
P
os
te
d
on

23
N
ov

20
22

—
T
h
e
co
p
y
ri
gh

t
h
ol
d
er

is
th
e
au

th
or
/f
u
n
d
er
.
A
ll
ri
gh

ts
re
se
rv
ed
.
N
o
re
u
se

w
it
h
ou

t
p
er
m
is
si
on

.
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
10
02
/e
ss
oa
r.
10
51
22
21
.1

—
T
h
is

a
p
re
p
ri
n
t
a
n
d
h
as

n
ot

b
ee
n
p
ee
r
re
v
ie
w
ed
.
D
a
ta

m
ay

b
e
p
re
li
m
in
a
ry
.

Nowcasting Earthquakes by Visualizing the Earthquake Cycle with

Machine Learning:A Comparison of Two Methods

John Rundle1, Andrea Donnellan2, Geoffrey Fox3, and James Crutchfield1

1University of California Davis
2Jet Propulsion Laboratory, California Institute of Technology
3Indiana University Bloomington

November 23, 2022

Abstract

The earthquake cycle of stress accumulation and release is associated with the elastic rebound hypothesis proposed by H.F.

Reid following the M7.9 San Francisco earthquake of 1906. However, observing details of the actual values of time- and

space-dependent tectonic stress is not possible at the present time. In previous research, we have proposed two methods to

image the earthquake cycle in California by means of proxy variables. These variables are based on correlations in patterns of

small earthquakes that occur nearly continuously in time. One of these is based on the construction of a time series by the

unsupervised detection of small earthquake clusters. The other is based on expanding earthquake seismicity in PCA-derived

patterns, to construct a weighted correlation time series. The purpose of the present research is to compare these two methods

by evaluating their information content using decision thresholds and Receiver Operating Characteristic methods together with

Shannon information entropy. Using seismic data from 1940 to present in California, we find that both methods provide nearly

equivalent information on the rise and fall of earthquake correlations associated with major earthquakes in the region. We

conclude that the resulting time series can be viewed as proxies for the cycle of stress accumulation and release associated with

major tectonic activity. The figure shows the PCA patterns of small earthquakes associated with 5 major M>7 earthquakes in

California since 1950.
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Abstract 
 Nowcasting is a term originating from economics, finance and meteorology.  It refers to 
the process of determining the uncertain state of the economy, markets or the weather at the current 
time by indirect means.  In this paper we describe a simple 2-parameter data analysis that reveals 
hidden order in otherwise seemingly chaotic earthquake seismicity. One of these parameters relates 
to a mechanism of seismic quiescence arising from the physics of strain-hardening of the crust 
prior to major events.  We observe an earthquake cycle associated with major earthquakes in 
California, similar to what has long been postulated.  An estimate of the earthquake hazard 
revealed by this state variable timeseries can be optimized by the use of machine learning in the 
form of the Receiver Operating Characteristic skill score.  The ROC skill is used here as a loss 
function in a supervised learning mode.  Our analysis is conducted in the region of 5o x 5o in 
latitude-longitude centered on Los Angeles, a region which we used in previous papers to build 
similar timeseries using more involved methods (Rundle and Donnellan, 2020; Rundle et al., 
2021).  Here we show that not only does the state variable timeseries have forecast skill, the 
associated spatial probability densities have skill as well.  In addition, use of the standard ROC 
and Precision (PPV) metrics allow probabilities of current earthquake hazard to be defined in a 
simple, straightforward and rigorous way.    
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Key Points 
 

• “Chaotic”	seismicity	contains	hidden	structure	in	the	form	of	state	variable	timeseries		
• Standard	data	science	methods	can	be	used	to	convert	the	timeseries	to	probabilities		
• Both	temporal	and	spatial	probabilities	can	be	computed		

 

Introduction 

Recent research has developed the idea of earthquake nowcasting, which uses state (“proxy”)  
variables to infer the current state of the earthquake cycle (Rundle et al., 2016, 2018, 2019, 2020; 
Pasari and Mehta, 2018; Pasari, 2019, 2020; Pasari and Sharma, 2020;  Luginbuhl et al. 2019;  
2020).  An approach such as this is needed since the cycle of stress accumulation and release is 
not observable (Rundle et al., 2021; Scholz, 2019).  These first approaches to nowcasting have 
been based on the concept of natural time (Varotsos et al., 2001; 2002; 2011, 2013; 2014; 2020a,b; 
Sarlis et al., 2018).   

