Teleconnected tide gauges record the 20th century enhancement of decadal climate variability

Christopher Little¹

¹Atmospheric and Environmental Research, Inc.

November 26, 2022

Abstract

Changes in the amplitude of decadal climate variability over the 20th century have been noted, with most evidence derived from tropical Pacific sea surface temperature records. However, the length, spatial coverage, and stability of most instrumental records are insufficient to robustly identify such non-stationarity, or resolve its global spatial structure. Here, I find that the long-term, stable, observing platform provided by tide gauges reveals a dramatic increase in the amplitude and spatial coherence of decadal (11-14 year period) coastal sea level (?) variability between 1960 and 2000. During this epoch, western North American ? was approximately out of phase with ? in Sydney, Australia, and led northeastern United States ? by approximately 1-2 years. The amplitude and timing of changes in decadal ? variability are consistent with changes in the spatial structure of atmospheric variability. In particular, central equatorial Pacific wind stress (??) and Labrador sea heat flux (???) are highly coherent with ? and exhibit contemporaneous, order-of-magnitude increases in decadal power. These statistical relationships have a mechanistic underpinning: along the western North American coastline, ??? variability is known to drive rapidly propagating ? signals along equatorial and coastal waveguides; while a 1-2 year lag between ? ?? and northeastern United States ? , is consistent with a remotely-forced, buoyancy-driven, mechanism. Tide gauges thus provide strong independent support for an increase in inter-basin coherence on decadal timescales over the second half of the 20th century, with implications for both the interpretation and prediction of climate and sea level variability. SIGNIFICANCE STATEMENT: Decadal climate variability influences the frequency and severity of many natural hazards (e.g., drought), with considerable human and ecological impacts. Understanding observed changes and predicting future impacts relies upon an understanding of the physical processes and any changes in their variability and relationship over time. However, identifying such changes requires very long observational records. This paper leverages a large set of tide gauge records to show that global decadal-timescale coastal sea level variability increased dramatically in the second half of the 20th century in many locations. The increase was driven by a shift in the amplitude, spatial pattern, and inter-basin coherence, of atmospheric pressure, wind, and sea surface temperature variability.

Generated using the official AMS LATEX template v6.1 two-column layout. This work has been submitted for publication. Copyright in this work may be transferred without further notice, and this version may no longer be accessible.

Teleconnected tide gauges record the 20th century enhancement of decadal climate variability

Christopher M. Little^a

^a Atmospheric and Environmental Research, Inc., 131 Hartwell Avenue, Lexington, MA 02421, USA.

ABSTRACT: Changes in the amplitude of decadal climate variability over the 20th century have been noted, with most evidence derived from tropical Pacific sea surface temperature records. However, the length, spatial coverage, and stability of most instrumental records are insufficient to robustly identify such non-stationarity, or resolve its global spatial structure. Here, I find that the long-term, stable, observing platform provided by tide gauges reveals a dramatic increase in the amplitude and spatial coherence of decadal (11-14 year period) coastal sea level (ζ) variability between 1960 and 2000. During this epoch, western North American ζ was approximately out of phase with ζ in Sydney, Australia, and led northeastern United States ζ by approximately 1-2 years. The amplitude and timing of changes in decadal ζ variability are consistent with changes in the spatial structure of atmospheric variability. In particular, central equatorial Pacific wind stress (τ_{CP}) and Labrador sea heat flux (Q_{LS}) are highly coherent with ζ and exhibit contemporaneous, order-of-magnitude increases in decadal power. These statistical relationships have a mechanistic underpinning: along the western North American coastline, τ_{CP} variability is known to drive rapidly propagating ζ signals along equatorial and coastal waveguides; while a 1-2 year lag between Q_{LS} and northeastern United States ζ , is consistent with a remotely-forced, buoyancy-driven, mechanism. Tide gauges thus provide strong independent support for an increase in inter-basin coherence on decadal timescales over the second half of the 20th century, with implications for both the interpretation and prediction of climate and sea level variability.

SIGNIFICANCE STATEMENT: Decadal climate variability influences the frequency and severity of many natural hazards (e.g., drought), with considerable human and ecological impacts. Understanding observed changes and predicting future impacts relies upon an understanding of the physical processes and any changes in their variability and relationship over time. However, identifying such changes requires very long observational records. This paper leverages a large set of tide gauge records to show that global decadal-timescale coastal sea level variability increased dramatically in the second half of the 20th century in many locations. The increase was driven by a shift in the amplitude, spatial pattern, and inter-basin coherence, of atmospheric pressure, wind, and sea surface temperature variability.

1. Introduction

Earth's climate varies across a wide range of temporal and spatial scales. At multiyear to decadal time scales, such variability is responsible for myriad human and ecological impacts, induced by both persistent anomalies (e.g., extended periods of drought) and the modulation of extreme events (e.g., the risk of tropical cyclone landfalls) (Seneviratne et al. 2012; Douville et al. 2021; Lee et al. 2021). An understanding of decadal variability and its underlying physical mechanisms is thus critical to risk assessment and mitigation efforts.

To reduce dimensionality and complexity, climate variability is often described and analyzed using spatiotemporal modes (e.g., Lee et al. 2021). However, both the spatial structure and/or power spectra of these modes can change over time. For example, the centers of action of both the El Niño-Southern Oscillation (ENSO) and the North Atlantic Oscillation (NAO) are known to shift position (Kao and Yu 2009; Lee and McPhaden 2010; Kenigson et al. 2018) and exhibit epochs during which different frequency bands are dominant (Higuchi et al. 1999; Visbeck et al. 2003; Kao and Yu 2009; Sullivan et al. 2016). Such changes may be associated with ocean- or atmosphere- mediated interaction between regional modes of variability (e.g., Meehl et al. 2021; Cai et al. 2019; Martín-Rey et al. 2014; Nigam et al. 2020), or modulation by lower frequency variability and long-term secular (global) trends (e.g., Lee et al. 2021; Zhang et al. 2019; Martín-Rey et al. 2018; Liu et al. 2017).

There are few stable, continuous, instrumental records that can robustly characterize changes in low-frequency (decadal and longer period) climate variability. Evidence for such non-stationarity has largely been derived from tropical Pacific sea surface temperatures (SSTs), often utilizing gridded reanalysis products. Following earlier efforts, Chunhan et al. (2021) assessed decadal variability using a simple index of central Pacific equatorial SSTs, finding a significant, well-defined, peak at 11-12 year periods between 1951-2018 but no evidence for a significant peak between 1871-1950. The authors denote this variability, when it is present, as the "Quasi-decadal oscillation", a description that dates back to at least Brassington (1997). While other studies often do not explicitly isolate

Corresponding author: Christopher Little, clittle@aer.com

this spectral peak, or address its apparent emergence in the late 20th century, many have noted enhanced variability in Central Pacific SSTs in this frequency band (e.g., Power et al. 2021; Sun and Yu 2009; Han et al. 2014). Other aspects of global climate (e.g., hydroclimate and tropical cyclones) have also been shown to exhibit closely associated variability and coincident increases in decadal power (e.g., Wang et al. 2010, 2014; Lyu et al. 2017; Liu et al. 2019).

The regional scope of most studies obscures interpretations of the drivers and spatial coherence of amplified decadal variability. Furthermore, instrumental records are often sparse before the mid-20th century, leaving open the possibility that data limitations play a role in the relatively weak variability observed in earlier periods. Capturing modulations in low-frequency variability at a global scale requires a stable, long (~centennial) record with sufficient spatial coverage.

