Development and application of a continental scale compound flood modeling system in a complex coastal flood plains

Henok Kefelegn¹, Hassan Mashriqui², Js Allen¹, Jason Ducker¹, Ryan Grout¹, Richard Gibbs³, Julio Zyserman¹, Saeed Moghimi⁴, Yuji Funakoshi⁴, Ali Abdolali⁵, Andre Van der Westhuysen⁵, Trey Flowers¹, and Edward Clark¹

November 22, 2022

Abstract

We present a high-resolution continental-scale compound flood modeling system. It aims to quantify inland flooding resulting from the composite effects of riverine discharge and surface runoff and storm surge, in the inland-coastal zone during significant riverine and coastal storm events. This is achieved by coupling three continental models: the National Water Model (NWM) for the hydrology component, the Advanced Circulation Ocean Model for the coastal storm surge component, and the WAVE-WATCH III model for the surface wave component with a detailed inland-coastal inundation model as the mediator between coastal and inland hydrology module. The inundation model, Delft3D FM, D-Flow Flexible Mesh (D-Flow FM), uses a high quality 2D unstructured grid with high-resolution (~100 m) near coastal features and lower-resolution in other areas to resolve the geometry of the study area. The coastal features are collected from NWM streamlines, National Hydrography Dataset, US medium shorelines and bathymetric features from the United States Army Corps of Engineers . The D-Flow FM model is forced by time-varying water levels and riverine discharges applied at its offshore and inland boundaries, respectively, by spatially- and time-varying wind and pressure fields and incorporates the contributions of surface and subsurface runoff to the total discharge in rivers, channels and streams. We conducted model validations for the following four major flooding events across the US coast: Hurricanes Ike (2008), Sandy (2012), Irma (2017), and Florence (2018). The results highlight the importance of including composite effects of compound flooding to accurately predict water levels during combined river flooding and extreme storm surge events.

¹NOAA Office of Water Prediction, National Water Center, Tuscaloosa, AL, United States ²National Oceanic and Atmospheric Administration (NOAA), Office of Water Prediction, National Weather Service (NWS), Silver Spring, United States

³University of Alabama, Tuscaloosa, AL, United States

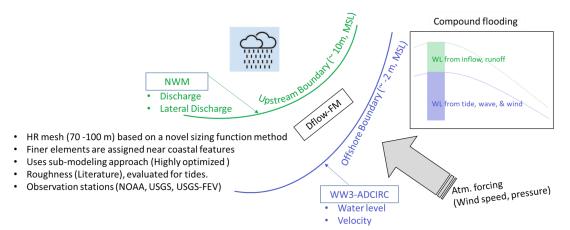
⁴NOAA National Ocean Service, Silver Spring, MD, United States

⁵NOAA Environmental Modeling Center, College Park, MD, United States

Development and application of a continental scale compound flood modeling system in a complex coastal flood plains

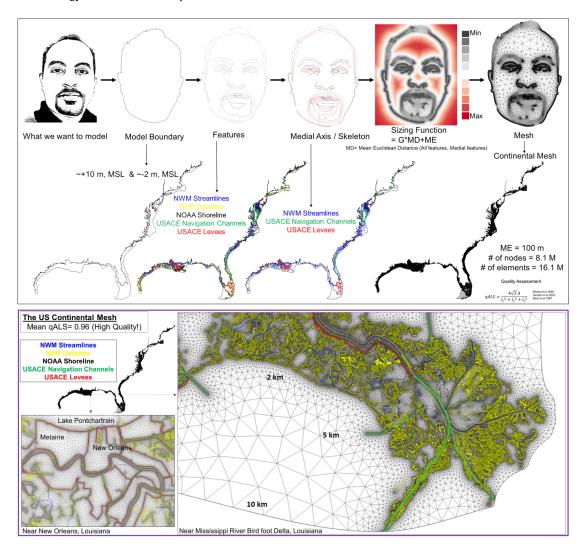
Henok Kefelegn², Hassan Mashriqui¹, Js Allen², Jason Ducker², Ryan Grout², Richard Gibbs², Julio Zyserman², Saeed Moghimi³, Yuji Funakoshi³, Ali Abdolali⁴, Andre Jaco Van der Westhuysen⁴, Trey Flowers², Edward Clark²