A review of the current state of earthquake nowcasting, forecasting, and prediction is given by 
Rundle et al. (2021).  Perez-Oregon et al. (2020) have also shown that nowcasting methods can be 
extended to forecasting methods as well.  These methods have begun to be applied in India (Pasari, 
2019), Japan (K. Nanjo, 2020; personal comm., 2020) and Greece (G. Chouliaras, personal comm. 
2019). 

In a series of recent papers, Rundle and Donnellan (2020) and Rundle et al. (2021a,b,c) used 
small earthquake seismicity, together with machine learning, to produce earthquake nowcasting 
curves that mimic the cycle of stress accumulation and release.  These methods were based on 
identifying correlations present in the seismicity itself.  

We note that other investigators have adopted a different approach to anticipating earthquakes 
using machine learning.  Rouet-LeDuc et al. (2017) developed a prediction technique for acoustic 
emissions from events in laboratory experiments on regular, nearly periodic stick-slip friction.  
They also applied a similar method for episodic tremor and slip events in the Pacific Northwest 
(Rouet-LeDuc et al., 2019), which are also relatively regular in time.   

Data 

The data we used for the analysis was downloaded from the USGS earthquake catalog [1].  
Shown in Figure 1 are events having magnitude M > 3.29 for a region of 5o latitude x 5o longitude 
centered on Los Angeles. 

In Figure 1a, the small black dots are all the events during the time period 1/1/1970 – 
12/31/2022, superposed on the geography of the state, and the earthquake fault system (dark green 
lines).  The blue circles are the events having magnitudes 6.9 > M ³ 6.0.  The larger red circles are 
all events having magnitudes M ³ 6.9.  The yellow star denotes a location for InSAR and GNSS 
observations that we discuss below. 

In Figure 1b, we show the monthly number of earthquakes of all magnitudes as a function of 
time (light cyan vertical lines).  In addition, Figure 1b shows the major earthquakes that occurred 
from 1/1/1970 – 12/31/2022 as vertical lines and inverted triangles.  Black dotted lines an black 
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inverted triangles indicate earthquakes having magnitudes 6.9 > M ³ 6.0, corresponding to the blue 
circles in Figure 1.  Red dashed lines and red inverted triangles indicate earthquakes having M ³ 
6.9, corresponding to the red circles in Figure 1. 

Note that the earthquake numbers are shown in the form Log10(1 + monthly number), the 1 
being present to eliminate the singularity at Log10(0).  Also, note that 1 month is defined as 4/52 
years, equal to 0.07692 years.  One can therefore think of this measure of time as a “lunar month”.   

Most importantly, Figure 1b shows a dashed blue line labeled as “EMA” for “Exponential 
Moving Average”.  This EMA curve is striking:  it shows a cycle of higher activity following large 
mainshocks, followed by an increasing quiescence prior to the occurrence of the next mainshock.  
The higher activity just after mainshocks is of course due to the aftershocks.  Quiescence prior to 
the mainshock  has been pointed out by a variety of authors, for example (Kanamori, 1981; 
Chouliaras, 2009; Weimer and Wyss, 1994; Rundle et al., 2011).   

Furthermore, note that the EMA curve, discussed in more detail in the following section, uses 
a number of weights N = 36.  Here N=36 was selected based on a supervised machine learning 
method, using the area under the Receiver Operating Characteristic (ROC [2]) as a loss function.   

The important point to note is that the EMA curve resembles an “upside down” version of the 
classic earthquake cycle of stress accumulation and release. This cycle has been discussed in many 
works on seismology, for example Scholz (2019).  It is this filtered time series to which we now 
direct our focus.   

We improved the method by adding an additional parameter to the model, Rmin, which is an 
assumed minimum rate of small earthquakes occurring monthly.  These two parameters, N and 
Rmin, represent a filter applied to the seismicity time series.  Henceforth we refer to time series of 
this type as “state variable” time series, denoted by Q(t).  As we show in the following, values of 
the time series indicate the current state of the earthquake cycle in the region. 