Tide gauges have recorded relative sea level at coastal locations since the 18th century, with increasingly dense coverage in time and space (Holgate et al. 2013), and thus constitute a valuable means to identify changes in decadal variability. Indeed, tide gauges have been used to identify and interpret interannual to multidecadal ocean and climate variability, including regional and global modes (Han et al. 2019, and references within). At lower frequencies, several studies using these records have found evidence for non-stationarity and/or temporal changes in the spatial structure of coastal sea level variability (e.g., Woodworth et al. 2017; Kenigson et al. 2018; Han et al. 2019).

For example, Little et al. (2021) showed that the timedependent amplitude of 10-15 year period variability is a dominant control on the spatial structure of annual mean sea level variability along the United States East Coast. No robust relationship with North Atlantic climate modes was apparent. However, the timing of order-of-magnitude changes in power along the northeast United States coast, and the frequency band in which power is enhanced, closely match those highlighted in studies of the central Pacific SST record.

Most previous studies of interannual-to-decadal sea level variability have examined spatial structure and underlying mechanisms at an *a priori*-defined, regional, scale. Furthermore, many studies focus primarily on the second half of the 20th century. Here, I extend previous analyses of the coastal sea level record by identifying linkages across geographically widespread and dynamically disconnected regions of the global ocean over the 1900-2019 period. Rather than isolating a "common" or "global" component of sea level variability (e.g., Kopp et al. 2016; Dangendorf et al. 2017), I identify coherent regional variations that are associated with common underlying global climate forcing but may vary in amplitude and/or phase. This analysis helps consolidate disparate evidence for enhanced late 20th century climate variability across several regions and relevant climate variables, while revealing the non-stationary, global, drivers of regional sea level variability.

2. Data and Methods

a. Tide gauges

I analyze 64 monthly mean tide gauge records (Supplemental Tables S1 and S2), retrieved from the Permanent Service for Mean Sea Level Revised Local Reference (PSMSL RLR) database on July 1, 2020 (Holgate et al. 2013). Tide gauge records are included if they are > 95% complete (monthly means) during the 1930-2015 period, with no obvious issues or long gaps. Monthly records for all tide gauges from 1900 to 2019 are shown in Supplemental Figs. S1-S4.

Tide gauges record long-term increases in relative sea level, with contributions from various local, regional, and global processes, including land motion (e.g., Stammer et al. 2013). As this analysis focuses on sea level fluctuations related to climate variability, I linearly detrend monthly records over the period of record. After removing the trend, gaps in monthly records are filled by zeros (Supplemental Figs. S1-S4) before calculating annual means (Supplemental Figs. S5-S8). Results are insensitive to the details of the gap-filling algorithm. All subsequent analyses are performed on detrended annual mean values (subsequently denoted as ζ) over the 1900 to 2019 period.

b. Reanalysis

To compare tide gauge records to other related climate variables, I employ NOAA's twentieth century reanalysis, version 3 (20CR3; Slivinski et al. 2019), downloaded on February 1, 2022. ζ variability is compared with several surface variables from 20CR3, including skin temperature ("skt"), zonal and meridional momentum flux ("uflx" and "vflx", respectively), and sensible and latent heat flux ("shtfl" and "lhtfl", respectively). Analysis is performed only on the sum of sensible and latent heat fluxes, denoted by Q (positive for heat fluxes out of the ocean).

I utilize 20CR3 output over the 1900-2015 period, calculating annual averages from monthly mean, ensemble mean, output. At each grid point, time series are linearly detrended over the 1900-2015 period. For Figs. 4, 5, 10, and 11, each variable is smoothed using a 3° gaussian filter, then interpolated to a 2° horizontal grid. Here, I refer to skin temperature as surface temperature (T_S). Gridded sea surface temperature products, not shown, provide similar results to those shown for T_S over the ocean.

c. Statistical analyses

To investigate evidence for time-varying decadal variability in ζ and related climate variables, I calculate continuous wavelet power spectra and wavelet coherence from

FIG. 1. a) Annual mean time series, and b) continuous wavelet power spectra, of detrended sea level at the New York City tide gauge (ζ_{NYC}) over the 1900-2019 period. In b), significance at the p<0.05 level (relative to 1000 resampled timeseries with identical AR(1) coefficients) is shown with black contours; the horizontal dashed line corresponds to a period of 12.4 years; the vertical dashed line corresponds to 1980; and the transparent mask indicates the cone of influence. c) Power centered on a period of 12.4 years (in cm²) for all tide gauges, only shown for times outside the cone of influence; significance at the p<0.05 level is shown with stippling. d) Wavelet power for ζ at each tide gauge, centered on 1980 at a period of 12.4 years. Significance at the p<0.05 level is indicated with black outlines.

annual timeseries. Complete wavelet power spectra for ζ at all tide gauges are shown in Supplemental Figs. S3-S8. Wavelet analysis was performed using publicly available MATLAB code (Grinsted et al. 2004) and parameters described in Little et al. (2021). Results are insensitive to reasonable alternative parameter choices.

Uncertainty is assessed using Monte-Carlo techniques. For each tide gauge, I generate 1000 synthetic red noise time series of the same length and with identical lag-1 autocorrelation coefficients. Power, and coherence, are considered significant if they are greater than that the 95th percentile value of the synthetic timeseries.

3. Results

a. Coherent decadal ζ variability

In Little et al. (2021), detrended, annual mean, relative sea level (ζ) along the northeastern United States coastline between Cape Hatteras and Boston was shown to exhibit a significant increase in decadal power beginning in the second half of the 20th century. Within this region, the Battery tide gauge in New York City is the only record spanning the entire 20th and 21st century. This timeseries, denoted as ζ_{NYC} and highlighted in Fig. 1a, shows a clear shift toward more pronounced low-frequency variability over the mid-to-late 20th century. Wavelet analysis (Fig. 1b) indicates an order-of magnitude increase in power at a 12.4 year period beginning in approximately 1960 that is statistically significant after 1980.

In this frequency band, increases in power of a similar amplitude are also evident at many other tide gauges over the second half of the 20th century (Fig. 1c; see also Supplemental Figs. S9-S14). Focusing on the time period centered on 1980 (Fig. 1d), high power is evident in all United States east coast tide gauges between Boston and Cape Hatteras. High (although not significant) variability is evident to the south, along the east and Gulf of Mexico coasts, beginning as early as ~1940. Large increases in power relative to the first half of the 20th century are apparent along the western North American coast, especially between San Francisco and Vancouver Island, with smaller increases along the southern California coastline. Despite many long and continuous tide gauge records, European locations exhibit a notable lack of ζ power at this frequency band throughout the 20th century.

The sparsity of long records in other regions makes it difficult to assess large-scale evidence for enhanced power elsewhere. However, two geographically isolated tide gauges also exhibit significant increases in decadal power over this time period (Balboa, on the Pacific coast of Panama, and Sydney, Australia).

At tide gauges that show an enhancement of power in the second half of the 20th century, ζ is coherent with ζ_{NYC} (Fig. 2). For example, ζ at the Seattle tide gauge, highlighted in Figs. 2a and b, is significantly coherent with ζ_{NYC} between 1960-1990. Although not discussed further, there is also evidence of coherence after 1980 at 2-4 year periods, perhaps associated with the 1982 El Nino.

