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Abstract

We test the application of a rare event simulation algorithm to accelerate the sampling of extreme winter rainfall over Europe in a

climate model. The genealogical particle analysis algorithm, an ensemble method that interrupts the simulation at intermediate

times to clone realizations in which an extreme event is developing, is applied to the intermediate complexity general circulation

model PlaSim. We show that the algorithm strongly reduces the numerical effort required to estimate probabilities of extremes,

demonstrating the potential of rare event simulation of seasonal precipitation extremes.
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Key Points:
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Abstract
We test the application of a rare event simulation algorithm to accelerate the sampling
of extreme winter rainfall over Europe in a climate model. The genealogical particle
analysis algorithm, an ensemble method that interrupts the simulation at intermediate
times to clone realizations in which an extreme event is developing, is applied to
the intermediate complexity general circulation model PlaSim. We show that the
algorithm strongly reduces the numerical effort required to estimate probabilities of
extremes, demonstrating the potential of rare event simulation of seasonal precipitation
extremes.

Plain Language Summary

Rare events, such as winters with a lot of rainfall, can have a high impact. For
example, high rainfall can cause floods, risking lives and damaging property. To plan
for such events, we would like to know what the probability is to experience a lot of
rainfall in any given year. One way to make an estimate of these probabilities is to run
climate models and look at the proportion of winters having rainfall above a certain
threshold. This method can be very costly and time-consuming, as climate models
require powerful computers and we need to keep them running for a long time until
we see at least a few winters with very high rainfall. In this article, we have applied
algorithms to speed up such model simulations. Instead of keeping the model running
for a long time, we run a large number of copies at the same time. At regular intervals,
we check which simulations are producing a lot of rain. These we copy, while others
are terminated. Even though we have made high rainfall more likely than it should
be, we can still estimate what the correct probabilities of high rainfall are. We show
that this method can save time spent running our computer model, while still giving
accurate results.

1 Introduction

The impact of anthropogenic climate change is felt most acutely during extreme
weather and climate events, such as windstorms, heavy precipitation, flooding, heat-
waves, and drought. Applied research in extremes addresses the questions of (i) quan-
tifying the probability of extreme event occurrence and detecting changes over time,
(ii) attributing such changes to natural variability as well as natural and anthropogenic
forcing, including event attribution for individual observed extremes, (iii) predicting
occurrence probabilities at lead times of days to decades, and (iv) deriving centennial
and longer climate-change projections (Seneviratne et al., 2021). Designing and inter-
preting these kinds of studies is underpinned by, and advances, understanding of the
physical processes involved.

All of these applications are also heavily reliant on computer simulation. For ex-
ample, large ensembles of global climate model simulations are driven with transient
historical and scenario forcings to detect forced changes in the historical period and in
projected future climates (Deser et al., 2020), and systematic variation of the natural
and anthropogenic forcings used in model experiments allows for the attribution of
trends in extremes to these forcings (Wan et al., 2019). Similarly, event attribution
contrasts the occurrence of specific historically observed extremes in ensembles of all-
forcings simulations and counterfactual simulations in which changing anthropogenic
forcings are disregarded (Otto et al., 2018). In forecast applications, ensembles of sim-
ulations are initialised with observation-based estimates of the state of the atmosphere,
ocean, cryosphere, and land surface with one aim to quantify changes of extreme event
occurrence probability in the forecast period compared to a climatological baseline
(Davini et al., 2021).
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Conducting these model experiments is costly in terms of human and computer
time, data analysis and storage, and energy consumption. The nature and rareness of
the investigated events imposes competing demands on a modelling setup that is fit-for-
purpose in terms of model complexity, the length and number of simulations (ensembles
members), and resolution. A case in point are seasonal precipitation extremes in the
midlatitudes (Schaller et al., 2016; M. D. K. Priestley et al., 2017): Due to the length
of the event itself many simulated years are required to sample extreme seasons. At
the same time, model resolution benefits the representation of storm tracks, storm
structure, the water cycle and extreme precipitation, and a global coupled modelling
setup allows for the representation of teleconnections with the tropics or the Arctic
(Zappa et al., 2013; M. D. Priestley & Catto, 2022; Vannière et al., 2019; Schiemann et
al., 2018; Roberts et al., 2018). Limited computing resource may require uncomfortable
compromises between these different demands.