¹NOAA-OWP, Silver Spring, MD, ²NOAA-OWP, National Water Center, ³NOAA Coast Survey Development Laboratory, ⁴IMSG at NOAA Environmental Modeling

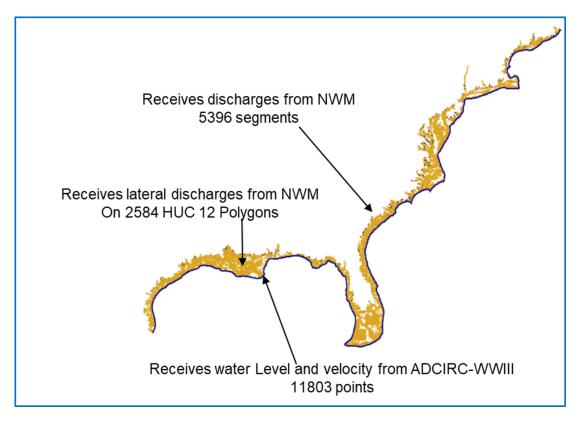


PRESENTED AT:

INTRODUCTION


Compound flooding happens when two or more extreme events occurring simultaneously or successively.

This study investigates the compound effect of inflow from rivers, rainflall runoff and oceanic surge for four named storms (Irma, Florence, Ike, and Sandy)


GULF-ATLANTIC CONT. MESH

Methodology for the mesh development

MODEL FEATURES

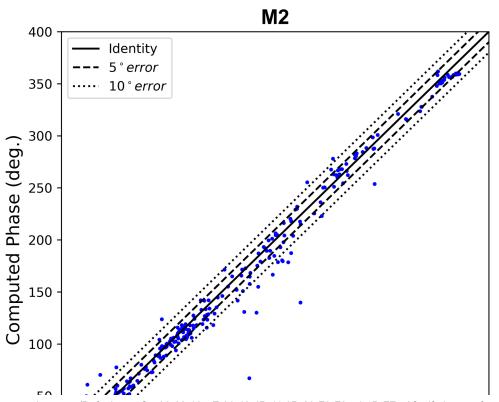
Boundary conditions

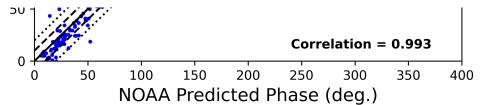
Model allows sub-setting approach

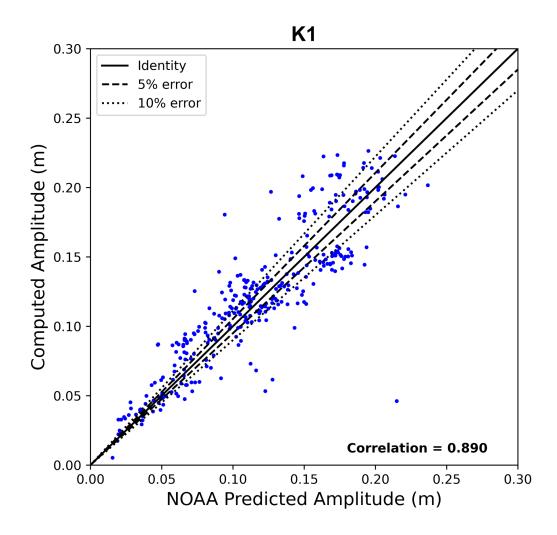
 $[VIDEO]\ https://res.cloudinary.com/amuze-interactive/video/upload/vc_auto/v1654648958/agu/39-68-4A-5E-96-42-4D-11-3D-20-F3-FA-54-1B-FE-70/Video/Subsetting_animation_uq63zv.mp4$