While the coherence, phase, and amplitude of ζ variability at a 12.4 year period vary at the scale of individual tide gauges (Fig. 2c and d; see also Supplemental Figs. S15-S20), some general large-scale patterns are evident. High coherence is evident from Boston to Sewell's Point, north of Cape Hatteras (see Little et al. (2021) for more

details on the temporal evolution of coherence along the United States east coast). However, ζ is also coherent with ζ_{NYC} along the majority of the western North American coastline, with the highest values along the United States coast north of San Francisco. In this region, over the epoch centered on 1980, ζ leads ζ_{NYC} by between 1.3 and 2.0 years, with a mean value of 1.7 years. South of San Francisco, coherence is lower, and leads are slightly longer (between 2.2 years at San Diego and 2.8 years at La Jolla; 2.5 years at Balboa). In contrast, ζ at Sydney, Australia lags ζ_{NYC} by approximately 4 years (i.e., out-of phase with ζ on the western North American coast). In this frequency band, coherence with ζ at all European tide gauges is low over the entire period of record.

b. Drivers of coherent ζ variability

Figs. 1 and 2 indicate the contemporaneous emergence of heightened decadal power at many global tide gauges. Several lines of evidence argue against an origin in global mean sea level variability, including: the large amplitude of this signal (~5-10 cm), temporal lags between geographic regions, and a lack of evidence for coherent variability in Europe. With the additional assumption that oceanic propagation of a sea level signal between the Northwest Atlantic and Pacific Oceans is unlikely, these results imply a role for global-scale shifts in atmospheric variability, perhaps linked via teleconnections. The remainder of this paper seeks to address the atmospheric forcings and oceanic propagation pathways responsible for: 1) amplification of decadal power in ζ , and 2) the linkage and temporal lags between ζ across different regions.

 ζ variability may be driven by many climate processes (Woodworth et al. 2019). However, previous analyses suggest that surface heat and/or momentum fluxes (both local and non-local) are the dominant drivers of coastal ζ variability in the regions and frequency bands highlighted in the previous section (e.g., Han et al. 2019; Thompson et al. 2014; Hong et al. 2000). To inform the nature of surface forcing responsible for ζ variability, I again utilize coherence analyses, applied to gridded surface momentum and heat fluxes over the 1900-2015 period from NOAA's twentieth century reanalysis, version 3 (20CR3; Slivinski et al. 2019). Instead of a single tide gauge, I examine the coherence of surface fields with a composite ζ record (ζ_{NE} ; Fig. 3): the arithmetic mean of ζ across the six northeastern United States tide gauges that are coherent and in phase in Fig. 2. As for ζ_{NYC} , decadal power in ζ_{NE} increases by approximately 14 times between 1945 and 1980, but with a slightly earlier onset (Fig. 3b).

While compositing is not essential, it reduces noise from inter-tide gauge variations (Fig. 3a), and simplifies the presentation of results. Later results are insensitive to the individual tide gauges used in the composite, and to identical analyses performed using tide gauges from other regions

FIG. 2. a) ζ at the Seattle (orange line, in cm) and New York City (blue) tide gauges over the 1900-2019 period, and b) their magnitude-squared wavelet coherence. Arrows in (b) indicate the phase relationship (arrows point up if Seattle leads by 90°; right if timeseries are in phase). Transparent mask indicates the cone of influence. Black lines denote significance at the p<0.05 level relative to 1000 resampled time series with the same AR(1) regression coefficients. c) Wavelet coherence between ζ_{NYC} and ζ at each tide gauge, centered on a period of 12.4 years, over the time period of coincident measurements. d) The phase lag between ζ_{NYC} and ζ at each tide gauge, at a period of 12.4 years, at 22 tide gauges (in years, where positive values indicate ζ_{NYC} leads, only shown where values in panel (c) are significant at p<0.05).

(as long as they are significantly coherent with ζ_{NE}). The validity of this approach is confirmed by Figs. 8 and 9, in which regional forcings highly coherent with ζ_{NE} are also coherent with ζ in other locations.

Figs. 4 and 5 summarize the 20th century changes in coherence of ζ_{NE} with wind stress (τ_x and τ_y) and surface heat flux (Q), as well as changes in the local power in each surface forcing field. Time periods centered on 1945 and 1980 are highlighted; other epochs are shown in Supplemental Figs. S21-S26.

There is a dramatic increase in coherence across many regions of the global ocean over the second half of the 20th century. In the period centered on 1945 (Fig. 5), despite evidence for relatively high decadal power in each surface forcing field (e.g., zonal wind stress in the North Atlantic subpolar gyre), ζ_{NE} is only coherent with surface forcing over a few widely separated regions of the global ocean. By 1980 (Fig. 4), coherence between τ and ζ_{NE} extends more broadly through the western subpolar gyre into Davis Strait, southwestward toward the North American coastline and the North Atlantic Current. Power in τ increases substantially over the same region, particularly for τ_y in the Labrador Sea. Perhaps more surprisingly, coherence between τ and ζ_{NE} is highest in distant regions,

FIG. 3. a) ζ_{NE} (thick black line) and ζ from individual tide gauges (Annapolis, Baltimore, Sewell's Point, Philadelphia, New York City, and Boston), with ζ_{NYC} in blue. b) As Fig. 1b, for ζ_{NE} .

including the tropical Atlantic, central equatorial Pacific and the Pacific sector of the Southern Ocean (all of which also exhibit approximately an order of magnitude increase in the decadal variability of τ).

Coherence between ζ_{NE} and Q (Fig. 4c) also increases over many regions of the global ocean, often in conjunction with τ , although its spatial structure is more localized. Coherence in the Labrador Sea (LS) is particularly strong in the late 20th century, approaching a value of 1. This increase in coherence occurs along with a simultaneous increase in Q variability extending southward from the LS along the northwest Atlantic coastline toward Cape Hatteras.

The dramatic increase in spatial coherence within and across surface forcing fields indicates that coherence between widely separated tide gauges (Fig. 2) originates from an increase in the strength of inter-basin atmospheric teleconnections. However, Fig. 4 reveals multiple forcings that could plausibly induce a 20th century increase in ζ variability. To identify the most relevant regions of surface forcing and to infer underlying mechanisms driving ζ variability, I examine the northwestern Atlantic and northeastern Pacific oceans in more quantitative detail in the following sections. Coastlines in these two regions both exhibit a large increase in ζ power over the 20th century, and have observational records that are relatively spatially and temporally well-resolved.

1) NORTHEASTERN UNITED STATES COASTLINE

At interannual timescales, northeastern United States ζ is known to be influenced by both remote (Roussenov et al. 2008; Minobe et al. 2017; Little et al. 2019) and local (Piecuch et al. 2018a, 2016; Andres et al. 2013; Li et al. 2014) momentum and buoyancy forcing. Although there is evidence that local forcing dominates interannual and higher frequencies, while remote forcing becomes important at lower frequencies, the importance of each driver in this "intermediate" band is unclear (Little et al. 2019, 2017; Thompson 1986; Wang et al. 2022).

Fig. 6a isolates the importance of remote heat fluxes in the period of high decadal variability by showing coherence (shading) only in regions where it is significant and where power increases by greater than an order of magnitude between 1945 and 1980. The relevance of the Labrador Sea, suggested by Fig. 4c, is clear, and is further strengthened by examining the 20th century evolution of the LS areal-mean heat flux (Q_{LS} ; Figs. 6b-d). Power in Q_{LS} shows close correspondence to that in ζ_{NE} , increasing rapidly between 1950 and 1980 and decreasing thereafter. Coherence analysis (Fig. 6d) indicates that, over the period of enhanced power, ζ_{NE} is highly coherent with Q, leading by approximately 4.5 years. Alternatively, ζ_{NE} can be interpreted to lag the negative of Q by approximately 1.5-2 years.

The latter interpretation is consistent with a pathway in which negative (in 20CR3, into the ocean) LS heat fluxes result in positive density anomalies that are advected southward along the slope and/or deep western boundary current, in turn driving positive ζ_{NE} anomalies. An approximately 1.5-year lag is consistent with the advective timescale of the slope current (New et al. 2021; Wang et al. 2022) (but is smaller than expected in deeper layers; Le Bras et al. 2017), while a role for density anomalies is consistent with correlations between steric height in the southwestern subpolar gyre and ζ along the northeastern United States coastline found in Frederikse et al. (2017). However, interactions between density anomalies and changes in the transport of various currents, and the means by which these offshore changes are communicated to and along the coast, are complex and deserve more detailed analysis (see section 4d).