Efficient simulation strategies are required to resolve such dilemmas. Rare event
simulation (RES) algorithms, as applied in this article, provide a way to generate
many more samples of an extreme event. Originally developed in statistical physics,
RES algorithms have found applications in, e.g., queuing networks, biochemistry and
aircraft design. In Earth system modelling, rare event algorithms have previously been
successfully applied to atmospheric models, to over-sample heat waves (Ragone et al.,
2017; Ragone & Bouchet, 2021) and extremely intense tropical cyclones (Webber et
al., 2019).

The aim of this study is to demonstrate the potential of RES for simulating
seasonal precipitation extremes. We implement rare event simulation of winter rainfall
in an intermediate complexity climate model, as a test bed for further studies on higher
resolution models. We will estimate probabilities of threshold exceedance of winter
precipiation far into the tail of the distribution and quantify how our RES approach
has significantly reduced the numerical effort required.

We will use an ensemble based genealogical algorithm similar to those used in
(Ragone et al., 2017; Ragone & Bouchet, 2021; Webber et al., 2019), which are, in turn,
variants of the algorithm described in (Del Moral & Garnier, 2005). In this family of
algorithms, an ensemble is run until an intermediate stopping time, at which time an
objective function is applied to each realization. Realizations with a higher value of
the objective function are deemed to be more promising and are cloned. Realizations
with low values may be terminated, hence focusing numerical effort on the extreme
event.

In Section 2, we will describe the atmospheric model used, introduce rare event
simulations methods in general and the setup used in this study in particular. In
Section 3, we will then present the outcome of the experiment, demonstrating that the
method used can generate a much larger sample of extreme events, reducing strongly
the total amount of simulation time needed to obtain the same accuracy.

2 Methodology

2.1 The general circulation model

The model used in this study is the open-source Planet Simulator (PlaSim) model
(Fraedrich et al., 2005), which uses the Portable University Model of the Atmosphere
(PUMA) as its dynamical core. PlaSim gives a reasonable representation of atmo-
spheric dynamics and of their interactions with the land surface and with the mixed
layer of the ocean; it includes parameterizations of radiative transfers, diagnostic cloud
cover, large-scale precipitation, convective precipitation, and dry convective adjust-
ment.
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The model is used in a T42 horizontal resolution with 10 vertical layers, fixed
default model parameters and climatological SST and sea ice extent with a seasonal
cycle. The time step is 20 minutes.

The model climate has been shown to represent basic features of the general
circulation, including the North Atlantic storm track (Andres & Tarasov, 2019) (see
also Fig. 6).

PlaSim can be considered an intermediate complexity model, which makes it
suitable for explorations of novel computational methods such as ours, where com-
putational complexity needs to be balanced with model realism. Previous applica-
tions of PlaSim include parameter tuning (Lyu et al., 2018), thermodynamic analysis
(Fraedrich & Lunkeit, 2008; Lucarini et al., 2010), climate multistability (Fraedrich,
2012; Margazoglou et al., 2021; Boschi et al., 2013) and linear response theory (Ragone
et al., 2016; Lucarini et al., 2017).

2.2 Rare event simulation

2.2.0.1 Importance sampling The fundamental idea behind many rare event
simulation methods is that of importance sampling (IS). Assume we wish to estimate
a small probability γ = P{X ∈ A} for a random variable X. The set A ⊂ R could be,
for example, those values exceeding a high threshold A = (θ,+∞), or a small interval
of width ∆θ around a target value A = (θ−∆θ/2, θ+ ∆θ/2). The random variable X
could be a physical observable, such as temperature, wind intensity or precipitation,
possibly geographically and temporally averaged.

