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Abstract

This paper expands on work showing that the winter North Atlantic Oscillation (NAO) is predictable on decadal timescales

to quantify the skill in capturing the North Atlantic eddy-driven jet’s location and speed. By focussing on decadal predictions

made for years 2-9 from the 6th Coupled Model Intercomparison Project over 1960-2005 we find that there is significant skill in

both jet latitude and speed associated with the skill in the NAO. However, the skill in all three metrics appears to be sensitive to

the period over which it is assessed. In particular, the skill drops considerably when evaluating hindcasts up to the present day

as models fail to capture the latest observed northern shift and strengthening of the winter eddy-driven jet and more positive

NAO. We suggest the drop in atmospheric circulation skill is related to reduced skill in North Atlantic Sea surface temperature.
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Key Points:10

• The winter North Atlantic (NA) eddy-driven jet is predictable on decadal time-11

scales with skill (ACC) comparable to that for the winter NAO12

• Anomalies in the NA jet are substantially smaller than expected from the ACC13

skill alone and so suffer from the signal-to-noise issue14

• Skill drops significantly over the most recent period, as hindcasts do not capture15

the return to positive NAO conditions post 201016
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Abstract17

This paper expands on work showing that the winter North Atlantic Oscillation18

(NAO) is predictable on decadal timescales to quantify the skill in capturing the North19

Atlantic eddy-driven jet’s location and speed. By focussing on decadal predictions made20

for years 2-9 from the 6th Coupled Model Intercomparison Project over 1960-2005 we21

find that there is significant skill in both jet latitude and speed associated with the skill22

in the NAO. However, the skill in all three metrics appears to be sensitive to the period23

over which it is assessed. In particular, the skill drops considerably when evaluating hind-24

casts up to the present day as models fail to capture the latest observed northern shift25

and strengthening of the winter eddy-driven jet and more positive NAO. We suggest the26

drop in atmospheric circulation skill is related to reduced skill in North Atlantic Sea sur-27

face temperature.28

Plain Language Summary29

Climate models have been shown to be capable of predicting the evolution of the30

mean atmospheric circulation over long time scales, from annual to decadal and longer.31

However, models are overestimating the chaotic, unpredictable component of the climate’s32

variability and, although model predictions follow the observed oscillations of the climate,33

the strength of these oscillations is critically underestimated. Recently, it was shown that34

climate models have skill in predicting the North Atlantic Oscillation and in this paper35

we assess model skill in predicting the evolution of the North Atlantic eddy-driven jet36

in winter, with the aim to highlight how much of the skill at predicting the NAO derives37

from good predictions of the jet’s state. We find levels of skill similar to that for the NAO,38

with slightly higher skill for the jet’s strength (or speed) over its location (latitude of its39

maximum speed). We also notice a drop in skill over the last decade, as models fail to40

capture the latest trends in the NAO and jet’s evolution, and suggest that it might be41

related to degradation in skill at predicting surface temperature variability.42

1 Introduction43

The North Atlantic climate system is characterized by significant atmosphere and44

ocean variability that occurs on a wide range of time scales. In particular, the North At-45

lantic Oscillation (NAO) represents the leading pattern of climate variability in the North46
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Atlantic region, with positive NAO typically associated with stormier and wetter con-47

ditions over Western Europe, while negative values correspond to drier, colder weather48

(Hurrell, 1995). The NAO is also closely linked to the intensity and position of the North49

Atlantic eddy-driven jet (Thompson et al., 2003; Woollings et al., 2010). Furthermore,50

the atmospheric circulation variability also exerts a strong influence on the climate of51

the North Atlantic basin and Western Europe (Thompson & Wallace, 2001; Sutton et52

al., 2018; Hall & Hanna, 2018). Therefore, reliable predictions of the NAO and jet’s evo-53

lution are of prime societal importance for Northern and Western Europe.54

Considerable evidence has now emerged showing that the NAO is predictable on55

seasonal (Scaife et al., 2014) to decadal timescales (Smith et al., 2020; Athanasiadis et56

al., 2020). In particular, Smith et al. (2020, henceforth, S20) revealed a high level of skill57