As noted earlier, changes in τ evident in Figs. 4 and 5 may also influence ζ . The ability of these mechanisms to account for enhanced decadal variability in ζ_{NE} is examined, as for heat fluxes, in Fig. 7. For simplicity, I show

FIG. 4. a) (shading) Wavelet coherence between ζ_{NE} and zonal wind stress (τ_x) from 20CR3, on a 2° horizontal grid, centered on a period of 12.4 years and the year 1980. Contour indicate wavelet power centered on a period of 12.4 years; thick (thin) line is 1.5×10^{-3} (0.3×10^{-3}) N²m⁻⁴. Circles show magnitude-squared wavelet coherence between ζ_{NE} and ζ at each tide gauge where it is significant at p<0.05. b) as (a), for wavelet coherence between ζ_{NE} and meridional wind stress (τ_y). c) as (a), for wavelet coherence between ζ_{NE} and the sum of latent and sensible heat fluxes (Q); thick (thin) line is 1000 (200) W²m⁻⁴. Although the p<0.05 significance level between ζ_{NE} and each surface field varies depending on the location and variable, it is generally around 0.7.

FIG. 5. As Fig. 4, centered on the year 1945.

only zonal wind stress and wind stress curl ($\nabla \times \tau$), both of which are known drivers of ζ variability on the United States coastline.

Two regions of increases in power and coherence are evident. The first, in zonal wind stress (Fig. 7a), extends from the Grand Banks toward the central Atlantic. The second, in wind stress curl (Fig. 7b), lies in the interior of the subtropical gyre. Each area-averaged quantity exhibits a similar temporal evolution in power (Fig. 7e and f), and τ_x and $\nabla \times \tau$ are roughly out-of-phase with each other when they are significantly coherent with ζ_{NE} (Fig. 7g and h). These relationships are closely linked because these fields are not independent: heightened τ_x variability drives a meridionally displaced, out-of-phase, increase in $\nabla \times \tau$ power.

Furthermore, neither appears likely to be to be a primary driver of decadal variability. First, there is no clear mechanism linking either forcing region, both of which are in quadrature with ζ_{NE} , to sea level north of Cape Hatteras. Second, coherence in both regions is only marginally significant and is substantially smaller than Q_{LS} . Third, the temporal evolution of power exhibits an earlier peak than that of ζ_{NE} . I thus propose that the coherence between τ with both ζ_{NE} , is driven by basin-scale changes in the large scale wind field associated with Q_{LS} , rather than through a causal mechanism.

Consistent with Fig. 4, Fig. 7 does not show increases in coherence between ζ_{NE} and local alongshore wind stress (or large increases in local wind stress power), which has been highlighted in observational studies as a primary driver of ζ_{NE} (Li et al. 2014; Andres et al. 2013; Piecuch et al. 2016). Timeseries of alongshore winds (not shown) are inconsistent with the temporal evolution of power and coherence in ζ_{NE} at decadal periods, suggesting this mechanism is of limited importance over longer timescales. There is also no evidence for coherence with large-scale changes in $\nabla \times \tau$ in the subpolar gyre, as noted in recent studies of decadal variability (Chafik et al. 2019), potentially indicating that these basin-scale relationships do not persist at the coast.

2) WESTERN NORTH AMERICAN COASTLINE

On the western North American coastline, wind stress curl and offshore buoyancy fluxes do not play a large role in ζ variability, as Rossby waves propagate westward. ζ is thus forced largely by: 1) local alongshore winds, and 2) equatorial winds, which induce sea level variability that propagates along the equatorial and coastal waveguides. At interannual timescales, alongshore and equatorial zonal wind stress forcing has been shown to explain almost all ζ variability along the United States West Coast (Thompson et al. 2014; Chelton and Davis 1982; Enfield and Allen 1980).

Fig. 5 indicates that, in this frequency band, ζ_{NE} is coherent with equatorial zonal wind stress, particularly in the central Pacific, and (slightly less) coherent with meridional wind stress along the coast. The relative roles of these forcings, and any variation in their importance along the coast, requires comparison with individual tide gauge records. Thus, as in Fig. 7, I compare regional mean wind stresses in each region to ζ in two locations along the coastline (Figs. 8 and 9).

At the Balboa tide gauge (ζ_{BAL}), only equatorial wind stress is relevant. Fig. 8a isolates two equatorial regions of coherence that exhibit greater than a 10× increase in decadal τ_x power: the central Pacific (CP; defined as 5°S to 5°N, 180°E to 165°W); and the Eastern Pacific (EP; defined

FIG. 6. a) (shading) As Fig. 4c (Q), over the Northwest Atlantic Ocean, at a horizontal resolution of 1°. Coherence is only shown (with shading) where wavelet power in 1980 is at least 10 times larger than in 1945. Stippling indicates wavelet power in 1945 is 10 times larger than in 1980. Circles show magnitude-squared wavelet coherence between ζ_{NE} and ζ at a period of 12.4 years in 1980 (only shown where significant). b) Annual mean timeseries of Q_{LS} (area-averaged Q over the 58° to 61°N, 55° to 60°W region; orange box in panel (a)). c) Wavelet power in Q_{LS} (orange) and ζ_{NE} (black), centered on the 12.4 year period. d) coherence between Q_{LS} and ζ_{NE} and phase (orange, in years, where positive values indicate ζ_{NE} leads) centered on the 12.4 year period. Phase is only shown where coherence is significant at p<0.05.

as 3° S to 3° N, 90° W and 115° W). Between these two regions, there is a decrease in wind stress power, indicating a pronounced zonal shift in wind centers of action through the 20th century.

Wavelet power in ζ_{BAL} in the decadal frequency band increases at roughly the same rate as τ_{CP} beginning in approximately 1960, suggesting a strong and persistent relationship (Fig. 8c). The associated lag of approximately one year (Fig. 8e) is longer than expected for eastward propagating, equatorially-trapped Kelvin waves, but is consistent with the annual time resolution of this analysis. In contrast, the increase in power in the eastern Pacific (τ_{EP} ; Fig. 8d) is smaller, and occurs later in time. τ_{EP} and ζ_{BAL} are also less coherent, and roughly in quadrature (Fig. 8f), for which there is no clear explanation.

Central tropical Pacific winds alone can not explain the alongcoast variation in the amplitude of ζ variability, which reaches a maximum in the Pacific Northwest (Fig. 1). A purely equatorially-driven signal would likely exhibit a decrease in power with (northward) distance along the coast. I thus consider the potential for augmentation by alongshore wind stress (τ_{AS}), which is known to have a pronounced influence on ζ north of San Francisco, using the Seattle tide gauge (ζ_{SEA}) as an example.

In Fig. 9, τ_{AS} is calculated over a relatively large region of the coastline to account for forcing from the south, and meridional winds are used as a proxy of alongshore winds given their higher coherence with ζ and the approximately meridional orientation of the coastline. Results are insensitive to this choice due to the large-scale spatial coherence of the wind field.