The addition of the parameter Rmin  to the model is based on the hypothesis that a strain-
hardening process occurs as the next mainshock is approached.  This idea implies that there is a 
transition in small earthquake mechanics from unstable stick-slip early in the earthquake cycle to 
stable sliding (“silent earthquakes”) late in the cycle.  These “silent” small earthquakes would not 
be observable by seismographs, but would contribute to the overall crustal straining that would be 
observable by GNSS and InSAR observations.  We discuss these issues in a later section. 

Results 
We first show some of the most important results.  We emphasize that the model in this paper 

is trained on all the data, so results do not represent backtested “predictions”.  This is in part due 
to the possibility of catalog completeness and uniformity issues prior to full automation of the 
seismic network, that occurred after about 1980 (Hutton et al, 2010), a point that we discuss later. 

Figure 2 shows the optimized ROC curve a), the time series Q(t) º Log10(1 + Monthly 
Number) b), and the "Precision" (PPV [2] c) of the time series.  Note that Q(t) is the optimized 
EMA time series from Figure 1b flipped “upside down” so that Q(t) decreases at the time of the 
most recent major earthquake, then increases as the time of the next large earthquake is 
approached.  This curve is very similar to other such time series found in our previous works 
(Rundle and Donnellan; Rundle et al., 2021a,2021b).  In those works, we also pointed out that 
these time series are reminiscent of the cycle of tectonic stress accumulation and release. 
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The nowcast PPV [2]) is shown in Figure 2c.  As discussed in the following, PPV is a 
quantitative measure of the success of nowcasting a large mainshock having M ³ 6.75 within a 
future time window TW = 3 years.   

The nowcasting process involves “predicting” that a large mainshock will occur during the 
future time window TW.  One then tabulates the fraction of such time windows in which a large 
mainshock did occur.  Success in this case is defined as the fraction of windows TW in which a 
large earthquake did occur divided by the total number of time windows, as a function of the 
current value of the state variable Q(t).  The two parameters in the model, N and Rmin, are optimized 
by use of the skill score of the Receiver Operating Characteristic (ROC), as shown in Figure 2a 
and discussed below. 

At each value of Q(t), such as the red dot on the Figure 2b, the value of PPV can be calculated.  
The value corresponding to the red dot in Figure 2b left is shown by the red dot in Figure 2c, with 
the value of 52.9% shown in the PPV plot at the right.  Figure 2a,b is a frame from a movie that 
is available for downloading from the supplementary material, and corresponds to the month 
beginning 3/27/1999, about 6 months prior to the M7.1 Hector Mine, California earthquake. 

 Figure 2 shows that it is possible to build an optimized 2-parameter model directly from the 
seismicity data, then compute the probability of major earthquakes by means of a rigorous process 
involving Receiver Operating Characteristic (ROC) methods.  Improvements in the model can be 
made as we discuss in the following, but at this time, we propose a simple,  transparent model. 

Corresponding to the temporal model, we can also construct spatial probability density 
functions (PDFs) or Relative Total Intensity IR(xi,t), indicating geographically where large 
earthquakes are most likely to occur.  The basic assumption for these spatial calculations is that 
large earthquakes tend to occur at locations with the largest number of small earthquakes (Rundle 
et al., 2002; Holliday et al., 2005; 2006a,b; 2007; Lee et al., 2011) 

To compute these IR(xi,t) functions, we tesselate the spatial region into a local grid of boxes.  
The results are shown in Figure 3b for spatial probability densities IR(xi,t) for two different grid 
box sizes, 0.5o x 0.5o, and 1o x 1o, for the same month as in Figure 2.  Note that the two IR(xi,t) 
functions are both normalized over the entire region to 100%, after which the function 𝐿𝑜𝑔!"(1	 +
	𝐼#(𝒙$ , 𝑡)) is contoured.   

A question arises as to which of the two IR(xi,t) functions is "better".  Visually, it might seem 
that the finer-scale grid boxes convey more information.  However, as we will discuss in the 
following section, this question can be answered at least partially by computing the spatial ROC, 
shown in Figure 3a.  The result is (apparently) that finer-scale (smaller grid box) spatial partitions 
tend to have worse skill.   

