6 models. Journal of Climate, 34(1), 57-70. 728	

Gray, W. M. (1968). Global view of the origin of tropical disturbances and storms. Mon 729	
Weather Rev, 96, 669–700. 730	

Gray, W. M. (1979). Hurricanes: Their formation, structure and likely role in the tropical 731	
circulation. Meteorol. Tropical Oceans, 77, 155–218. 732	

Ham, Y. G., Kim, J. H. & Luo, J. J. (2019). Deep learning for multi-year ENSO forecasts. 733	
Nature, 573, 568–572. https://doi.org/10.1038/s41586-019-1559-7 734	

Hersbach, H., Bell, B., Berrisford, P., Hirahara, S., Horányi, A., Muñoz-Sabater, J., et al. 735	
(2020). The ERA5 global reanalysis. Quarterly Journal of the Royal Meteorological 736	
Society, 146(730), 1999–2049. https://doi.org/10.1002/qj.3803 737	

Johnson, S. J., Stockdale, T. N., Ferranti, L., Balmaseda, M. A., Molteni, F., Magnusson, L., 738	
Tietsche, S., Decremer, D., Weisheimer, A., Balsamo, G., Keeley, S. P. E., Mogensen, 739	
K., Zuo, H., and Monge-Sanz, B. M. (2019). SEAS5: the new ECMWF seasonal 740	
forecast system. Geosci. Model Dev., 12, 1087–1117, 741	
https://doi.org/10.5194/gmd-12-1087-2019. 742	

Kim, H. S., Ho, C. H., Kim, J. H., and Chu, P. S. (2012). Track-pattern-based model for 743	
seasonal prediction of tropical cyclone activity in the western North Pacific. J. Climate, 744	
25, 4660– 4678. doi:10.1175/JCLI-D-11-00236.1. 745	

Kingma, D. P., & Ba, J. (2014). Adam: A method for stochastic optimization. arXiv preprint 746	
arXiv:1412.6980. 747	

Knapp, K. R., Kruk, M. C., Levinson, D. H., Diamond, H. J., & Neumann, C. J. (2010). The 748	
international best track archive for climate stewardship (IBTrACS) unifying tropical 749	
cyclone data. Bulletin of the American Meteorological Society, 91(3), 363–376. 750	
https://doi.org/ 10.1175/2009BAMS2755.1 751	

Knutson, T. R., and Coauthors (2010). Tropical cyclones and climate change. Nat. Geosci., 3, 752	
157–163, https://doi.org/10.1038/ngeo779. 753	

Knutson, T. R., Sirutis, J. J., Zhao, M., Tuleya, R. E., Bender, M., Vecchi, G. A., Villarini, G. 754	
and Chavas, D. (2015). Global projections of in- tense tropical cyclone activity for the 755	



	 28	

late twenty-first century from dynamical downscaling of CMIP5/RCP4.5 scenarios. J. 756	
Climate, 28, 7203–7224, https://doi.org/10.1175/JCLI-D-15- 0129.1. 757	

Knutson, T. R., and Coauthors (2020). Tropical cyclones and climate change assessment: Part 758	
II: Projected response to anthropogenic warming. Bull. Amer. Meteor. Soc., 101, E303–759	
E322, https:// doi.org/10.1175/BAMS-D-18-0194.1. 760	

Laloyaux, P. et al. (2018). CERA-20C: a coupled reanalysis of the twentieth century. J. Adv. 761	
Model. Earth Syst., 10, 1172–1195. 762	

Landsea, C. W. (2007). Counting Atlantic tropical cyclones back to 1900. Eos, Trans. Amer. 763	
Geophys. Union, 88(18), 197-202, doi:10.1029/ 2007EO180001. 764	

Lapuschkin, S., Wäldchen, S., Binder, A. et al. (2019). Unmasking Clever Hans predictors 765	
and assessing what machines really learn. Nat. Commun., 10, 1096. 766	
https://doi.org/10.1038/s41467-019-08987-4 767	