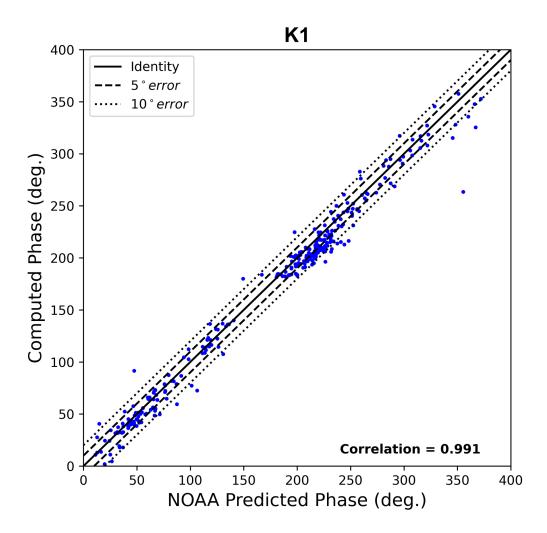
Levees are represented with polylines


 $[VIDEO]\ https://res.cloudinary.com/amuze-interactive/video/upload/vc_auto/v1654659041/agu/39-68-4A-5E-96-42-4D-11-3D-20-F3-FA-54-1B-FE-70/Video/Levees_kl3ihs.mp4$


Channels are represented with finer elements


[VIDEO] https://res.cloudinary.com/amuze-interactive/video/upload/vc_auto/v1654659142/agu/39-68-4A-5E-96-42-4D-11-3D-20-F3-FA-54-1B-FE-70/Video/navigation_channel_animation_ww3ynh.mp4


TIDAL EVALUATION


Model was evaluated at 320 NOAA tidal stations.

CONTRIBUTION OF RAINFALL RUNOFF AND INFLOW TO THE TOTAL WATER LEVEL

IRMA

 $[VIDEO]\ https://res.cloudinary.com/amuze-interactive/video/upload/vc_auto/v1654667091/agu/39-68-4A-5E-96-42-4D-11-3D-20-F3-FA-54-1B-FE-$

70/Video/Irma Surge Inflow Runoff vs Oceanic Surge wl diff video kxv9bo.mp4

FLORENCE

 $[VIDEO]\ https://res.cloudinary.com/amuze-interactive/video/upload/vc_auto/v1654667198/agu/39-68-4A-5E-96-42-4D-11-3D-20-F3-FA-54-1B-FE-$

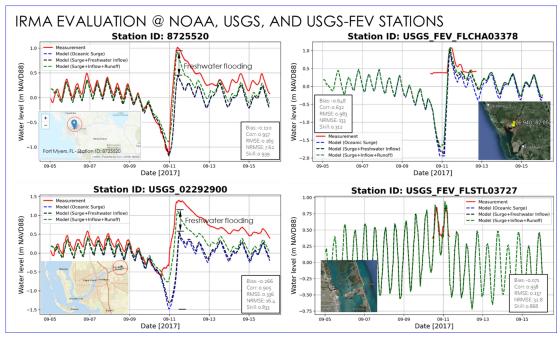
70/Video/Florence_Surge_Inflow_Runoff_vs_Oceanic_Surge_wl_diff_video_azmeo9.mp4

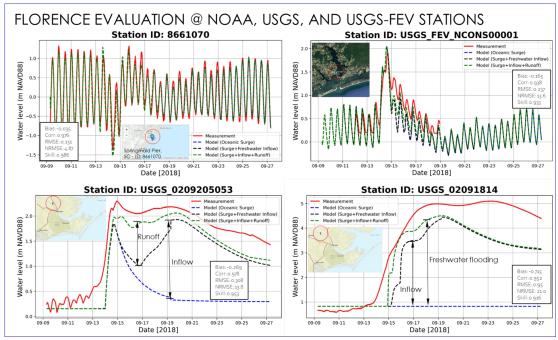
IKE

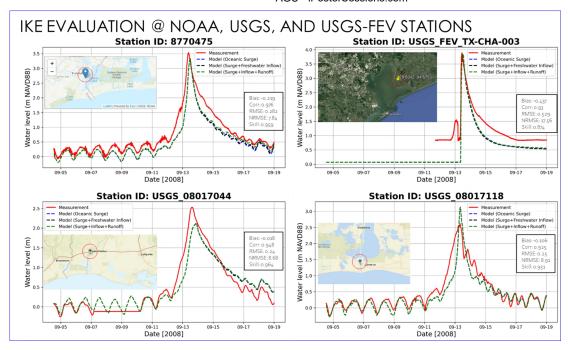
[VIDEO] https://res.cloudinary.com/amuze-interactive/video/upload/vc_auto/v1654699912/agu/39-68-4A-5E-96-42-4D-11-3D-20-F3-FA-54-1B-FE-70/Video/Ike wl diff gxxgoc.mp4