As discussed previously, skill is computed as the area under the spatial ROC curve when built 
using all future earthquakes having magnitudes M ³ 3.29 within the future TW = 3 years.  The 
future earthquakes are shown as dots and circles in the images.  With the ROC method, we show 
below that the IR(xi,t) function in Figure 3a (bottom, grid size: 1o x 1o) has better skill than Figure 
3b (top, grid size: 0.5o x 0.5o  ).  

Details of Method 
Exponential Moving Average (EMA).   Consider a time series T(tj) representing the number 

of small earthquakes occurring in a month, that is indexed at regular monthly intervals j = 1,…,J.  
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With justification discussed previously and below, we introduce a new parameter Rmin such that, 
if T(tj) < Rmin, we set T(tj) = Rmin. 

As described in Rundle and Donnellan (2021; [1]) the EMA averages over the preceding N 
times with a diminishing weight for more remote times in the past.  More specifically: 

𝑇%&'(𝑡) = 	/
𝑇(𝑡")																																											𝑡( = 0
𝛼𝑇2𝑡(3 + (1 − 𝛼)𝑇2𝑡( − 13			𝑡( > 0

    (1) 

 

Here, 𝛼	 ≤1 represents the amount of weighting decrease. A higher value of 𝛼 discounts older 
observations faster.  The most common choice for 𝛼 is in terms of the number of weights used is 
[1]: 

𝛼 = 	 !
"#$

        (2) 

 
Temporal Receiver Operating Characteristic.  As discussed in Rundle and Donnellan(2020) 

and Rundle et al. (2021a,b), the ROC diagram, first developed with the advent of radar technology, 
uses a threshold varying from high to low (or low to high) values to classify the data into categories 
quantified in a “confusion matrix” or “contingency table”.  These categories are True Positive 
(TP), False Positive (FP), False Negative (FN) and True Negative (TN).  The ROC diagram is a 
plot of True Positive Rate TPR (“Hit Rate”) plotted as a function of False Positive Rate FPR 
(“False Alarm Rate”).  The quantities TPR and FPR are defined as: 

𝑇𝑃𝑅 = 𝑇𝑃/(𝑇𝑃 + 𝐹𝑁); 			𝐹𝑃𝑅 = 𝐹𝑃/(𝐹𝑃 + 𝑇𝑁)   (3)  

These quantities are defined using the state variable time series from Figure 2b, Q(t) º Log10(1 
+ Monthly Number).  Here we adopt the future time window TW = 3 years and classify all points 
on Q(t) for a given threshold value into the 4 possibilities, TP, FP, FN, TN using the confusion 
matrix.  The threshold is then varied over many values to produce an ensemble of confusion 
matrices.  This then yields TPR(Th) , which is a function of the threshold value Th, as an implicit 
function of FPR(Th).  

The resulting temporal ROC is shown in Figure 2a for the time interval 1970-2022.  The red 
curve is the ROC curve for Q(t).   The diagonal line from lower left to upper right is the “no skill” 
line.  We also show as cyan lines ROC curves for 200 random time series by sampling randomly 
from Q(t) with replacement (bootstrap method).  The dashed black lines represent the standard 
deviation of the random time series. 

ROC skill is represented by the area under the ROC curve.  No skill is represented by the area 
of 0.5 under the diagonal no skill line.   In Figure 3, the area under the red ROC curve for the time 
interval 1970-2022 is found by numerical integration to be  0.708, indicating the presence of 
significant skill.   

Note that the values for N = 36 and Rmin = 30 were found by using the ROC skill as a loss 
function, and then optimizing these parameters with a supervised learning method.  

Table 1 (top) indicates that the ROC skill has improved significantly in more recent times, a 
point that we will return to below. Table 1 also includes an entry for 1970-2022 in which Rmin = 0, 
demonstrating that even the 1-parameter model (EMA with N =36 weights) has ROC skill (0.665) 
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better than random (0.5).  The 1-tailed P-statistics show that all skill scores are significant relative 
to random skill. 