Lee, C. Y., Camargo, S. J., Sobel, A. H. and Tippett, M. K. (2020). Statistical-dynamical 768	
downscaling projections of tropical cyclone activity in a warming climate: Two 769	
diverging genesis scenarios. J. Climate, 33, 4815–4834, 770	
https://doi.org/10.1175/JCLI-D-19-0452.1. 771	

Li, X., Yang, S., Wang, H., Jia, X., & Kumar, A. (2013). A dynamical-statistical forecast 772	
model for the annual frequency of western Pacific tropical cyclones based on the NCEP 773	
Climate Forecast System version 2. Journal of Geophysical Research: 774	
Atmospheres, 118(21), 12-061. 775	

Liu, Y. et al. (2016). Application of deep convolutional neural networks for detecting 776	
extreme weather in climate datasets. arXiv preprint arXiv:1605.01156. 777	

Menkes, C. E., Lengaigne, M., & Marchesiello, P. (2012). Comparison of tropical 778	
cyclogenesis indices on seasonal to interannual timescales. Climate Dynamics, 38, 301–779	
321. 780	

McGuire, M. P., & Moore, T. W. (2022). Prediction of tornado days in the United States with 781	
deep convolutional neural networks. Computers & Geosciences, 159, 104990. 782	

Mizuta, R., Murata, A., Ishii, M., Shiogama, H., Hibino, K., Mori, N., et al. (2017). Over 783	
5,000 years of ensemble future climate simulationsby 60-km global and 20-km regional 784	
atmospheric models. Bulletin of the American Meteorological Society, 98(7), 1383–1398. 785	
https://doi.org/10.1175/BAMS-D-16-0099.1 786	

Murakami, H., and Wang, B. (2010). Future change of North Atlantic Tropical Cyclone 787	
tracks: Projection by a 20-km-mesh global atmospheric model. J. Clim., 23, 2699–2721. 788	

Murakami, H., Villarini, G., Vecchi, G. A., Zhang, W., & Gudgel, R. (2016). Statistical–789	
dynamical seasonal forecast of North Atlantic and US landfalling tropical cyclones 790	
using the high-resolution GFDL FLOR coupled model. Monthly Weather Review, 144(6), 791	
2101-2123. 792	

Patricola, C. M., Chang, P., and Saravanan, R. (2016). Degree of simulated suppression of 793	
Atlantic tropical cyclones modulated by flavour of El Niño. Nat. Geosci., 9, 155–160. 794	

Patricola, C. M., Saravanan, R., and Chang, P. (2017). A teleconnection between Atlantic sea 795	
surface temperature and eastern and central North Pacific tropical cyclones. Geophys. 796	
Res. Lett., 44, 1167–1174, doi:10.1002/2016GL071965 797	



	 29	

Saha, Suranjana and Coauthors (2014). The NCEP Climate Forecast System Version 2. J. 798	
Climate, 27(6), 2185–2208. doi: http://dx.doi.org/10.1175/JCLI-D-12-00823.1. 799	

Slivinski, L. C. et al. (2019). Towards a more reliable historical reanalysis: improvements for 800	
version 3 of the Twentieth Century Reanalysis system. Q. J. R. Meteorol. Soc., 145, 801	
2876–2908. 802	

Smith, S. R., Brolley, J., O’Brien, J. J., and Tartaglione, C. A. (2007). ENSO’s impact on 803	
regional U.S. hurricane activity. J. Clim., 20, 1404–1414. 804	

Sugi, M., Yoshimura, J., and Yoshida, K. (2017). Projection of future changes in the 805	
frequency of intense tropical cyclones. Climate Dyn., 49, 619–632, 806	
https://doi.org/10.1007/s00382-016-3361-7. 807	

Tang, B. H., and Neelin, J. D. (2004). ENSO influence on Atlantic hurricanes via 808	
tropospheric warming. Geophys. Res. Lett., 31, L24204, doi:10.1029/2004GL021072. 809	

Tian, B., & Dong, X. (2020). The double-ITCZ Bias in CMIP3, CMIP5and CMIP6 models 810	
based on annual mean precipitation. Geophysical Research Letters, 47, e2020GL087232. 811	
https://doi.org/10.1029/2020GL087232 812	