A method to estimate γ is to generate N independent samples Xi of X and use
the brute force Monte Carlo estimator

γ̂A =
1

N

N∑
i=1

1A(Xi) , (1)

where 1A is the indicator function on the set A (1A(x) = 1 for x ∈ A and 0 otherwise).
The problem with this approach is that the relative error scales as 1/

√
NγA for small

γA. Therefore, for rare events with γA � 1 we would need a very large number of
samples N to keep the relative error under control.

A solution is to sample a different random variable X̃ whose distribution is
linked to that of X in a known relation. Let’s assume that both X and X̃ have
a continuous distribution with probability density ρ(x) and ρ̃(x) respectively. By
generating independent samples X̃i from X̃ the importance sampling estimator

γ̃A =
1

N

N∑
i=1

ρ(X̃i)

ρ̃(X̃i)
1A(X̃i) =

1

N

N∑
i=1

L(X̃i)1A(X̃i) (2)

can be implemented, where L(x) := ρ(x)/ρ̃(x) whenever ρ̃(x) > 0 and zero otherwise.
It is important to note here that the densities ρ and ρ̃ do not need to be known. Only
the proportionality factor L(x) needs to be known, which, as we will see below, is the
case in the algorithm that we use.

The IS estimator is still unbiased and by choosing a density ρ̃ that makes the
rare event A more common, the relative error of this estimator can be greatly reduced
in comparison to that of the brute force Monte Carlo estimator. For more details on
importance sampling, see, for example, (Bucklew, 2004).

2.2.0.2 Rare event simulation algorithm The aim of rare event simulation al-
gorithms is to perform the change of measure that is necessary to implement import-
ance sampling. The random variable X is now a random process in time and the
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probability distributions ρ and ρ̃ should be thought of as probability distributions on
possible paths of this process.

When running a brute force simulation of a dynamical process, like the Earth’s
climate system, the model spends most of the time simulating a completely normal
state of the climate, perhaps 99.9% of the time when considering a 1/1000y event.
Instead, we can run an ensemble simulation with a number of parallel model runs, and
at intermediate times interrupt the calculation to perform a selection procedure. This
way, some paths will become more likely than others, performing the above mentioned
change of probability measure. Since we can keep track of how much more likely
the event has become due to the algorithm, we can find the proportionality factor L,
necessary to construct an unbiased estimator from the manipulated ensemble.

In the class of algorithms known as genealogical particle analysis (GPA) (Del
Moral & Garnier, 2005), trajectories that are not developing a rare event, in our
application those with little precipitation, have a higher likelihood of being terminated.
The most promising trajectories are, on the contrary, cloned, with more clones assigned
to realizations with more precipitation. The algorithm is presented in Appendix B.

The central idea behind GPA is the following: most of the time the different
realizations follow a free evolution (step 2a in Appendix B). At intermediate selection
times tk, the ensemble is manipulated to make the rare event of interest more common.
At step 2b a weight is calculated, which determines how many clones will be created in
step 2c. The number of clones can be zero, meaning this realisation will be terminated.
Note that no changes to the model code are necessary to implement GPA, which is an
important characteristic when working with complex numerical codes.

The selection steps 2b and 2c are where the change of measure is performed. As
in the standard importance sampling estimator (2), the change of measure needs to
be taken into account in the estimation step 4. The probability of each realisation has
been changed at each selection step by a factor W̄

(i)
k , so the overall probability has

been changed by the product L[ξi,tn ] = (
∏n−1
k=1 W̄k[ξi])

−1. This, therefore, needs to be
divided out to make the estimation unbiased.