at predicting decadal variability of the winter NAO in the 5th (CMIP5, Taylor et al., 2012)58

and 6th (CMIP6, Eyring et al., 2016) Coupled Model Intercomparison Project’s predic-59

tion systems for hindcasts initialized between 1960–2005. Furthermore, S20 showed how60

the predictability of the NAO can be used to improve decadal predictions of other cli-61

mate variables (e.g., surface temperature, mean sea level pressure, precipitation). How-62

ever, the magnitude of the predictable signals in seasonal and decadal predictions ap-63

pears to be significantly underestimated – leading to the so-called signal-to-noise para-64

dox – and large ensembles are needed to reveal the predictable signal (Scaife & Smith,65

2018).66

In contrast to the NAO, decadal predictions of the eddy-driven jet have not yet been67

assessed. Thus, we do not know what aspect of the eddy-driven jet changes are associ-68

ated with the winter NAO skill in S20. Furthermore, we expect the relationship between69

the eddy-driven jet and the winter NAO to change with the timescale and may be re-70

lated to different processes (Woollings et al., 2015; Baker et al., 2017). For example, jet71

latitude changes appear to dominate interannual variability of the winter NAO (Woollings72

et al., 2015) and skillful seasonal predictions of the winter NAO have been associated73

with a skillful prediction of shifts in the jet latitude (Parker et al., 2019). However, decadal74

time-scale winter NAO variability has been linked more to changes in eddy-driven jet75

speed that, in turn, appear to be driven by sea surface temperatures in the subpolar North76

Atlantic (Woollings et al., 2015). The different aspects of jet variability (e.g., latitude77

or speed) are also known to lead to different impacts on sea ice, temperatures and pre-78

cipitation both over the North Atlantic ocean basin and over western Europe (Hall &79
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Hanna, 2018; Ma et al., 2020). Therefore, understanding the different aspects of skill could80

be useful in understanding what sectors would benefit most from improved predictions81

on these timescales.82

In this paper, we build upon the analysis of S20 to evaluate the skill of the eddy-83

driven jet. In particular, we address how much of the winter NAO skill on decadal timescales84

is associated with skill in predicting the eddy-driven jet latitude and speed. We focus85

our analysis on the CMIP6 models, which were not all available at the time of S20, and86

extend the analysis over observations of the latest period that was not covered by CMIP587

hindcasts.88

2 Data and Methods89

In this study, we assess a multi-model ensemble of decadal predictions from pre-90

diction systems taking part in component A of the Decadal Climate Prediction Project91

(DCPP-A, Boer et al., 2016) as a contribution to CMIP6. A list of the models consid-92

ered is provided in Table S1 in the Supporting Information. The multi-model ensemble93

consists of 10 models and 153 members in total (of which 120 were also considered in94

S20).95

As in S20, we define the NAO index as the difference in mean sea-level pressure96

between two small boxes located around the Azores (28◦−20◦W, 36◦−40◦N) and Ice-97

land (25◦−16◦W, 63◦−70◦N). The Arctic Oscillation (AO) index is calculated as the98

difference in mean sea-level pressure between the midlatitudes (30◦−60◦N) and the high/polar99

latitudes (60◦−90◦N). We construct the indices of the eddy-driven jet’s latitude (JLI)100

and speed (JSI) by following their definition in Bracegirdle et al. (2018), which draws101

from Woollings et al. (2010) but uses monthly averaged data instead of daily: we first102

calculate the zonal mean of the zonal wind at 850hPa in the North Atlantic sector (60◦W−0◦,103

10◦ − 75◦N) and then identify the maximum and its location as the jet’s latitude and104

speed. As in S20, we focus on assessing skill for years 2–9 of the hindcasts, restricting105

our attention to the extended boreal winter (December, January, February and March,106