Tippett, M. K., Camargo, S. J., and Sobel, A. H. (2011). A Poisson regression index for 813	
tropical cyclone genesis and the role of large-scale vorticity in genesis. J. Clim., 24, 814	
2335–2357. 815	

Tory, K. J., Chand, S. S., McBride, J. L., Ye, H., & Dare, R. A. (2013). Projected changes in 816	
late-twenty-first-century tropical cyclone frequency in 13 coupled climate models from 817	
phase 5 of the Coupled Model Intercomparison Project. Journal of Climate, 26(24), 818	
9946–9959. https://doi.org/10.1175/JCLI-D-13-00010.1 819	

Truchelut, R. E., Hart, R. E., & Luthman, B. (2013). Global identification of previously 820	
undetected pre-satellite-era tropical cyclone candidates in NOAA/CIRES 821	
Twentieth-Century Reanalysis data. Journal of applied meteorology and climatology, 822	
52(10), 2243-2259. 823	

Yosinski, J., Clune, J., Bengio, Y. & Lipson, H. (2014). How transferable are features in deep 824	
neural networks? Adv. Neural Inf. Process. Syst., 27, 3320–3328. 825	

Yoshida, K., Sugi, M., Mizuta, R., Murakami, H., and Ishii, M. (2017). Future changes in 826	
tropical cyclone activity in high-resolution large-ensemble simulations. Geophys. Res. 827	
Lett., 44, 9910– 9917. https://doi.org/10.1002/2017GL075058. 828	

Vecchi, G. A., and Knutson, T. R. (2008). On estimates of historical North Atlantic tropical 829	
cyclone activity. J. Climate, 21, 3580-3600. 830	

Vecchi, G. A., and Knutson, T. R. (2011). Estimating annual numbers of Atlantic hurricanes 831	
missing from the HURDAT database (1878–1965) using ship track density. J. Climate, 832	
24, 1736–1746. 833	

Vecchi, G. A., Landsea, C., Zhang, W., Villarini, G. & Knutson, T. (2021). Changes in 834	
Atlantic major hurricane frequency since the late-19th century. Nat. Commun., 12(1), 835	
1-9. 836	

Walsh, K. J., and Coauthors (2016). Tropical cyclones and climate change. Wiley Interdiscip. 837	
Rev.: Climate Change, 7, 65–89. https://doi.org/10.1002/wcc.371. 838	



	 30	

Wang, C., Zhang, L., Lee, S. K., Wu, L., & Mechoso, C. R. (2014). A global perspective on 839	
CMIP5 climate model biases. Nature Climate Change, 4(3), 201-205. 840	

Weyn, J. A., Durran, D. R., & Caruana, R. (2019). Can machines learn to predict weather? 841	
Using deep learning to predict gridded 500-hPa geopotential height from historical 842	
weather data. Journal of Advances   in Modeling Earth Systems, 11, 2680–2693. 843	
https://doi.org/10.1029/ 2019MS001705  844	

Weyn, J. A., Durran, D. R., Caruana, R., & Cresswell-Clay, N. (2021). Sub-seasonal 845	
forecasting with a large ensemble of deep-learning weather prediction models. Journal 846	
of Advances in Modeling Earth Systems, 13, e2021MS002502. https://doi. 847	
org/10.1029/2021MS002502 848	

WMO (2008). Report from expert meeting to evaluate skill of tropical cyclone seasonal 849	
forecasts. World Meteorological Organization Tech. Doc., 1455, Geneva, Switzerland. 850	
27 pp. 851	

Yu, J. Y., Hsiao, L. P. and Chiu, P. G. (2018). Evaluating the Emanuel–Nolan genesis 852	
potential index: contrast between North Atlantic and western North Pacific. Terrestrial, 853	
Atmospheric and Oceanic Sciences, 29(2), 201– 214. 854	
https://doi.org/10.3319/TAO.2017.09.27.01. 855	

Zeiler, M. D., & Fergus, R. (2014). Visualizing and understanding convolutional networks. 856	
In European conference on computer vision, 818-833. Springer, Cham. 857	