For extremes of time-integrated observables
∫ T1

T0
V (x(τ))dτ , such as the time-

integrated precipitation, an exponential weight function

Wk[x] = exp

(
C

∫ tk

tk−1

V (x(τ))dτ

)
(3)

can be used, favouring realizations with a sustained high value of the integral of V .
The control parameter C determines the strength of the selection procedure, allowing
to focus on more or less rare events.

Figure 1 illustrates the algorithm. As the algorithm doesn’t require any modific-
ation of the climate model, only killing and cloning of realizations, it can be applied
to complex climate models.

2.2.0.3 The RES configuration used The random variable we are interested in
is

X = p :=

∫
(T0,T1)

∫
Ω

p(x(t), r) dr dt

where x(t) is the state of the model at time t, p(x(t), r) is the precipitation rate
at geographical position r at time t, Ω ⊂ S2 is the geographical region of interest
and T0 and T1 are the initial and final times, respectively. Here Ω is taken to be
the region between -20E and 50W and 30N and 70N. The temporal integration is
performed over December, January and February, i.e. between T0 = 1 Dec 00:00 and
T1 = 1 March 00:00.
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Figure 1. A graphical representation of the cumulative precipitation anomalies over time in

an ensemble under the RES algorithm. Trajectories not developing an extreme cumulative pre-

cipitation event have a high probability of termination (orange dashed lines). At the final time

extreme cumulative precipitation has become common in the ensemble.

Cloning is done every five days, i.e. tk − tk−1 = 5 days. The initial distribution
is sampled M = 250 times on 1 Dec from a 500 year control simulation. The con-
trol simulation is a stationary run (with seasonal cycle), using the default parameter
settings of the PlaSim model.

For the weight function Wk we use the same observable as the one for which we
are estimating rare events, i.e. V (x) =

∫
Ω
p(x, r)dr and

Wk[x] = exp

(
C

∫ tk

tk−1

∫
Ω

p(x(t), r)drdτ

)
.

The parameter C was chosen based by fitting a Gamma distribution to a histogram of∫ T1

T0

∫
Ω
p(x(t), r)drdτ in the control run and picking the value of C that would result

in a change in the mean of the RES ensemble of 3 standard deviations (see Appendix
Appendix A). The assumption of a Gamma distribution is never used in the algorithm,
it is only used to obtain a reasonable value of C to target a given range of extreme
events.

3 Results

3.1 Effectiveness of the RES algorithm

We first verify that the RES is working effectively. Figure 2 (a) shows the cumu-
lative rainfall anomalies generated in the RES versus the brute force control run. We
see that, as expected, over time the realisations with the highest precipitation have
been selected, tilting the distribution at the final time towards extreme events. Fig-
ure 2 (b) shows histograms of winter precipitation generated from 490 years of the 500
year control run (discarding the initial 10 years) and from rare event simulation. It is
evident that the RES has sampled the tail of the winter European rainfall distribution.
At the final time what was a rare event in the control run has become common in the
RES. The mean rainfall level in the RES ensemble lies at 0.220m. Only 13 winters in
the 490 year control run have winter rainfall exceeding this level.

–6–
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(a) (b)

Figure 2. (a) In blue the cumulative rainfall anomaly over time generated in 490 winters of

the control run. In orange the cumulative rainfall anomaly for realisations of the RES that have

survived all selections until the final time (subtracting the mean of the control run). (b) A his-

togram of winter European rainfall based on 490 years of the control run and in the rare event

simulation.

Using the ensemble generated in the RES run we can estimate probabilities using
the estimator B1 and compare them to those obtained from the brute force simulation
using estimator (1). Figure 3 shows the estimated complementary cumulative distri-
bution function F̄ (θ) = P(p̄ > θ), giving the probability of exceeding a threshold θ.
We see that for all estimated probabilities, the estimate for the RES is within the ±2σ
interval of the brute force simulation, even though the RES simulation has a total
simulation time of only 61.45 years, compared to the much longer control run of 490
years.