DJFM).107

The different forecasting systems are initialized towards the end of each starting108

year. While the first winter of a hindcast is not necessarily complete (some models are109

initialized at the end of December, so their first winter season does not include it), it does110
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not affect our analysis as we consider hindcast years 2–9 (winter of year 2 is complete111

for all models).112

Multi-model ensemble mean anomalies are constructed by first subtracting the model113

mean state (i.e. the time average between hindcast years 2–9 over all starting dates and114

ensemble members, see Fig. S1 in Supporting Information) from each ensemble mem-115

ber and then taking the equally weighted average of all ensemble members. Finally, we116

consider the time mean of years 2–9 winters. Following S20, we construct a lagged en-117

semble by combining each hindcast with the previous three start dates, thus quadrupling118

the number of ensemble members from 153 to 612. We refer to the resulting multimodel119

ensemble mean as the ”lagged” mean.120

The skill of DCPP-A is assessed against reanalysis data from the ERA5 data set121

(Hersbach et al., 2020), between 1979 and 2021 and its back-extension for years 1960–122

1978 (Bell et al., 2021). Indices from reanalysis are computed in a similar way (remov-123

ing the seasonal climatology across the time period considered) and then smoothed through124

an 8-year rolling average so that the observations and hindcasts cover the same time pe-125

riods. Reanalysis and model data were interpolated to a 2.5◦×2.5◦ grid before analy-126

sis. S20 used mean sea level pressure data from HadSLP2 (Allan & Ansell, 2006) to com-127

pute the observed NAO, which appears to have a lower variance in time than ERA5. How-128

ever, we do not expect this difference in variance to affect the skill estimates, which are129

dependent on the phasing of the variability rather than its magnitude.130

We measure the skill by evaluating the Pearson anomaly correlation coefficient (ACC)131

between the observations (ERA5) and the multi-model ensemble mean and estimate the132

Ratio of Predictable Components (RPC) as in Eade et al. (2014),133

RPC =
σo
sig/σ

o
tot

σf
sig/σ

f
tot

≈ ACC
σf
tot

σf
sig

, (1)

where σtot and σsig are, respectively the expected total (signal plus noise) and signal stan-134

dard deviations in the observations/reanalysis (’o’) and forecast (’f’). We test the sta-135

tistical significance of the ACC estimates by using a block bootstrap approach (as in S20).136

We assess skill over different time periods: a short period consisting of years 2–9137

of hindcasts initialized at the end of years 1960–2005 (corresponding to the time period138

studied in S20, that is 1962 to 2014) and a long period, which includes hindcasts initial-139

ized at the end of years 2006 to 2012 (thus covering the period 1962–2021).140
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3 Skill in the NAO and jet stream indices141

We first examine the 2–9 year prediction skill of DCPP-A for the NAO and jet lat-142

itude and speed, initially focusing on the same start dates examined by S20 (i.e. the short143

period, from 1960 to 2005).144

Figure 1a shows predictions of the NAO time series. The observed NAO features145

a pronounced decadal and multidecadal variability (black curves in Fig. 1), with a gen-146

erally increasing trend between the 1960s and 1990s followed by a decrease persisting un-147

til the late 2000s. As noted in S20, the multi-model ensemble mean appears not to be148

able to capture the observed decadal variability, with the observed extremes in the 1960s149

and 1990s lying outside model uncertainties (red shading in the left panels of Fig. 1). Nonethe-150

less, models do show skill at predicting the phasing of such decadal variability, as indi-151

cated by the significant positive ACCs. Over the short period, the ACC of the multi-152

model ensemble mean for the NAO is 0.55 (P < 0.01), which compares to 0.48 (P =153

0.03) in S20 over the same period, and is also affected by a low signal-to-noise ratio (RPC154

of 4.6 here, 4.2 in S20).155

S20 also showed NAO predictions can be improved by computing the lagged en-156

semble mean, which helps filter out the unpredictable noise, and by re-scaling the vari-157

ance to the observed. The resulting model predictions (thick red curves in the right hand158

panels of Fig. 1) are visibly improved as the magnitude of the signal is closer to that of159

observations. We also obtain a higher level of ACC consistent with S20 (compare the ACC160

in left panels to those in right panels of Fig. 1). At the same time, the RPC also increases,161

almost doubling in magnitude compared to the raw ensemble mean. This is indicative162

of the low signal-to-noise ratio that is characteristic of climate models (Scaife & Smith,163