Zhao, M., Lin, S. J., and Vecchi, G. A. (2009). Simulations of global hurricane climatology, 858	
interannual variability, and response to global warming using a 50-km resolution GCM. 859	
J. Climate, 22, 6653–6678, doi:10.1175/2009JCLI3049.1. 860	

 861	
	862	
	 	863	



	 31	

Table 1: The datasets for training the deep CNN model 864	
 Datasets Sample size  Reference 

1 
CESM1.3 1850 pre-industrial 

control simulation  
Year 0338-0519 (total: 

182) 
Chang et al. (2021) 

2 
CESM1.3 1850-2100 

transient climate simulation 

Year 1877-1979 and 
2-ensemble 1920-1979 

(total: 223) 

3 
CESM1.3 HighResMIP 
1950s control simulation 

 Year 051-151 (total: 101) 

Roberts et al. (2021) 
4 

CESM1.3 HighResMIP 
1950-2100 historical 

transient climate simulation 
Year 1950-1979 (total: 30) 

5 CESM1.3 decadal prediction 

10-member ensemble 
5-year predictions 

initialized in every other 
year from 1982 to 2016 

(total: 900) 

Yeager et al. (2022) 

6 
WRF Tropical Channel 
Model seasonal hindcast 

simulation 

35-member ensemble 
1979-2018 (total: 1400) 

Fu et al. (2019) 

7  ERA5 and IBTrACS 1950-2019 (total: 70) 
Hersbach et al. 

(2020) and Knapp et 
al. (2010) 

 Total: 2906 (1506) for Northern (Southern) Hemisphere basins 
 865	
 866	
 867	
 868	
Table 2: Detail of CNN architecture and the optimization parameters. 869	

Number of convolution layers 4 
Number of filters for each convolution layers 8, 16, 32, 32 

The dimensions of the convolutional filter 3×3, 3×3, 3×3, 3×3 

Activation function for each convolutional filter SELU, 
SELU,SELU,SELU 

Mean pooling kernel size 2×2 

Stride for mean pooling 2 
Output size 1 

Loss function Mean square error 
Optimizer Adam 

Max training epochs 100 
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Mini batch size for training 
500(climate 

model)/20(observation 
fine-tuning) 

Initial learning rate 0.001 
 870	
 871	
Table 3. Pearson correlation coefficients between ensemble mean CNN based 872	
statistical-dynamical hybrid predictions and observed TC activity with various forecast lead 873	
month (LM). Italic bold face highlights statistical significance of the correlations at the 95% 874	
level based on two-tailed Student’s t-test. The mean-square skill scores (MSSSs; Li et al. 875	
2013; Murakami et al. 2016) are listed in the parenthesis just after correlation coefficients. 876	
The MSSS is a metric for the skill comparison of the model and climatology-based forecasts, 877	
with higher values indicating a good prediction model. We define forecasts from June 878	
(December), May (November) . . . , January (July) initial conditions as the LM 0, 1, . . . , 5 879	
forecasts for the predictions of TC activity in the subsequent season in the Northern 880	
(Southern) Hemisphere. We use NCEP CFSv2 (1982-2020) and ECMWF SEAS5 881	
(1993-2020) for LM1-5 and LM0 hybrid predictions, respectively. 882	
 883	
Predictand LM0 LM1 LM2 LM3 LM4 LM5 
NAT NTC 0.52(0.20) 0.72(0.47) 0.68(0.40) 0.50(0.25) 0.50(0.25) 0.30(0.06) 
NAT NHU 0.68(0.39) 0.69(0.47) 0.59(0.34) 0.39(0.11) 0.45(0.17) 0.26(-0.12) 
NAT ACE 0.65(0.40) 0.67(0.45) 0.55(0.31) 0.39(0.15) 0.47(0.22) 0.30(0.05) 

       
ENP NTC 0.68(0.45) 0.48(0.22) 0.39(0.11) 0.26(-0.04) 0.27(-0.04) 0.20(-0.12) 
ENP NHU 0.75(0.54) 0.31(0.05) 0.25(-0.01) 0.22(-0.05) 0.22(-0.05) 0.17(-0.12) 
ENP ACE 0.85(0.59) 0.60(0.31) 0.59(0.30) 0.42(0.18) 0.48(0.21) 0.31(0.10) 