Parameter Rmin.  Recall that the nowcast parameters were obtained by training on all the data 
from 1970-2018.  Rmin was computed by first computing: 

𝜇	 = 	 !
)*∫ Θ(𝑡′)𝑑𝑡′+"!*

!,-"      (4) 

We then defined a parameter 𝜆, optimized using supervised learning with ROC skill as the loss 
function, to compute Rmin = 𝜆 𝜇.  Optimization yielded the value 𝜆 = 18. 

Relative Total Intensity Contours.  Whereas the Q(t) time series shown in Figure 2b uses all 
the M ³ 3.29 earthquakes in the defined geographic region, the spatially gridded relative intensity 
time series IR(xi,t) consists of all time series in the ensemble of grid boxes.  As shown by Rundle 
et al. (2002; Tiampo et al., 2002a,b; Holliday et al., 2005; 2006a,b; 2007), large earthquakes tend 
to occur where the most small earthquakes occur.  This fact provides the initial justification for the 
method. 

We then defined a quantity 𝐼#(𝒙𝒊, t)|%&'	, where 𝐼#(𝒙𝒊, t)|%&' is the exponential moving 
average (N = 36) of 𝐼#(𝒙$ , t) and 𝐼#(𝒙$ , t) is required to have a lower bound Rmin (xi) =  λ	𝜇(𝒙𝒊). 
Here 𝜇(𝑥$) is the mean of 𝐼#(𝒙𝒊, t) over the years 1970-2018.  The values of 𝐼#(𝒙𝒊, t)|%&' were 
then plotted and contoured as in Figure 3.  λ is the same parameter as used in the global Rmin.  We 
then normalized 𝐼#(𝒙𝒊, t)|%&'	 over space to 100%, so that it represents a spatial probability 
density. 

We found that the addition of the lower bound Rmin (xi)  only modestly improves the skill of 
the spatial contours, as determined from the spatial ROC diagrams in Figure 3a.  As for the 
temporal skill, we also found that using only the EMA for the spatial contours still produced a 
nowcast with skill better than random (Table 1 bottom). 

Spatial Receiver Operating Characteristic. Using the same procedure as for the temporal ROC 
(Figure 3), we apply a varying spatial threshold ("waterline") and compute spatial TPR and FPR, 
as was done in Holliday et al. (2005).  The results are shown for the two grid box sizes, 0.5o x 0.5o  
and 1o x 1o (Figure 4).  It can be seen that the grid box size 1o x 1o has higher skill than the 0.5o x 
0.5o grid box size. 

The ROC curves in Figure 3 were computed at 1-year intervals from 1970 to 2018, producing 
the 48 cyan-colored curves.  Similar to the temporal ROC, a future time interval TW = 3 years was 
used, and the skill was computed using all future events with M ³ 3.29 within TW.  The red curve 
is the mean of the 48 cyan-colored curves.  Using the skill obtained by integrating the area under 
the 48 cyan-colored curves, we find the mean skill and standard deviation over the 48 years. 

 ROC skill for the curves in Figure 3, together with some additional calculations, are shown 
in Table 1 (bottom).  There we include calculations for 3 different grid sizes, including 1-tailed P-
statistics, from which it can be seen that the at higher spatial resolutions, the skill is worse.  We 
find a tradeoff between skill and spatial resolution.  The P-statistics show that all skill scores are 
significant relative to random (no) skill. 

We also include calculations in which we assume λ = 0 for the two grid sizes.  It can be seen 
that while skill is not as high as for nonzero λ, there is spatial skill nonetheless.  Nonzero λ	does 
improve skill, but only modestly.  
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Summary and Discussion 
We again emphasize that we have trained the 2-parameter model on all the data from 1970-

2018.  Thus the results are meant to illustrate consistency of model with data, rather than being a 
validation study with disjoint training and test data.   

As discussed previously, we have proposed a 2-parameter model, using N weights for the 
exponential moving average, and the bias term Rmin. The parameter Rmin improves ROC skill 
significantly for the temporal skill, but only modestly for the spatial ROC skill.  We now discuss 
the physical motivation for including Rmin. 