2018). Models also show similar levels of skill for the AO index (+0.55 and +0.63 for the164

raw and lagged ensemble means, respectively), as shown in Fig. 1g,h.165

We then examine the skill of DCPP-A models at predicting the eddy-driven jet’s166

variability (latitude and speed), which also shows decadal timescale variability similar167

to the NAO (see Figure 1c and e). Models have higher skill in predicting the speed of168

the jet (0.62, Figure 1e) than its latitudinal location (0.28, Figure 1c). The RPC for the169

jet latitude (2.7) is lower than that for the jet speed (5.4), consistent with the lower skill170

in the former. Again, the skill improves when using the lagged ensemble mean for both171

the jet latitude (0.52, Fig. 1d) and the speed (0.71, Fig. 1f). The RPC also becomes larger,172

–6–



manuscript submitted to Geophysical Research Letters

(a) (b)

(c) (d)

(g)

(f)

(h)

(e)

Figure 1. Evolution of 8-year running mean observed (black) and year 2–9 predictions from

DCPP-A hindcasts (red) extended boreal winter (DJFM) NAO (a,b), Jet Latitude (c,d), Jet

Speed (e,f) and AO (g,h) indices. Panels on the left show the raw ensemble-mean prediction (i.e.,

no re-scaling of variance). Panels on the right are the same as those on the left, but showing

the ensemble-mean forecast (thin red, resulting from 153 ensemble members) rescaled to have

the same variance as the observations and also the lagged ensemble-mean forecast (thick red,

resulting from 612 ensemble members, rescaled by the same factor as for the non-lagged). The

red shading in panels (a,c,e) represents the 5th-95th percentiles of all ensemble members (dark

shading corresponds to short period; the additional years in the long period are shown in lighter

shading) while in panels (b,d,f) it indicates the 5%-95% confidence interval estimated from the

root-mean square error of the lagged ensemble with respect to the observations. At the top of

each panel, we indicate the ACC with its significance (P) and the corresponding RPC for the

short period (long period inside brackets).

more than trebling for JLI (2.7 to 8.4), while the increase is more moderate for JSI (5.4173

to 8.7). Therefore, the similar levels of skill for the NAO and the jet speed suggests that174
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the skill in the NAO on decadal timescales is associated with skill in the jet speed rather175

than its latitude. This also appears to be the case for quite a wide range of lead times,176

as we observe comparable skill in NAO and JSI predictions (see Fig. S2 in Supporting177

Information).178

Figure 1 and previous work (e.g., Scaife & Smith, 2018; Klavans et al., 2021) have179

shown that prediction skill is sensitive to the number of ensemble members. Such a re-180

sult is also underlined by the fact that, of the models that contributed to DCPP-A, the181

models with the biggest ensemble size also have the largest skill (not shown). Therefore,182

an obvious question is whether the skill scores computed here for DCPP-A represent the183

upper limit of skill, or whether more skill could be expected. To assess the upper limit184

of skill we plot how skill changes with the number of ensemble members. We do this by185

computing the skill for a random selection of different ensemble members that make up186

the lagged ensemble mean (612 members) and gradually increasing the size of the selec-187

tion.188

Figure 2 shows the resulting skill at predicting the atmospheric indices considered189

in this study as a function of ensemble size. Consistent with the evaluation of skill in Fig. 1,190

it highlights the different levels of skill for the different indices. However, it also shows191

that skill in the NAO, jet latitude and jet speed appear to still be increasing when us-192

ing the maximum number of ensemble members (e.g. 612), suggesting that ACC skill193

could be expected to increase further with a larger number of ensemble members. We194

point out that the shading in Fig. 2 does not represent the uncertainty associated with195

the estimation of the correlation score, rather it indicates the spread in the distribution196

of the random selection of combinations.197

As an aside, we find that the overall skill for the NAO and eddy-driven jet is sen-198

sitive to the inclusion of March in the winter season mean (e.g., DJFM compared to DJF).199

The increase in skill is especially clear for the jet latitude, which is associated with a sig-200

nificant drop in skill when assessing DJF rather than DJFM (not shown). This drop in201

skill appears to be consistent with the larger decadal and multidecadal variability ob-202

served in the North Atlantic eddy-driven jet in March (e.g., Simpson et al., 2019), al-203

though the larger variability on decadal timescales appears to be dependent on how basin-204

wide variability is measured (Bracegirdle, 2022).205
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(a) (b)

Figure 2. (a) Relationship between ensemble size and skill (ACC) at predicting the NAO

and AO (black and red, respectively) with lagged ensemble means, for the short (solid lines) and

long (dotted lines) periods. Shading represents 5th-95th percentiles of distribution of ACCs from

10,000 random combinations of a number of ensemble members; lines indicate the mean of such

distributions. (b) As in (a), for JLI (black) and JSI (red).