       
WNP NTC 0.59(0.34) 0.57(0.32) 0.55(0.30) 0.08(-0.14) -0.02(-0.01) -0.01(-0.14) 
WNP NHU 0.76(0.56) 0.62(0.38) 0.51(0.25) 0.25(-0.01) 0.31(0.02) 0.29(-0.02) 
WNP ACE 0.85(0.66) 0.79(0.59) 0.61(0.38) 0.47(0.22) 0.43(0.18) 0.33(0.09) 

       
NIO NTC 0.09(-0.17) 0.15(-0.06) 0.10(-0.05) 0.08(-0.05) -0.02(-0.12) -0.01(-0.14) 
NIO NHU 0.48(0.23) 0.37(0.13) 0.28(0.07) 0.15(0.01) 0.36(0.12) 0.34(0.12) 
NIO ACE 0.34(0.12) 0.56(0.28) 0.50(0.24) 0.48(0.22) 0.35(0.12) 0.29(0.08) 

       
SIO NTC 0.16(0.01) 0.10(-0.06) -0.11(-0.30) 0.09(-0.05) -0.11(-0.13) -0.20(-0.22) 
SIO NHU 0.15(-0.03) -0.09(-0.14) -0.11(-0.13) -0.16(-0.15) -0.21(-0.20) -0.10(-0.16) 
SIO ACE -0.07(-0.13) -0.22(-0.23) -0.16(-0.18) -0.20(-0.18) -0.30(-0.23) -0.23(-0.25) 

       
SPO NTC 0.66(0.33) 0.39(0.15) 0.23(0.05) 0.04(-0.05) -0.14(-0.14) 0.01(-0.06) 
SPO NHU 0.59(0.31) 0.23(0.04) 0.09(-0.04) -0.02(-0.06) -0.19(-0.14) 0.21(0.04) 
SPO ACE 0.54(0.28) 0.18(-0.03) 0.06(-0.13) -0.04(-0.19) -0.02(-0.22) 0.10(-0.09) 
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 884	

 885	
Figure 1: (a) Illustration of TC active ocean basin boundaries, including North Atlantic 886	
(NAT), eastern North Pacific (ENP), western North Pacific (WNP), north Indian Ocean 887	
(NIO), south Indian Ocean (SIO), south Pacific Ocean (SPO) and south Atlantic (SAT). The 888	
number in each TC basin shows the annual mean TC member in observation (OBS), 889	
high-resolution CESM and WRF tropical channel model (TCM) simulation results, and 890	
horizontal dimensions of input layer. (b) Architecture of the CNNs for emulating seasonal TC 891	
activity. The CNN model consists of one input layer (predictor; taking NAT as an example), 892	
four convolutional (Conv) layers, two mean pooling layers, one fully connected (FC) layer, 893	
and one output layer (the predictant). The variables of the input layer contain the anomalies 894	
of SST (unit: K), saturation deficit (unit: mm), 200-850 hPa vertical wind shear (unit: m/s), 895	
and 850hPa relative vorticity (10-5 1/s) averaged over June-November (December-May) for 896	
Northern (Southern) Hemisphere ocean basins. The input variables are interpolated to 2°×2° 897	
resolution grid, and the actual size of input layer varies with different ocean basins. The 898	
seasonal mean number of TC (NTC), number of hurricane (NHU), or Accumulated Cyclone 899	
Energy (ACE) is output (i.e. predictand). 900	
 901	
 902	
	903	
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	904	
Figure 2: Time-series of seasonal mean number of TC (NTC) for (a) global (defined as the 905	
sum of individual ocean basins), (b) NAT, (c) ENP, (d), WNP, (e) NIO, (f) SIO, (g) SPO and 906	
(h) SAT. Observed NTC is shown in black line. Ensemble mean CNN emulated and LOOCV 907	
results are shown in blue and grey lines, respectively. Ranges across CNN ensembles are 908	
shown in shadings. Numbers shown in each panel denote the Pearson correlation coefficients 909	
and root mean square errors (RMSE) between observation and CNN model results. 910	
Leave-one-out cross validation (LOOCV) results are listed in the parentheses.  911	
 912	
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 913	
Figure 3: Similar as to Figure 2, but for seasonal mean number of hurricane (NHU; lifetime 914	
maximum wind speed ≥33m/s). 915	
 916	
 917	