Figure 4 shows estimates of the normalized relative error for the brute force
estimator and for the rare event simulation. The normalized relative error is the re-
lative error for sample size N = 1, hence comparing relative errors for equal sample
sizes. Figure 4 demonstrates that in the range that the RES is preferentially sampling
(roughly 0.21m to 0.23m, see Fig. 2(b)) there is a strong reduction in the normalized
relative error. This reduction demonstrates that with the same numerical effort, we
can get a much more accurate estimate using RES, or a similar accuracy with less
numerical effort. As the relative error of the brute force estimator scales as 1/

√
N ,

a reduction in normalized relative error by a factor r translates roughly into a re-
duction of computational effort by a factor r2. For the rarest events (in the range
(0.2275, 0.2325)), relative error is reduced by a factor 7.53, meaning the numerical
effort could be reduced by a factor 56.84.

A complementary view to Figure 3 is presented in Figure 5. Here a histogram
is estimated, showing probabilities P(θ − ∆θ/2 < p̄ < θ + ∆θ/2). We see that both
estimates fall within each other’s 2σ interval. As expected from 4, the width of the
2σ interval increases faster for the brute force estimates than for the RES estimates.
Specifically, we can see from Figure 5 that, for example, the lower bound of the 2σ
interval for the estimated probability for the interval (0.225, 0.230) becomes negative
for the brute-force simulation, while the RES gives a lower bound of 0.00559.

3.2 Characterization of extreme winter rainfall condition

An important advantage of RES methods, compared to extrapolations based on
extreme value theory, is the availability of the full dynamical fields resulting from
the numerical integration of the RES ensemble. Here we illustrate this property by
comparing the physical fields of the RES ensemble to those of the control run.
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Figure 3. The complementary cumulative distribution function estimated using the

brute force estimator (1) (dashed line, with dotted lines indicating the ±2σ interval, where

σ =
√(

F̄ (1 − F̄ )
)
/N) and using the RES estimator (B1) (solid line). Wherever values for brute

force estimates are not shown, they are zero or negative.

Figure 4. The normalised relative error for histogram estimation, for the brute force simula-

tion
√
p̂θ(1 − p̂θ)/p̂θ (dashed blue line), where p̂θ is the probability estimate for the histogram

bin (θ − ∆θ/2, θ + ∆θ/2) based on the brute force Monte Carlo estimator (1), and for the RES

(solid orange line) using

√
γ̃
(2)
θ /γ̃θ, where γ̃θ is the probability estimate based on the RES estim-

ator (B1) with A = (θ − ∆θ/2, θ + ∆θ/2), and γ̃
(2)
θ is the estimate of its variance obtained using

(B2). Vertical dotted green lines indicate the 0.9, 0.95 and 0.99 quantiles (from left to right).
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(a) (b)

Figure 5. Estimated histograms of rainfall probabilities for bins of width 0.005m between

0.21m and 0.235m. The blue solid line indicates the brute force estimate (1), the orange dashed

line indicates the RES estimate (B1). The dotted lines indicate 2σ intervals, based on the relat-

ive error shown in Figure 4. The interval shown in (a) is for the brute force estimator, whereas

the interval in (b) is for the RES estimator. Wherever values for brute force estimates are not

shown, they are zero or negative. Vertical dash-dotted green lines indicate the 0.9, 0.95 and 0.99

quantiles (from left to right).

Fig. 6 shows the mean circulation and precipitation over the North Atlantic and
Europe as represented by the PlaSim CONTROL and RES experiments. Both exper-
iments capture basic properties of the regional climate, like the southwest-northeast
tilt in the North Atlantic storm track and the precipitation distribution across Europe.
The westerlies and atmospheric moisture transport are stronger in RES than in CON-
TROL. Moreover, the tilt of the storm track in RES is reduced a little. These dif-
ferences between the experiments result in increased precipitation in RES throughout
most of the target domain, and especially over western Europe, to the south of the
climatological maximum precipitation near the British Isles.