4 Degradation of skill in the recent period206

The previous section, and results in Fig. 1, focused on evaluating hindcasts initial-207

ized over 1960–2005 (i.e., the short period) to be consistent with results from S20. How-208

ever, DCPP-A hindcasts from CMIP6 cover a longer time period and longer observational209

data is available to evaluate them. Therefore, here we extend our analysis to evaluate210

hindcasts initialized over 1960—2012, which we call the long period.211

When evaluating DCPP-A hindcasts over the long period, we find the skill for the212

NAO and the jet indices drops substantially. For example, the lagged ensemble skill for213

the jet latitude and jet speed decreases from +0.52 and +0.71 respectively to statisti-214

cally insignificant values of +0.18 and +0.34. Skill in the the NAO index drops from +0.75215

to a 0.50, but the latter value is still statistically significant. The differences in skill are216

found to be statistically significant via block-bootstrapping. The drop in skill is also re-217

lated to a drop in RPC values, which decreases to 6.9 for the NAO, and down to 2.6 and218

3.4 for the jet latitude and speed respectively. The drop in skill appears to be related219

primarily to DCPP-A hindcasts failing to capture the observed positive trend in the in-220
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dices over the 2010s (Fig. 1). In particular, this period corresponds to a return to pos-221

itive NAO conditions associated with a stronger and more northerly jet. Such a drop in222

skill is also visible from the inspection of Fig. 2. However, it is clear that model skill is223

not only lower over the long period but the increase in skill with ensemble size also ap-224

pears to reach saturation at smaller ensemble sizes (except for the AO index).225

Alongside the drop in skill of the atmospheric variables, there is also a drop in skill226

of surface temperature over the North Atlantic Ocean. Figure 3a,b shows the skill of DCPP-227

A hindcasts at predicting temperatures near the surface (TAS). For the short period (Fig. 3a)228

there is significant skill over the majority of the globe, with particularly strong skill in229

the North Atlantic and across the tropical Atlantic Ocean, and also in the Indian and230

western Pacific Oceans. However, for the longer period we find a significant reduction231

in skill over the eastern subpolar North Atlantic and in the tropical North Atlantic (Fig. 3b).232

This reduction of skill over the North Atlantic is associated with DCPP-A predictions233

being too warm over the subpolar North Atlantic, as suggested in lower panels of Fig. 3234

where we show the latest changes (from end of short period to end of long period, i.e.235

2010–2017) in TAS in DCPP-A models (Fig. 3c) and the deviation of DCPP-A models236

from observations (Fig. 3d). In other words, the DCPP-A multimodel mean does not cap-237

ture the recent cooling of the subpolar North Atlantic post-2005 (Robson et al., 2016).238

Anomalously cold temperatures over the subpolar and tropical North Atlantic Ocean have239

been suggested as drivers of positive NAO and a faster jet (Rodwell et al., 1999; Woollings240

et al., 2015). Therefore, one interpretation is that a drop in TAS predictability is the cause241

of the drop in NAO and jet indices.242

However, it is important to note that warmer surface temperatures over the North243

Atlantic Ocean would also be expected due to the failure to predict the positive NAO244

(e.g., because positive NAO drives increased oceanic heat loss, Marshall et al., 2001; Grist245

et al., 2010) and there are other factors that may be relevant. For example, previous work246

has highlighted that temperatures in the western tropical Pacific are a key driver of the247