 918	
Figure 4: Similar as to Figure 2, but for seasonal mean accumulated cyclone energy (ACE). 919	
  920	
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 921	
Figure 5: Occlusion sensitivity maps that highlight the relative importance in emulating 922	
seasonal NTC in different ocean basins. (a)-(d): Relative importance of SST, saturation 923	
deficit (SD), 850hPa vorticity and vertical wind shear in NIO, respectively. (e)-(h), (i)-(l), 924	
(m)-(p), (q)-(t), And (u)-(x) are similar, but for the relative importance of 4 variables in WNP, 925	
ENP, NAT, SIO and SPO, respectively. Areas in the map with higher values correspond to 926	
regions of input variables that contribute more significantly to impact the CNN prediction 927	
skills. Intuitively, the sensitivity map shows which area most affect the prediction RMSE 928	
when changed. Refer main text for details. 929	
 930	
 931	
 932	
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 933	
Figure 6: CNN based statistical-dynamical hybrid NTC seasonal predictions initialized at 934	
different lead month (LM). (a) Left: time-series of NAT NTC in observation (black) from 935	
1982 to 2020, and CNN model predictions with the large-scale environmental conditions 936	
predicted form NCEP CFSv2 (LM1-5) and ECMWF SEAS5 (LM0) seasonal forecasts (refer 937	
to the figure legend). Note that, we downloaded SEAS5 from Copernicus Climate Change 938	
Service (C3S) Climate Data Store (CDS), which only provide seasonal prediction data since 939	
1993. Color shading denotes the range across the CNN ensemble predictions. Right: boxplots 940	
of Pearson correlation coefficients between observation and CNN ensemble predictions at 941	
different lead months. Boxes show the first quartile, median and third quartile among the 942	
600-member ensemble hybrid prediction, and the dashed vertical lines show the lowest and 943	
highest datum still within the 1.5 interquartile ranges. Maroon triangles denote the ensemble 944	
mean skill, and maroon horizontal line denotes persistence prediction skills. Persistence 945	
prediction is based on trailing 5-year average (WMO 2008). (b)-(f) Are similar to (a), but for 946	
NTC seasonal predictions in the ENP, WNP, NIO, SIO and SPO, respectively. Note that, we 947	
define SIO and SPO TC season as the period from prior November to following May. We did 948	
not show SAT results, given that seasonal mean SAT NTC is less than 0.1 in the observation.  949	
 950	
 951	
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 952	
Figure 7: Similar to Figure 6, but for the NHU hybrid seasonal prediction skills. 953	
 954	