In Seattle, a strong relationship with τ_{CP} (Fig. 9e; coherence > 0.75) is retained between approximately 1950 and approximately 1990, with a slightly longer phase lag than that seen at Balboa, suggesting equatorial forcing remains relevant. However, the phase relationship between τ_{CP} and ζ_{SEA} is less stable over time, and coherence declines after ~1970. Coincident with this decline, coherence between τ_{AS} and ζ_{SEA} increases in magnitude, approaching 1 after 1990, reflecting the importance of alongshore winds in this location (Fig. 9d). The period of highest power in ζ_{SEA} coincides with the peak in τ_{AS} , suggesting that enhancement of decadal ζ variability in the Pacific Northwest (the largest increase observed at any tide gauges globally; Fig. 1) is driven by the superposition of coherent, reinforcing, drivers (Thompson et al. 2014). At locations between Balboa and San Francisco (not shown), ζ power, and its coherence with τ_{AS} , is smaller, suggesting that the changes in alongshore winds are less effective in modulating ζ (likely due to the orientation of the coastline).

The increase in power in τ_{AS} centered on 1945 (Fig. 9d), of comparable amplitude to the late 20th century increase, is not evident in ζ_{SEA} (although a small maximum in coherence is evident). It is unclear whether this is due

FIG. 7. a) As Fig. 6a, for τ_x over the northwest Atlantic Ocean. b) As Fig. 6a, for $\nabla \times \tau$. c), e), g) As Fig. 6b-d, for ζ_{NE} and τ_x , area-averaged over the 41° to 47°N, 40° to 50°W region (blue box in panel (a)). d), f), h) As Fig. 6b-d, for ζ_{NE} and $\nabla \times \tau$, area-averaged over the 31° to 35°N, 35° to 40°W region (orange box in panel (b)).

to limitations of the reanalysis, or an offsetting driver of ζ variability over this epoch (see section 4a).

c. Relationship to global climate

Earlier sections indicate that increases in decadal ζ variability are related to increases in the amplitude of surface momentum and heat fluxes in key geographic regions. These fluxes are, in turn, related to other aspects of global climate, including well-observed surface atmospheric fields, such as temperature (T_S) and air pressure (P_S). I examine the coherence of these fields with ζ_{NE} in Fig. 10.

Beyond their influence on Q_{LS} , P_S and T_S are not likely to be causally related to ζ_{NE} . However, the regions of coherence, and associated phase relationships, provide a more complete picture of large-scale climate variability that can help elucidate mechanisms driving the apparent periodicity of this global mode and/or physical linkages between different regions and variables (see section 4c). Consistent with Fig. 4 and Fig. 5, coherence between the surface atmospheric state and ζ_{NE} (Fig. 10) extends over a large portion of the global ocean in the second half of the 20th century, with almost no regions of significance in 1945. In the epoch centered on 1980, the largest and most spatially coherent T_S anomalies associated with decadal ζ_{NE} variability are in the south tropical Atlantic and central tropical Pacific oceans. In the Pacific, the spatial structure of coherent T_S variability is consistent with the well-known tripole pattern (Han et al. 2014; Henley et al. 2015; Lyu et al. 2017), but also extends to the South Pacific Ocean. As for τ_{CP} , there is a large increase in SST power in the central tropical Pacific. There is also high coherence with T_S in the North Atlantic near the path of the detached Gulf Stream.

Coherence between ζ_{NE} and P_S is highest in the western Indian Ocean, but is significant over much of the Earth's surface, including the eastern subtropical Pacific, the South Atlantic (where ζ_{NE} is also coherent with SSTs), the North

11

FIG. 8. a) As Fig. 6a, for τ_x over the tropical Pacific Ocean. b), d), f) As Fig. 6b-d, for ζ_{BAL} and τ_x , area-averaged over the central Pacific region (τ_{CP} ; blue box in panel (a)). c), e), g) As Fig. 6b-d, for ζ_{BAL} and τ_x , area-averaged over the eastern Pacific region (τ_{EP} ; orange box in panel (a)).

American high latitudes from Siberia to Greenland, and the Pacific sector of the Southern Ocean.

At the large scale, the centers of action evident in Fig. 10 exhibit well-defined phase relationships (Fig. 11). For T_S , the nature of the Pacific SST tripole pattern is evident, and SSTs in the tropical Pacific and Atlantic are approximately out of phase. SSTs near the Gulf Stream detachment lag ζ_{NE} by approximately 4-5 years.

Fig. 11b shows a meridional P_S tripole extending southeastward toward Antarctica from the tropical Indian Ocean, suggestive of a stationary Rossby wave response to tropical variability (e.g., Li et al. 2021; Branstator 2002). P_S in the Indian and south tropical Atlantic Oceans are in phase, leading ζ_{NE} by 1-2 years, while P_S over the Pacific is approximately out of phase with the other ocean basins. In the high northern latitudes, there is a band of (approximately) in-phase coherence from Siberia to the tip of Greenland.

These phase relationships are consistent with those found in Figs. 6-9. For example, Fig. 6a indicate that coherence with Q_{LS} is quite localized and has a well-defined phase relationship (Q_{LS} minima lead ζ_{NE} by 1-2 years). P_S maxima over the tip of Greenland, which would drive southerly LS wind anomalies, anomalously warm air temperatures, and reductions in Q_{LS} , show a similar leading relationship. Similarly, positive SST anomalies in the cen-

tral tropical Pacific are associated with positive τ_{CP} and negative P_S anomalies to their east, and positive ζ along the western North American coast with only a slight lag. These relationships are consistent with the tight coupling evident over shorter (i.e., ENSO) timescales in the Pacific.

4. Discussion

I highlight the main implications of this analysis, and key opportunities for future research, in the sections below.

a. The spatial structure of decadal ζ variability

Here, I have shown that decadal ζ variability is amplified, and coherent, in geographically distant coastal locations in the second half of the 20th century. Due to the sparsity of long tide gauge records outside of North America and Europe (Fig. 1), and evidence for coherent surface pressure and wind patterns (Figs. 4 and 10), these results comprise a lower bound on the spatial coherence of ζ variability along global coastlines during this epoch. Global numerical models (with an adequate representation of climate and coastal sea level variability, where records exist) might be employed to assess the full spatial expression in, for example, the southern hemisphere.

FIG. 9. a) As Fig. 6a, for meridional wind stress near the western North American coastline. b)-d) As Fig. 6b-d, for ζ_{SEA} and τ_y , area-averaged over the 34° to 45°N, 118° to 126°W, region (orange box in panel (a)). e) As Fig. 6d, for ζ_{SEA} and τ_{CP} (blue box in Fig. 8a).

While the principal focus of this analysis concerns geographic regions that experience enhanced ζ power and coherence in the late 20th century, it is important to note that regions exhibiting low ζ power in this epoch may also be influenced by globally coherent climate variability, either due to: 1) decreased power in forcing fields; or 2) the compensating effects of different forcings. For example, the leading relationship of $\nabla \times \tau$ in the central North Atlantic subtropical gyre (orange box in Fig. 7b) would be expected to drive a decrease in ζ along the southeastern United States coastline approximately contemporaneously with (opposite-signed) coastally propagating signals associated with ζ_{NE} (Hong et al. 2000; Calafat et al. 2018). Such offsetting drivers provide a possible explanation for the diverging trends in decadal power across Cape Hatteras, evident in Fig. 1 and noted in Little et al. (2021).

b. Interpretation and prediction of climate variability

This analysis indicates that the spatial pattern and amplitude of decadal climate variability are strongly timevarying: broadly, the late 20th century was characterized by coherent variability across all ocean basins, while limited inter-basin connectivity is evident before ~1950. While this finding is contingent upon the quality of the 20CR3, the ERA-20C reanalysis (Poli et al. 2016, not shown) provides similar results. Agreement between these products does not eliminate the possibility of systematic bias in the early 20th century, however, which underscores the importance of evidence for enhanced decadal variability and coherence in tide gauge records.