NAO on decadal timescales (Latif, 2001; Kucharski et al., 2006). Nevertheless, we see248

no change in skill in this region between the short and long period (Fig. 3b), suggest-249

ing that this is not the primary cause. External forcings have been linked to NAO vari-250

ability (Christiansen, 2008; Ortega et al., 2015; Sjolte et al., 2018) and may explain the251

skill in the short period (Klavans et al., 2021). However, different forcing factors change252

though time and the skill expected from external forcing is also sensitive to the time pe-253
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Figure 3. Surface temperature (TAS) skill (as measured by ACC) of year 2–9 hindcast from

DCPP-A for the short period (a) and the difference long minus short (b). Panels c,d show

changes in TAS over the latest decade (i.e. long minus short) in DCPP-A models and devia-

tions of DCPP-A models from ERA5, respectively. Stippling indicate statistical significance

(P< 0.05) of the ACC (a) and its difference across the two periods (b).

riod used (Sjolte et al., 2018). Additionally, state-dependent predictability of the NAO254

(Weisheimer et al., 2017) , as well state dependence in teleconnections (López-Parages255

& Rodŕıguez-Fonseca, 2012; Weisheimer et al., 2017; Fereday et al., 2020) may also play256

a role. Finally, we also note that the drop in skill appears largely an Atlantic phenomenon257

as there is no significant drop in skill in the predictability of the Arctic Oscillation in-258

dex (ACC values of +0.65 and 0.64 for the short and long period respectively, see fig 1g259

and h). Therefore, further work is needed to unravel the causes of the drop in skill.260

5 Conclusions261

In this paper we expand upon the analysis presented in Smith et al. (2020) to as-262

sess the predictability of the North Atlantic eddy-driven jet (latitude and speed) in win-263

ter (December to March) in decadal predictions made for CMIP6. In particular, we eval-264

uate the prediction skill of the eddy-driven jet latitude and speed in winter and we com-265
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pare with skill in the winter North Atlantic Oscillation (NAO). Our key results are as266

follows:267

1. The North Atlantic eddy-driven jet is predictable on decadal time-scales when eval-268

uating hindcasts initialized over the period 1960–2005 (i.e., the same time-period269

as used in Smith et al., 2020). The Anomaly Correlation Coefficient skill score (ACC)270

for years 2–9 of the ensemble mean (after post-processing to reduce unpredictable271

noise, i.e. considering a lagged-ensemble) is 0.52 and 0.71 for jet latitude and jet272

speed, respectively, and is consistent with the ACC of 0.75 for the winter NAO.273

2. As with the NAO, the amplitude of predicted anomalies in the North Atlantic eddy-274

driven jet is substantially smaller compared to observations (RPC of 8.4 and 8.7275

for the jet latitude and speed, respectively), despite the high level of ACC, indi-276

cating that they also suffer from a low signal-to-noise ratio.277

3. The skill for all indices drops substantially when evaluating hindcasts initialized278

between 1960–2012 (rather than 1960–2005). This drop in skill was due to hind-279

casts failing to capture both the return to positive NAO conditions post 2010 and280

the poleward extension and strengthening of the jet. As a result, the skill of the281

NAO drops to 0.50 and significant skill is no-longer present in the North Atlantic282

eddy-driven jet indices.283

4. Alongside the drop in skill of the atmospheric circulation in the North Atlantic,284

there is also a significant drop in skill at capturing the surface air temperature over285

the subpolar and tropical North Atlantic when evaluating hindcasts initialized be-286

tween 1960–2012 rather than 1960–2005.287

This paper has demonstrated that, alongside the NAO, it is possible to predict the288

winter North Atlantic eddy-driven jet on decadal time-scales. However, as with the NAO,289

the predictable signal appears too weak. Future work could explore calibrations of the290

predictions as in Smith et al. (2020) in order to provide more relevant information to so-291

ciety, and to explore whether jet predictions (e.g., latitude or speed) could be more use-292

ful to some sectors than the NAO predictions.293

However, it is also clear that the skill in North Atlantic Atmospheric circulation294

in winter is sensitive to the time period over which it is computed. Unfortunately, the295

reasons behind this drop in skill are still unclear. Our results suggest that the drop in296

skill is primarily related to the physical mechanisms that unfold in the North Atlantic297
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basin. In fact, the skill in predicting hemisphere-wide variability (e.g., the Arctic Oscil-298