These differences appear physically plausible; we forego a more detailed analysis
of the associated meteorological processes because of the comparative simplicity and
low resolution of PlaSim. The results do illustrate how rare event simulation could be
used in a more realistic model to investigate the physical processes driving extreme
winter rainfall.

4 Conclusion

In this article we have demonstrated the applicability of rare event simulation
algorithms for the study of extreme winter precipitation over Europe. We have applied
a variant of the class of genealogical algorithms introduced by Del Moral and Garnier.
In our setup realizations in an ensemble simulation with sustained rainfall over Europe
are cloned into multiple copies to favour the development of extreme winter rainfall.

As the results in Section 3 have shown, using the Del Moral-Garnier algorithm,
we can sample much more efficiently realizations with extreme European winter pre-
cipitation. On the one hand, this allows to obtain more accurate estimates at the same
numerical cost. As demonstrated in Figure 4, for winter rainfall above approximately
0.2175, the RES becomes more efficient. On the other hand, estimates with the same
accuracy can be obtained with less numerical effort. Our application demonstrates a
combination of both, a relatively short RES of 61.45 years (compared to the 490 years
of the control simulation) allows us to obtain probability estimates of rare events, with
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Figure 6. Mean circulation and precipitation in the CONTROL experiment (a, d), the RES

experiment (b, e) and the difference RES - CONTROL (c, f). Shading in the top row (a–c) shows

precipitation (mm day−1) and grey lines show 500hPa geopotential height (m). Contour lines in

(a) and (b) are shown from 5050 m to 5750 m at intervals of 100 m, and lines in (c) from -50 m

to 50 m at intervals of 20 m (negative contours are dashed). Shading in the bottom row (d–f)

shows precipitable water (kg/m2) and grey arrows show 800hPa horizontal wind vectors; for ref-

erence, the wind speed over a grid box near London (0.0◦E, 51.6◦N) is 14.36 m s−1, 15.57 m s−1,

and 1.21 m s−1 in panels d, e, and f, respectively. The boundaries of the European RES target

domain Ω are indicated by a magenta solid closed curve.

lower relative error compared to the brute force estimates based on the control (see
Figure 5).

Our results highlight the potential for further applications of rare event simula-
tion in weather and climate science. Operational or regular activities such as seasonal
forecasting or event attribution are based on model experiments that are conceptually
similar to the proof of concept presented in this study, albeit using much more soph-
isticated, and hence expensive, models. RES would permit these applications at lower
cost or greater sophistication. Moreover, RES permits to simulate events that are so
rare/extreme that they are simply not accessible within a brute-force approach while
still being physically plausible within the chosen model and experiment.

–10–
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It should be stressed that the methodology used here is not specific to the general
circulation model used. In the future, we plan to apply the method to a state-of-the-
art, high-resolution coupled climate model. We also expect the method to work well
for other geographical regions. Other possible avenues for future research include the
testing of other types of weighting functions, taking into account the physical processes
leading to rare events to sample them even more efficiently.

Acknowledgements

RKHS and LCS are funded by the National Centre for Atmospheric Science
(NERC contract number R8/H12/83).

This document has been drafted using GNU TEXmacs (van der Hoeven et al.,
n.d.). JW would like to thank Joris van der Hoeven and the team behind GNU
TEXmacs for creating their useful software.

Appendix A Exponential tilting of the Gamma distribution

Let Y be Gamma(α, θ) distributed with pdf

ρY (y) =
yα−1e−y/θ

Γ(α)θα
, y > 0.

We exponentially tilt the distribution to Ỹ with pdf

ρ̃Ỹ (y) =
yα−1e−y/θ

Γ(α)θα
eCy

Z
=

1

Z
yα−1e−( 1−Cθ

θ )y

Γ(α)θα

where Z is a normalising factor to ensure that the pdf integrates to 1.