As noted in the introduction, other studies have found evidence for enhanced decadal variability in the second half of the 20th century, largely by analyzing CP SSTs. The similar temporal evolution of power in CP SSTs and ζ , and their coherence (Fig. 10), confirm the value of ζ as a complementary indicator. Furthermore, the global extent of coherent changes in SSTs and the near-surface atmospheric state (Figs. 4 and 10) is consistent with evidence for other, remote, aspects of climate that show enhanced variability (e.g., hydroclimate). It also implies that other quantities, yet to be documented, may also be influenced by this non-stationarity.

After ~1990, decadal power in some ζ and surface climate records (and/or their coherence) decreases. However, power continues to increase through the period of record in other records (e.g., τ_{CP}). It thus remains unclear whether non-stationarity is driven by multidecadal to centennial modulation (e.g. associated with AMV; Zhang et al. 2019), or a longer-term, secular, change. Although limited in their ability to capture multiple "cycles" of decadal variability, more detailed analyses over the satellite era may identify whether more recent climate variability, and/or ζ forcings, are consistent with those identified here between 1950 and 1990.

Regardless, these results imply that different physical processes, interactions, and/or geographic regions exert control on aspects of decadal variability through the historical record. This, in turn, implies that predictability, apparent predictive skill, and the societal value of predictions, will vary depending upon the time period considered (or utilized for skill assessment). These implications apply broadly to many societally-relevant climate variables, and more specifically, to coastal sea level.

For example, conclusions about the drivers and spatial structure of decadal ζ variability in the late 20th century

FIG. 10. a) and b) As Fig. 4, for coherence between ζ_{NE} and T_S in 1945 (a) and 1980 (b). Contours in (a) and (b) are wavelet power in T_S ; thick (thin) line is 1 K² (0.2 K²). c) and d) as (a) and (b), for wavelet coherence between ζ_{NE} and P_S . Contours in (c) and (d) are the wavelet power in P_S ; thick (thin) line is 10 mbar² (2 mbar²).

used in reconstructions (Piecuch et al. 2018b; Dangendorf et al. 2021) and/or "indices" of climate and ocean variability (McCarthy et al. 2015; Ezer 2015) may not apply to other epochs. Looking forward, the relatively large amplitude and spatial scale of decadal ζ variability exhibited in the late 20th century comprises a promising target for improving predictions of coastal flooding – if such potential predictability is relevant outside this epoch.

c. Mechanisms driving decadal climate variability and its nonstationarity

While I leave the identification of casual mechanisms underlying the periodicity of decadal climate variability and the emergence of global coherence for further work, collectively, these results point to a key role for the tropical oceans. Supporting evidence includes: 1) strong coherence between winds and SSTs in both the tropical Pacific and Atlantic Oceans (Figs. 4b and 10b), and 2) poleward-reaching P_S anomalies indicative of stationary atmospheric Rossby wave responses to tropical variability (Fig. 11b).

Increases in CP SST variability have been highlighted as an important driver of extratropical variability in the late 20th century, although it is unclear whether extratropical changes are driven by increases in SST power (Sun and Yu 2009; Chunhan et al. 2021) or changes in the dynamics of extratropical teleconnections (e.g., Soulard et al. 2019; Graf and Zanchettin 2012; Fuentes-Franco et al. 2021). I have shown evidence from 20CR3, consistent with previous analyses, indicating a dramatic increase in power in CP SSTs. However, the teleconnections in Fig. 11b are more consistent with an origin in the Indian Ocean. Given the extensive inter-basin coherence, and the tight coupling between the tropical atmosphere and ocean, it seems plausible that increases in CP SST variability are response to increases in decadal variability initiated and/or modulated in other tropical oceans.

Although I have not explicitly related spatiotemporal patterns of variability shown here to known climate modes, it is worth noting their relationship with canonical descriptions of the North Atlantic Oscillation. The NAO is the leading mode of North Atlantic ocean climate variability, and is known to influence ζ_{NE} , as well as its local and remote atmospheric forcing mechanisms, over interannual timescales. However, at this frequency band, ζ_{NE} does not exhibit a significant relationship with NAO, nor does NAO exhibit significantly enhanced power, regardless of index formulation. One plausible explanation for the lack of a relationship is that the processes controlling variability at decadal frequencies are independent of NAO. Another is that the variability described here is related to

FIG. 11. a) The phase lag between ζ_{NE} and T_S (in years, where positive values indicate ζ_{NE} leads). b) As (a), for the phase lag between ζ_{NE} and P_S . Phase is only shown where coherence (Fig. 10) is greater than 0.7.

a shift in the position of NAO centers of action, occurring at lower frequencies that those that dominate the power in NAO indices. Indeed, non-stationary relationships between ζ_{NE} and NAO have been documented in previous studies (Andres et al. 2013) and attributed to shifts with respect to orientation of alongshore winds (Kenigson et al. 2018). These results indicate that such a shift might also influence the role of different drivers of ζ_{NE} , by initiating strong buoyancy-driven variability originating in the Labrador Sea.

d. Mechanisms linking coastal sea level to surface forcing

I have focused analysis on ζ variability and its drivers along the eastern and western North American coastlines, where a long and spatially resolved tide gauge record is available. If global models are available that adequately represent both climate and coastal sea level variability, they will be valuable for more definitively identifying the mechanisms relating global climate to observed decadal sea level variability, in these and other regions.

However, partial insights can be gleaned from regional models and/or perturbation studies. The decadal coher-

ence between ζ_{NE} and Q_{LS} is a prime target for such studies. In contrast to the relatively simple dynamics linking equatorial and alongshore wind stress to ζ along the western North American coastline, there are multiple plausible causal mechanisms underlying coherence with Q_{LS} . These include: 1) Rossby wave- and/or advection-mediated communication of offshore sea level signals to the Labrador coastline, with subsequent equatorward propagation (e.g., Roussenov et al. 2008; Minobe et al. 2017; Wang et al. 2022); 2) interaction of offshore shelf/slope and Deep Western Boundary Currents with the Gulf Stream, recirculation gyres, and/or eddies, between the tail of the Grand Banks and Cape Hatteras (e.g., Zhang and Vallis 2007; Saba et al. 2016; Peterson et al. 2017; Gonçalves Neto et al. 2021); or 3) changes in upstream shelf currents and/or continental shelf hydrography (either due to atmospheric forcings that are correlated across shelf and offshore regions, or advection of offshore water masses onto the shelf) (Xu and Oey 2011; New et al. 2021; Yang and Chen 2021).

Within the precision of this analysis, each of these pathways is consistent with the lag between ζ_{NE} and Q_{LS} (Fig. 6). Modeling studies are required to investigate the governing dynamics, including whether the amplitude of sea level anomalies associated with each mechanism is sufficient to account for observed ζ_{NE} anomalies. They may also be used to assess any role for upstream preconditioning of LS water masses, assuming dense water formation is a critical element in ζ_{NE} variability. Although the motivation for, and validation of, such studies may originate in the observed decadal variability, key processes are likely to remain relevant over longer timescales.

5. Conclusions

This study identifies a dramatic increase in the amplitude and spatial coherence of decadal (11-14 year period) sea level variability along the western North American, Australian, and northeastern United States coastlines between approximately 1960 and 2000. In this frequency band and epoch, western North American sea level is approximately out of phase with sea level at Sydney, Australia and leads northeast United States sea level by 1-2 years. Coastal sea level variability is related to globally coherent changes in surface forcing fields; its amplitude and phase is determined by the nature of regional forcing (e.g., local or remote, wind stress or heat flux) and the favored propagation pathways of sea level anomalies. Remote equatorial and local alongshore wind stress forcings are most consistent with observed decadal variability along the western North American coastline, while Labrador Sea heat fluxes are most consistent with the late 20th century enhancement of decadal coastal sea level variability in the northeast United States.