We find that this minimum earthquake rate Rmin  becomes important in the lead-up to the large 
earthquakes as (presumably) the regional tectonic stress increases prior to the next large 
earthquake.  This process is similar to the laboratory observed process of strain-hardening 
(Kandula et al., 2019) or strain-stiffening (Jiang and Srinivasan, 2013).  In the former, more of the 
deformation is taken up by inelastic (plastic) straining as failure is approached.  In the latter the 
laboratory rock sample becomes increasingly rigid, leading to a transition from unstable stick-slip 
on microcracks to stable sliding.  In either case, the stable slip or plastic straining is modeled by 
the excess rate Rmin.   

Transition from unstable stick-slip to stable sliding has been observed in laboratory friction 
experiments (Dieterich, 1986; Heslot et al., 1994; Beeler et al., 2001; Beeler et al., 2004; Chen and 
Lapusta, 2009),.  It is seen as the stiffness of the testing machine increases, as well as in 
experiments in failure in triaxial stress experiments and for observations of seismicity.   

Support for this application to earthquakes can be seen in both InSAR and GNSS observations 
of deformation prior to major earthquakes in California.  In Figure 4 we show the surface 
deformation from Sentinel InSAR (a)and GNSS data (b) in at a point having latitude 35.57o, 
longitude -117.68o, near the epicenter of the M7.1 Ridgecrest, California earthquake of July 5, 
2019, over the years from 2015-2019 (yellow star in Figure 1).  The InSAR data were processed 
using the LiCSBAS package (Morishita et al., 2020, 2021; Lazecký et al., 2020; [3]).  Note that 
the frame ID is 064A_05410_131313, and other details can be found at the COMET Sentinel 
InSAR portal [4]. The GNSS data were processed at JPL  by Heflin et al. (2020) [5]. 

Aside from seasonal fluctuations in the InSAR displacement, the trends are linear, showing no 
sign of the type of quiescence implied by the seismically observable data.  This fact suggests an 
approach to potentially locate the epicenter of an impending earthquake, by comparing the trend 
in surface deformation, observed by InSAR and/or GNSS, to the trend in Benioff strain due to the 
unstable slip-slip, small earthquakes.  These observations might be focused on the areas of higher 
probability density seen in Figure 4.   

As a final remark, we have found that the mean rate of small earthquakes has been highly 
variable in time, generally increasing. This time dependence could be explained either by the 
physical processes generating the earthquakes changing over time, or alternately by 
incompleteness of the catalog prior to the full implementation of the digital observation network 
in the mid 1990's.  Hutton et al. (2010) have a discussion of the completeness level that is 
informative in this regard.  Further refinements of the method presented here might include taking 
account of this time dependence, but this is a subject that we leave to future research.   
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Table 1.  Temporal and Spatial Receiver Operating Characteristic (ROC) values for a series of 
nowcast examples.  (Top)  Optimal examples have 2 parameters (N=36 and Rmin = 30), but it can 
be seen that even 1 parameter examples with Rmin = 0 have skill significantly better than random, 
which is 0.5, as seen by the 1-tailed P-statistics in the table.  (Bottom)  Spatial Receiver 
Operating Characteristic (ROC) values for a series of spatial probability density functions.  It can 
be seen that there is a tradeoff between spatial resolution and skill, with lower spatial resolutions 
having better skill than higher spatial resolutions.  All of the examples in the table have 
significant skill, as seen by the 1-tailed P-statistics.  It can also be seen that even 1 parameter 
examples with Rmin = 0 have skill significantly better than random.  Another result from Table 2 
is that the addition of the Rmin parameter offers only a relatively modest improvement in skill. 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
  

Table	1	

Temporal	and	Spatial	ROC	Skill	

Time	Interval	 Temporal	Skill		 Rmin	 P-Stat	
1950-2022	 0.557	 30	 1.13	x	10-2	

1970-2022	 0.708	 30	 <	10-5	

1984-2022	 0.759	 30	 <	10-5	

1993-2022	 0.925	 30	 <	10-5	

1970-2022	 0.657	 0	 <	10-5	

	 	 	 	