lation) was not found to be affected by a similar degradation over the most recent pe-299

riod. Furthermore, one potential interpretation is that the drop in skill of the atmospheric300

variables is consistent with a reduction in skill at capturing surface temperature anoma-301

lies over North Atlantic Ocean. However, the drop in North Atlantic atmospheric cir-302

culation skill could be related to other factors, such as external forcing changes, state-303

dependent predictability, or poorly related processes. Therefore, in order to have con-304

fidence in future predictions, it is important that future work explores the reasons be-305

hind changing skill.306

Open Research307

The climate model hindcasts are available via the Earth System Grid Federation308

(ESGF) archive of the 6th Coupled Model Intercomparison Project (CMIP6) data (https://309
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Reanalysis data from ECMWF’s ERA5 is available from https://www.ecmwf.int/311

en/forecasts/datasets/reanalysis-datasets/era5.312
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jet mean states for each model individually (Text S2 and Figure S 1), and a brief overview

of model skill at different lead times (Text S3 and Figure S 2).

Text S1 The multimodel ensemble is composed of the 10 different models that partici-

pated in the Component A of the DCPP (Boer et al., 2016). These are listed in Table S1.

Text S2

Figure S1 illustrates the mean states for the NAO and jet indices as a function of hind-

cast lead time for each of the models in Table S1. We notice that after year 3, most

models have reached a stable state which does not necessarily fall within the observed

variability (represented by the interquartile range from ERA5). Despite the large differ-

ences between the different models, the resulting skill of the multimodel ensemble mean is

still significantly high (as shown in Fig. 2) and there is no significant relationship between

a model’s mean state and the corresponding skill.

Text S3

Figure S2 illustrates shows the skill scores (as measured by ACC) of the multimodel

ensemble mean (non lagged) for different hindcast lead times. Panels at the top (Fig. S2a–

c) show skill for the NAO, JLI and JSI over the short period, while panels below (Fig. S2d–

f) refer to the long period. For the NAO and JSI, we observe high and statistically

significant skill when we consider the earlier years in the hindcasts, especially over the

short period (Fig. S2a,c). The skill at predicting the JLI (Fig. S2b) is visibly lower than

that for the NAO and JSI, and does not appear to benefit from considering only the earlier

year of the hindcast (low and statistically insignificant ACC in the bottom left corner of

(Fig. S2b). In our study we consider the hindcast period 2–9. We exclude the first
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hindcast year (i.e. year lead start 1) as some DCPP-A model hindcasts are initialized at

the end of December (BCC-CSM2-MR, CanESM5 and IPSL-CM6A-LR hindcasts), and

thus do not provide a complete first winter season.
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SUMMER


(JJA)

WINTER


(DJF)

ERA5 (interquartile range)

(a)

(b)

(c)

Figure S1. Evolution of the mean states of the NAO (a), Jet Latitude (b) and Jet

Speed (c) indices as a function of lead year in the hindcasts for each of the CMIP6 DCPP

models. Thick lines (solid and dashed) indicate the average of the index value across

all ensemble members of each model contributing to the CMIP6 multi-model ensemble

mean, while light shading represents the interquartile range associated with each model

ensemble. On the left of each panel, the mean and interquartile range for ERA5 is shown

(black line and dark gray shading) for ease of comparison.

November 9, 2022, 9:35am



X - 8 MARCHEGGIANI ET AL.: DECADAL PREDICTION OF WINTER JET

(a) NAO, 1960-2005
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(d) NAO, 1960-2012
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Figure S2. Skill scores as measured by ACC of the DCPP-A multimodel ensemble

mean for different hindcast lead periods for the NAO (a,c), JLI (b,e) and JSI (c,f). Panels

a–c refer to the short period, panels d–f to the long period. Each box indicates the ACC

for the hindcast period starting from (and including) the year indicated on the right and

ending on (and including) the indicated at the bottom of each panel. Color shading is

proportional to the level of skill reported in each box (blue for negative, red for positive

values), while statistical significance is indicated by hatching. The maximum level of skill

is highlighted by red box edges.
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