	 39	

 955	
Figure 8: Similar to Figure 6, but for the ACE hybrid seasonal prediction skills. 956	
 957	
 958	
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	959	
Figure 9: Time-series of NAT seasonal mean (a) NTC, (b) NHU, and (c) ACE from the 960	
IBTrACS observation in black, adjusted NTC and NHU observation based on Vecchi and 961	
Knutson (2008, 2011; VK08 and VK11 for short) in green, and CNN reconstruction based on 962	
the NOAA-CIRES-DOE 20th Century Reanalysis (20CRv3) for them period 1836-2015. 963	
Pearson correlation coefficient between linear-trend removed adjusted observations and CNN 964	
reconstructions during 1878-1965 are listed in each panel. Note that, data before 1950 are not 965	
used in the CNN training. (d)-(f) Are similar, but for global integration results. Linear trend 966	
during 1836-1949 and the p-values determined by the Mann-Kendall trend test are listed. We 967	
do not show global IBTrACS observation results as other TC active basins outside NAT only 968	
provide data since 1949. 969	
	970	
 971	
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 972	
Figure 10: Time-series of 3-member ensemble mean CESM HR dynamically resolved TC 973	
activity (black) and CNN_SD (without transfer-learning, trained on climate model only) 974	
emulated global (a) NTC (blue), (b) NHU (red) and (c) ACE (yellow). Thin grey lines denote 975	
CESM HR 3 individual ensemble member, and color shadings indicate ranges across CNN 976	
ensembles. Pearson correlation coefficients between 1980-2100 are listed in each panel. The 977	
linear-trend-removed correlation coefficients are listed in the parentheses. All listed 978	
correlation coefficients are significant at 95% confidence level. Note that, CESM HR data 979	
after 1980 are not used in the CNN training. (d)-(f) Are similar, but using the alternative 980	
trained CNN model with column-integral relative humidity (CNN_CRH), rather than 981	
saturation deficient (CNN_SD), as the CNN moisture predictor variables.  982	
 983	
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 984	
Figure 11: Time-series of CNN_SD emulated anomalous NTC for (a) global, (b) Northern 985	
Hemisphere and (c) Southern Hemisphere integration with the large-scale environmental 986	
conditions projected by 36 different CMIP6 model under historical forcing and shared 987	
socio-economic pathway 5-8.5 (SSP585). Anomalies are computed as the departures from 988	
their 1980-1999 climatology. Black lines denote observation during 1980-2020, thick dark 989	
blue lines denote the multi-model mean of the CMIP6 models, and thin light blue lines 990	
denote the individual 36 CMIP6 model. Linear trends during 1980-2100 are plotted in 991	
magenta and listed in each panel; following by the fraction demonstrating number of 992	
individual models showing consistent sign of trend as to the multi-model mean. For example, 993	
35 of 36 CMIP6 model project a decreasing trend with the mean trend of -0.17 per year 994	
emulated by the CNN_SD model. Note that, all multi-model mean linear trends are 995	
significant at 95% confidence level based on the Mann-Kendall trend test. (e)-(f) Are similar, 996	
but for the CNN_CRH emulated NTC projection.     997	
 998	
 999	
 1000	
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 1001	
Figure 12: Similar to Figure 11, but for the NHU projections. 1002	
 1003	
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 1004	
Figure 13: Similar to Figure 11, but for the ACE projections. 1005	
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Supplementary Figure 1: Occlusion sensitivity maps that highlight the relative importance 
and contributions in emulating seasonal NHU in different ocean basins. (a)-(d): Relative 
importance of SST, saturation deficit (SD), 850hPa vorticity and vertical wind shear in NIO, 
respectively. (e)-(h), (i)-(l), (m)-(p), (q)-(t), And (u)-(x) are similar, but for the relative 
importance and contributions of 4 variables in WNP, ENP, NAT, SIO and SPO, respectively. 
Areas in the map with higher values correspond to regions of input variables that contribute 
more significantly to impact the CNN accuracy. Intuitively, the sensitivity map shows which 
area most affect the prediction RMSE when changed. Refer main text for details. 
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Supplementary Figure 2: Similar as to Supplementary Figure 1, but for occlusion sensitivity 
maps for ACE. 
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Supplementary Figure 3: Time-series of NAT seasonal mean (a) NTC, (b) NHU, and (c) 
ACE from the IBTrACS observation in black, adjusted NTC and NHU observation based on 
Vecchi and Knutson (2008, 2011) in green, and CNN reconstruction based on the ECMWF’s 
Coupled Reanalysis of the Twentieth Century (CERA-20C) for them period 1901-2010. 
Pearson correlation coefficient between linear-trend removed adjusted observations and CNN 
reconstructions during 1901-1965 are listed in each panel. Note that, data before 1950 are not 
used in the CNN training. (d)-(f) Are similar, but for global integration results. We do not 
show global IBTrACS observation results as other TC active basins outside NAT only 
provide data since 1949. 
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Supplementary Figure 4: Time-series of 3-member ensemble mean CESM HR dynamically 
resolved TC activity (black) and transfer-learned CNN_SD emulated global (a) NTC (blue), 
(b) NHU (red) and (c) ACE (yellow). Thin grey lines denote CESM HR 3 individual 
ensemble member, and color shadings indicate ranges across 600-member CNN ensembles. 
Pearson correlation coefficients between 1980-2100 are listed in each panel. The 
linear-trend-removed correlation coefficients are listed in the parentheses. Note that, CESM 
HR data after 1980 are not used in the CNN training. (d)-(f) Are similar, but using the 
alternative trained CNN model with column relative humidity (CNN_CRH), rather than 
saturation deficient (CNN_SD), as the CNN predictor variables. 
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Supplementary Figure 5: Time-series of CNN_SD emulated anomalous (a) NTC, (b) NHU, 
and (c) ACE in different ocean basins, with the large-scale environmental conditions 
projected by 36 different CMIP6 model under historical forcing and shared socio-economic 
pathway 5-8.5 (SSP585). Anomalies are computed as the departures from their 1980-1999 
climatology. Standard deviation among 36 CMIP6 models are shown as shadings, while 
multi-model mean is plotted in lines. The number of individual models with consistent sign 
of trend as to the multi-model mean is shown in the legend. (e)-(f) Are similar, but for the 
CNN_CRH emulated CMIP6 projection.     
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Supplementary Figure 6: Similar to Supplementary Figure 5, but for the ratio of emulated 
NHU/NTC, and ACE/NTC. 
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Supplementary Table 1: 36 CMIP6 models utilized for the CNN future projections. 
Institution Model Name 