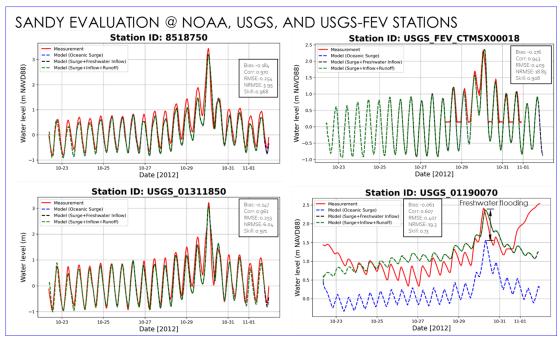
FLORENCE

 $[VIDEO]\ https://res.cloudinary.com/amuze-interactive/video/upload/vc_auto/v1654667230/agu/39-68-4A-5E-96-42-4D-11-3D-20-F3-FA-54-1B-FE-42-4D-11-3D-20-F3-FA-54-1B-54-1B-54-$


70/Video/Ike_Surge_Inflow_Runoff_vs_Oceanic_Surge_wl_diff_video_tudydd.mp4


SANDY


[VIDEO] https://res.cloudinary.com/amuze-interactive/video/upload/vc_auto/v1654667252/agu/39-68-4A-5E-96-42-4D-11-3D-20-F3-FA-54-1B-FE-


70/Video/Sandy_Surge_Inflow_Runoff_vs_Oceanic_Surge_wl_diff_video_yaqmeb.mp4

INCLUDING THE COMPOUND EFFECTS OF RIVER-INFLOW, RAINFALL-RUNOFF AND SURGE IS CRUCIAL FOR ACCURATE DETERMINATION OF COASTAL FLOODING!

CONCLUSION

The effect of compound flooding is more prone in the inland region of coastal areas where the hydologic flood intersects the oceanic surge. Not all storms exhibit the compound effects of storm surge, inflow and runoff. In our study Ike and Sandy lacks the compound effect from inflow and runoff in contrast, Irma and Florence can be considered compound flood events.	Including the effect of compound flooding is crucial for accurate determination of coastal flooding.
flood intersects the oceanic surge. Not all storms exhibit the compound effects of storm surge, inflow and runoff. In our study Ike and Sandy lacks the compound effect from inflow and runoff in contrast, Irma and Florence can be considered compound flood	
the compound effect from inflow and runoff in contrast, Irma and Florence can be considered compound flood	
the compound effect from inflow and runoff in contrast, Irma and Florence can be considered compound flood	
	the compound effect from inflow and runoff in contrast, Irma and Florence can be considered compound flood

ABSTRACT

We present a high-resolution continental-scale compound flood modeling system. It aims to quantify inland flooding resulting from the composite effects of riverine discharge and surface runoff and storm surge, in the inland-coastal zone during significant riverine and coastal storm events. This is achieved by coupling three continental models: the National Water Model (NWM) for the hydrology component, the Advanced Circulation Ocean Model for the coastal storm surge component, and the WAVEWATCH III model for the surface wave component with a detailed inland-coastal inundation model as the mediator between coastal and inland hydrology module.

The inundation model, Delft3D FM, D-Flow Flexible Mesh (D-Flow FM), uses a high quality 2D unstructured grid with high-resolution (\sim 100 m) near coastal features and lower-resolution in other areas to resolve the geometry of the study area. The coastal features are collected from NWM streamlines, National Hydrography Dataset, US medium shorelines and bathymetric features from the United States Army Corps of Engineers . The D-Flow FM model is forced by time-varying water levels and riverine discharges applied at its offshore and inland boundaries, respectively, by spatially- and time-varying wind and pressure fields and incorporates the contributions of surface and subsurface runoff to the total discharge in rivers, channels and streams.

We conducted model validations for the following four major flooding events across the US coast: Hurricanes Ike (2008), Sandy (2012), Irma (2017), and Florence (2018). The results highlight the importance of including composite effects of compound flooding to accurately predict water levels during combined river flooding and extreme storm surge events.