Resolution	 Spatial	Skill	 Rmin	 P-Stat	
0.5o	x	0.5o	 0.669	±0.027	 30	 <	10-5	

0.667o	x	0.667o	 0.702±0.020	 30	 <	10-5	

1.0o	x	1.0o	 0.746	±0.031	 30	 <	10-5	

0.5o	x	0.5o	 0.626±0.029	 0	 <	10-5	

1.0o	x	1.0o	 0.728±0.035	 0	 <	10-5	
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Figure 1.  a) Map of the region, 5o x 5o area centered on Los Angeles.  Smallest blackdots 
represent earthquakes M>3.29.  Blue circles represent earthquakes M ³ 6, red circles represent 
earthquakes M ³ 6.9.  Yellow star is the location of GNSS and InSAR data that is shown in Figure 
9.  b) Monthly seismicity M > 3.29  as a function of time for the region in Figure 1.  Blue dashed 
line is the Exponential Moving Average (EMA) of the monthly seismicity rate with N = 36. 
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Figure 2.  Receiver Operating Characteristic (ROC, a), state variable time series (b), and Precision 
(PPV, c).  The figure represents frame 380 of a movie showing the time development of the 
nowcast.  The movie is available in the supplementary material. The red dot represents the date for 
the frame, which was 3/27/1999.  The vertical dashed red lines in a) are the dates of the large 
earthquakes M ³ 6.9, the vertical black dotted lines are the earthquakes M ³ 6.0.  Panel c) 
represents the chance that an earthquake M ³ 6.75 will occur during the following 3 years.  The 
chance of such an earthquake M ³ 6.75  at that moment is 52.9% as shown, both by the number in 
the green box and the red triangle at bottom.  Skill is the area under the ROC curve in a), which 
we find as 0.708.  The no skill line is the diagonal line from lower left to upper right.  Since the no 
skill area is obviously 0.5, this implies that the nowcast time series has significant skill.  The cyan 
lines in a) are ROC curves for 200 random time series, whose mean is the diagonal no skill line.  
The dotted lines bracketing the no skill line from lower left to upper right represent the ± 1 s value 
for the random time ROC series.  More results are shown in Table 1. 
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Figure 3.  a) Spatial ROC diagrams a) for two grid box sizes, 0.5o x 0.5o and 1o x 1o.   b) Spatial 
probability densities (PDFs).  For the PDFs, the future earthquakes during the 3 years after 
3/27/1999 are shown as circles on the maps.  Smallest circles are for 4.9 ³M ³ 4.0, next larger 
circles are for 5.9 ³M ³ 5.0, next larger circles (blue) are for 6.9 >M ³ 6.0, and largest circles (red) 
are for M ³ 6.9.   In the ROC curves in for the two PDFs in a), the cyan curves are 48 spatial ROC 
curves evaluated at 1-year intervals beginning with 1970.  The curves are evaluated using all 
earthquakes M > 3.29 for the the following TW = 3 years.  Thresholds are established for all values 
of the PDFs, and the values of TP, FP, FN, TN are computed, with the ROC curves being computed 
from those.  Again, the dashed line from lower left to upper right is the no skill line.  These and 
other data are listed in Table 1.   

 
 

  



	
Earthquake	Nowcasting	with	Machine	Learning:	Influence	of	Strain	Hardening	

18	

Figure 4.  Surface deformation from Sentinel InSAR (a), and GNSS data (b) at a point having 
latitude 35.57, longitude -117.68, near the epicenter of the M7.1 Ridgecrest, California earthquake 
of July 5, 2019, over the years from 2015-2019 (yellow star in Figure 1, Cerro Coso Community 
College - CCCC).  Using LiCSBAS, a spatial-temporal filter was applied that is high-pass in time 
and low-pass in space with a Gaussian kernel that is identical to filters used in other time series 
InSAR software packages such as StaMPS.  The spatial filter width used is 2km and the temporal 
filter width used is 0.16 yr.  After applying the filter, the velocity computed is -0.4 mm/yr from a 
velocity of 0mm/yr with no filter.  The fact that the deformation over the years prior to the 
Ridgecrest event is linear suggests that small earthquakes did not stop or decrease with time. When 
compared to the decrease in small seismic earthquakes prior to the large earthquakes seen in 
Figure 2, it suggests that there was a transition from unstable stick-slip events to stable sliding. 
This is because unstable events can only be seen with seismometers, whereas both unstable and 
stable slip can be observed with geodetic data. 

 

 