Commonwealth Scientific and Industrial Research Organisation 
(CSIRO), Australia 

ACCESS-CM2 
ACCESS-ESM1-5 

The Alfred Wegener Institute, Helmholtz Centre for Polar and 
Marine Research, Germany 

AWI-CM-1-1-MR 

Beijing Climate Center, China BCC-CSM2-MR 
Chinese Academy of Meteorological Sciences, China CAMS-CSM1-0 

National Center for Atmospheric Research, United States CESM2 

Euro-Mediterranean Centre on Climate Change 
CMCC-CM2-SR5 

CMCC-ESM2 

National Center for Meteorological Research, Météo-France and 
CNRS laboratory, France 

CNRM-CM6-1 
CNRM-CM6-1-H 
CNRM-ESM2-1 

Canadian Centre for Climate Modelling and Analysis, Canada 
CanESM5 

CanESM5-CanOE 
Department of Energy, United States E3SM-1-1 
European Earth System Model, EU EC-Earth3 

Chinese Academy of Sciences, China FGOALS-f3-L 
First Institute of Oceanography, China FIO-ESM-2-0 

U.S. Department of Commerce/National Oceanic and 
Atmospheric Administration (NOAA)/Geophysical Fluid 

Dynamics Laboratory (GFDL), USA 

GFDL-CM4 

GFDL-ESM4 

National Aeronautics and Space Administration (NASA)/Goddard 
Institute for Space Studies (GISS), United States 

GISS-E2-1-G 

Met Office Hadley Centre, United Kingdom 
HadGEM3-GC31-LL 

HadGEM3-GC31-MM 
Indian Institute of Tropical Meteorology, India IITM-ESM 

Institute for Numerical Mathematics, Russia 
INM-CM4-8 
INM-CM5-0 

Institut Pierre-Simon Laplace, France IPSL-CM6A-LR 
Korea Meteorological Administration, Korea KACE-1-0-G 

Korea Institute of Ocean Science & Technology, Korea KIOST-ESM 
University of Arizona, United States MCM-UA-1-0 

Center for Climate System Research (University of Tokyo), 
National Institute for Environmental Studies, and Frontier 
Research Center for Global Change (JAMSTEC), Japan 

MIROC-ES2L 

MIROC6 

Max Planck Institute for Meteorology, Germany MPI-ESM1-2-LR 
Meteorological Research Institute, Japan MRI-ESM2-0 

Nanjing University of Information Science and Technology, China NESM3 
Norwegian Meteorological Institute, Norway NorESM2-MM 
Met Office Hadley Centre, United Kingdom UKESM1-0-LL 

	