We obtain again a Gamma distribution, with new parameters (α̃, θ̃) =
(
α, θ

1−Cθ

)
.

Notice that θ̃ diverges for C = 1
θ . The mean and standard deviation of Ỹ change to

µ̃ = α̃θ̃ =
θ

1− Cθ
α

σ̃2 = θ̃2α̃ =

(
θ

1− Cθ

)2

α

As C → 1
θ , both µ̃ and σ̃2 diverge.

If we wish to pick C so as to shift the mean µ̃ to k standard deviations away
from µ, we wish to have µ̃ = µ+ kσ. Solving for C gives

θ

1− Cθ
α = θα+ kθ

√
α

1

1− Cθ
√
α = k +

√
α

C =
1

θ

k

k +
√
α
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Appendix B The genealogical particle analysis algorithm

Algorithm 1
Genealogical particle analysis (Del Moral & Garnier, 2005)
With interaction times T0 = t0 < t1 < · · · < tn−1 < tn = T1. The number of particles on
the time interval (tk−1, tk) is denoted by Nk.

1. Initiate M realizations according to the initial distribution, ξ
(i)
0 (t0) ∼ ρ0 for 1 6 i 6

N1 = M

2. For k ∈ {1, . . . , n− 1}

(a) Time-evolve ξ
(i)
k−1 for i ∈ {1, . . . , Nk} under the model dynamics from tk−1 to tk,

resulting in ζ
(i)
k (t) with t ∈ (t0, tk).

(b) Calculate the cloning factor for realization i as

W̄
(i)
k =

Wk[ζ
(i)
k ]

Zk

Zk =
1

Nk

Nk∑
i=1

Wk[ζ
(i)
k ] ,

storing the value of the normalizing factor Zk.

(c) Generate a new particle distribution ξ
(j)
k consisting of N

(i)
k copies of ζ

(i)
k where N

(i)
k

is a random integer such that E(N
(i)
k ) = W̄

(i)
k . We have Nk+1 =

∑Nk
i=1N

(i)
k .

(d) If the model is not stochastic apply a random perturbation to make clones diverge
over time.

3. Time-evolve ξ
(i)
n−1 for i ∈ {1, . . . , Nn−1} under the model dynamics from tn−1 to

tn = T1, resulting in ζ
(i)
n (t) with t ∈ (T0, T1).

4. Finally calculate 1
M

∑Ntn
i=1 L[ξi,tn ]F [ξi,tn ] to estimate E(F [X]), where L[ξi,tn ] =

(
∏n−1
k=1 W̄k[ξi])

−1 with
∏n−1
k=1 W̄k[ξi] is the product of weights given to the realisation

ξ in step 2b, at each selection step along its history.

To estimate γA with the choice of Wk as in (3) we get that
∏n−1
i=1 Wk[x] =

exp(C
∫ tn−1

t0
V (x(τ))dτ) so we can take F (x) = 1A[x] and the estimator becomes

γ̃A =
1

M

Ntn∑
i=1

(
exp

(
−C

∫ tn−1

t0

V (xi(τ))dτ

)
1A[xi]

)(n−1∏
k=1

Zk

)
. (B1)

In (Del Moral & Garnier, 2005), a central limit theorem result for the estimator
result is derived for estimator (B1). This result is important, because asymptotic
confidence intervals can be derived from it. In the case of estimation of histogram
probabilities P{X ∈ (θ −∆θ/2, θ + ∆θ/2)} with ∆θ → 0, the leading order term in
the variance can be estimated as

γ̃
(2)
θ =

1

M

Ntn∑
i=1

(
exp

(
−2C

∫ tn−1

t0

V (x(τ))dτ

)
1(θ−∆θ/2,θ+∆θ/2)[x]

)(n−1∏
k=1

Zk

)2

.(B2)
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