Enhanced coastal sea level variability is associated with increased global coherence of, and order-of-magnitude increases in, tropical SST variability and teleconnected extratropical pressure fields. These results thus extend the spatial scale and set of variables showing a systematic increase in the amplitude of decadal climate variability over the 20th century, and point to a tropical origin. The broad implications of this non-stationarity for decadal predictability and interpretation of the historical record underscore the need to understand mechanisms regulating its periodic behavior, increasing amplitude, and response to changes in background climate state, such as that expected in the 21st century. Where tide gauges exists, the long coastal sea level record may offer further insights into underlying drivers and impacts, however, it will remain spatially sparse. More definitive understanding will require long, coupled, numerical simulations, for which coastal sea level records may act as a key constraint.

Acknowledgments. This work was supported by NSF grants OCE-1805029 and OCE-2148507. I thank Sönke Dangendorf, Rui Ponte, Christopher Piecuch, and Steven Yeager for helpful discussions concerning various aspects of this manuscript. Support for the Twentieth Century Reanalysis Project version 3 dataset is provided by the U.S. Department of Energy, Office of Science Biological and Environmental Research, by the National Oceanic and Atmospheric Administration Climate Program Office, and by the NOAA Physical Sciences Laboratory.

Data availability statement. Tide gauge data is freely available from the Permanent Service for Mean Sea Level (http://www.psmsl.org/data/obtaining/). Output from the Twentieth Century Reanalysis Project version 3 is freely available from NOAA's Physical Sciences Laboratory (https://psl.noaa.gov/data/20thC_Rean/).

References

- Andres, M., G. G. Gawarkiewicz, and J. M. Toole, 2013: Interannual sea level variability in the western North Atlantic: Regional forcing and remote response: INTERANNUAL SEA LEVEL VARIABILITY. *Geophysical Research Letters*, 40 (22), 5915–5919, https://doi.org/10.1002/2013GL058013, URL http://doi.wiley.com/ 10.1002/2013GL058013.
- Branstator, G., 2002: Circumglobal Teleconnections, the Jet Stream Waveguide, and the North Atlantic Oscillation. *Journal of Climate*, **15** (**14**), 1893–1910, https://doi.org/10.1175/1520-0442(2002) 015<1893:CTTJSW>2.0.CO;2, URL http://journals.ametsoc.org/ doi/10.1175/1520-0442(2002)015<1893:CTTJSW>2.0.CO;2.
- Brassington, G. B., 1997: The Modal Evolution of the Southern Oscillation. *Journal of Climate*, 10 (5), 1021–1034, https://doi.org/ 10.1175/1520-0442(1997)010<1021:TMEOTS>2.0.CO;2, URL http://journals.ametsoc.org/doi/10.1175/1520-0442(1997) 010<1021:TMEOTS>2.0.CO;2.
- Cai, W., and Coauthors, 2019: Pantropical climate interactions. *Science*, 363 (6430), eaav4236, iSBN: 0036-8075 Publisher: American Association for the Advancement of Science.
- Calafat, F. M., T. Wahl, F. Lindsten, J. Williams, and E. Frajka-Williams, 2018: Coherent modulation of the sea-level annual cycle in the United States by Atlantic Rossby waves. *Nature communications*, 9 (1), 2571.
- Chafik, L., J. E. O. Nilsen, S. Dangendorf, G. Reverdin, and T. Frederikse, 2019: North Atlantic Ocean Circulation and Decadal Sea Level Change During the Altimetry Era. *Scientific Reports*, 9 (1), 1041, https://doi.org/10.1038/s41598-018-37603-6, URL http: //www.nature.com/articles/s41598-018-37603-6.
- Chelton, D. B., and R. E. Davis, 1982: Monthly Mean Sea-Level Variability Along the West Coast of North America. *Journal* of Physical Oceanography, **12** (8), 757–784, https://doi.org/ 10.1175/1520-0485(1982)012<0757:MMSLVA>2.0.CO;2, URL https://journals.ametsoc.org/view/journals/phoc/12/8/1520-0485_ 1982_012_0757_mmslva_2_0_co_2.xml, place: Boston MA, USA Publisher: American Meteorological Society.
- Chunhan, J., W. Bin, and L. Jian, 2021: Emerging Pacific Quasi-Decadal Oscillation Over the Past 70 Years. *Geophysical Research Letters*, 48 (2), https://doi.org/10.1029/2020GL090851, URL https: //onlinelibrary.wiley.com/doi/10.1029/2020GL090851.

- Dangendorf, S., T. Frederikse, L. Chafik, J. M. Klinck, T. Ezer, and B. D. Hamlington, 2021: Data-driven reconstruction reveals largescale ocean circulation control on coastal sea level. *Nature Climate Change*, **11** (6), 514–520, publisher: Nature Publishing Group.
- Dangendorf, S., M. Marcos, G. Wöppelmann, C. P. Conrad, T. Frederikse, and R. Riva, 2017: Reassessment of 20th century global mean sea level rise. *Proceedings of the National Academy of Sciences*, **114** (23), 5946–5951, https://doi.org/10.1073/pnas.1616007114, URL http://www.pnas.org/lookup/doi/10.1073/pnas.1616007114.
- Douville, H., and Coauthors, 2021: Weather and climate extreme events in a changing climate. Publisher: Cambridge University Press.
- Enfield, D. B., and J. S. Allen, 1980: On the Structure and Dynamics of Monthly Mean Sea Level Anomalies along the Pacific Coast of North and South America. *Journal* of Physical Oceanography, **10** (4), 557–578, https://doi.org/ 10.1175/1520-0485(1980)010<0557:OTSADO>2.0.CO;2, URL https://journals.ametsoc.org/view/journals/phoc/10/4/1520-0485_ 1980_010_0557_otsado_2_0_co_2.xml, place: Boston MA, USA Publisher: American Meteorological Society.
- Ezer, T., 2015: Detecting changes in the transport of the Gulf Stream and the Atlantic overturning circulation from coastal sea level data: The extreme decline in 2009–2010 and estimated variations for 1935–2012. *Global and Planetary Change*, **129**, 23– 36, https://doi.org/10.1016/j.gloplacha.2015.03.002, URL https:// linkinghub.elsevier.com/retrieve/pii/S0921818115000600.
- Frederikse, T., K. Simon, C. A. Katsman, and R. Riva, 2017: The sealevel budget along the Northwest Atlantic coast: GIA, mass changes, and large-scale ocean dynamics: NORTHWEST ATLANTIC SEA-LEVEL BUDGET. *Journal of Geophysical Research: Oceans*, **122** (7), 5486–5501, https://doi.org/10.1002/2017JC012699, URL http://doi.wiley.com/10.1002/2017JC012699.
- Fuentes-Franco, R., T. Koenigk, D. Docquier, F. Graef, and K. Wyser, 2021: Exploring the influence of the North Pacific Ocean Rossby wave sources on interannual variability of summer precipitation and surface temperature over the Northern Hemisphere. preprint, In Review. https://doi.org/10.21203/rs.3.rs-169409/v1, URL https: //www.researchsquare.com/article/rs-169409/v1.
- Gonçalves Neto, A., J. A. Langan, and J. B. Palter, 2021: Changes in the Gulf Stream preceded rapid warming of the Northwest Atlantic Shelf. *Communications Earth & Environment*, 2 (1), 74, https://doi.org/10.1038/s43247-021-00143-5, URL http://www. nature.com/articles/s43247-021-00143-5.
- Graf, H.-F., and D. Zanchettin, 2012: Central Pacific El Niño, the "subtropical bridge," and Eurasian climate: TWO EL NIÑO TYPES AND EURASIAN CLIMATE. *Journal of Geophysical Research: Atmospheres*, **117** (**D1**), n/a–n/a, https://doi.org/10.1029/2011JD016493, URL http://doi.wiley.com/10.1029/2011JD016493.
- Grinsted, A., J. C. Moore, and S. Jevrejeva, 2004: Application of the cross wavelet transform and wavelet coherence to geophysical time series. *Nonlinear Processes in Geophysics*, **11** (5/6), 561–566, URL https://hal.archives-ouvertes.fr/hal-00302394.
- Han, W., and Coauthors, 2014: Intensification of decadal and multi-decadal sea level variability in the western tropical Pacific during recent decades. *Climate Dynamics*, 43 (5-6), 1357– 1379, https://doi.org/10.1007/s00382-013-1951-1, URL http://link. springer.com/10.1007/s00382-013-1951-1.

- Han, W., and Coauthors, 2019: Impacts of Basin-Scale Climate Modes on Coastal Sea Level: a Review. *Surveys in Geophysics*, 40 (6), 1493– 1541, https://doi.org/10.1007/s10712-019-09562-8, URL http://link. springer.com/10.1007/s10712-019-09562-8.
- Henley, B. J., J. Gergis, D. J. Karoly, S. Power, J. Kennedy, and C. K. Folland, 2015: A Tripole Index for the Interdecadal Pacific Oscillation. *Climate Dynamics*, 45 (11-12), 3077–3090, https://doi.org/10. 1007/s00382-015-2525-1, URL http://link.springer.com/10.1007/ s00382-015-2525-1.
- Higuchi, K., J. Huang, and A. Shabbar, 1999: A wavelet characterization of the North Atlantic oscillation variation and its relationship to the North Atlantic sea surface temperature. *International Journal of Climatology*, **19** (**10**), 1119–1129, https://doi.org/ 10.1002/(SICI)1097-0088(199908)19:10<1119::AID-JOC414>3. 0.CO;2-7, URL https://onlinelibrary.wiley.com/doi/10.1002/(SICI) 1097-0088(199908)19:10<1119::AID-JOC414>3.0.CO;2-7.
- Holgate, S. J., and Coauthors, 2013: New Data Systems and Products at the Permanent Service for Mean Sea Level. *Journal of Coastal Research*, **29** (3), 493–504.
- Hong, B. G., W. Sturges, and A. J. Clarke, 2000: Sea Level on the U.S. East Coast: Decadal Variability Caused by Open Ocean Wind-Curl Forcing. *Journal of Physical Oceanography*, **30** (8), 2088–2098, https://doi.org/ 10.1175/1520-0485(2000)030<2088:SLOTUS>2.0.CO;2, URL http://journals.ametsoc.org/doi/abs/10.1175/1520-0485%282000% 29030%3C2088%3ASLOTUS%3E2.0.CO%3B2.
- Kao, H.-Y., and J.-Y. Yu, 2009: Contrasting Eastern-Pacific and Central-Pacific Types of ENSO. *Journal of Climate*, 22 (3), 615– 632, https://doi.org/10.1175/2008JCLI2309.1, URL http://journals. ametsoc.org/doi/10.1175/2008JCLI2309.1.
- Kenigson, J. S., W. Han, B. Rajagopalan, Yanto, and M. Jasinski, 2018: Decadal Shift of NAO-Linked Interannual Sea Level Variability along the U.S. Northeast Coast. *Journal of Climate*, **31** (13), 4981–4989, https://doi.org/10.1175/JCLI-D-17-0403.1, URL http: //journals.ametsoc.org/doi/10.1175/JCLI-D-17-0403.1.
- Kopp, R. E., and Coauthors, 2016: Temperature-driven global sealevel variability in the Common Era. *Proceedings of the National Academy of Sciences*, **113** (11), E1434–E1441, https://doi.org/ 10.1073/pnas.1517056113, URL http://www.pnas.org/lookup/doi/ 10.1073/pnas.1517056113.
- Le Bras, I. A., I. Yashayaev, and J. M. Toole, 2017: Tracking Labrador Sea Water property signals along the Deep Western Boundary Current. *Journal of Geophysical Research: Oceans*, **122** (7), 5348–5366, https://doi.org/10.1002/2017JC012921, URL https://onlinelibrary.wiley.com/doi/10.1002/2017JC012921.
- Lee, J.-Y., and Coauthors, 2021: Future global climate: scenario-based projections and near-term information. IPCC.
- Lee, T., and M. J. McPhaden, 2010: Increasing intensity of El Niño in the central-equatorial Pacific: INCREASING INTENSITY OF EL NIÑO. *Geophysical Research Letters*, **37** (14), n/a–n/a, https://doi.org/10.1029/2010GL044007, URL http://doi.wiley.com/ 10.1029/2010GL044007.
- Li, X., and Coauthors, 2021: Tropical teleconnection impacts on Antarctic climate changes. *Nature Reviews Earth & Environment*, 2 (10), 680–698, https://doi.org/10.1038/s43017-021-00204-5, URL https://www.nature.com/articles/s43017-021-00204-5.

- Li, Y., R. Ji, P. S. Fratantoni, C. Chen, J. A. Hare, C. S. Davis, and R. C. Beardsley, 2014: Wind-induced interannual variability of sea level slope, along-shelf flow, and surface salinity on the Northwest Atlantic shelf. *Journal of Geophysical Research: Oceans*, **119** (4), 2462–2479, https://doi.org/10.1002/2013JC009385, URL http://doi. wiley.com/10.1002/2013JC009385.
- Little, C. M., A. Hu, C. W. Hughes, G. D. McCarthy, C. G. Piecuch, R. M. Ponte, and M. D. Thomas, 2019: The Relationship Between U.S. East Coast Sea Level and the Atlantic Meridional Overturning Circulation: A Review. *Journal of Geophysical Research: Oceans*, **124** (9), 6435–6458, https://doi.org/10.1029/2019JC015152, URL https://onlinelibrary.wiley.com/doi/abs/10.1029/2019JC015152.
- Little, C. M., C. G. Piecuch, and R. M. Ponte, 2017: On the relationship between the meridional overturning circulation, alongshore wind stress, and United States East Coast sea level in the Community Earth System Model Large Ensemble: AMOC-SEA LEVEL IN CESM-LE. *Journal of Geophysical Research: Oceans*, **122** (6), 4554–4568, https://doi.org/10.1002/2017JC012713, URL http://doi.wiley.com/10.1002/2017JC012713.
- Little, C. M., C. G. Piecuch, and R. M. Ponte, 2021: North american east coast sea level exhibits high power and spatiotemporal complexity on decadal timescales. *Geophysical Research Letters*, **48** (**15**), e2021GL093675, https://doi.org/ 10.1029/2021GL093675, URL https://agupubs.onlinelibrary. wiley.com/doi/abs/10.1029/2021GL093675, tex.eprint: https://agupubs.onlinelibrary.wiley.com/doi/pdf/10.1029/2021GL093675.
- Liu, C., W. Zhang, M. F. Stuecker, and F. Jin, 2019: Pacific Meridional Mode-Western North Pacific Tropical Cyclone Linkage Explained by Tropical Pacific Quasi-Decadal Variability. *Geophysical Research Letters*, 46 (22), 13 346–13 354, https://doi.org/ 10.1029/2019GL085340, URL https://onlinelibrary.wiley.com/doi/ 10.1029/2019GL085340.
- Liu, Y., and Coauthors, 2017: Recent enhancement of central Pacific El Niño variability relative to last eight centuries. *Nature Communications*, 8 (1), 15 386, https://doi.org/10.1038/ncomms15386, URL http://www.nature.com/articles/ncomms15386.
- Lyu, K., X. Zhang, J. A. Church, J. Hu, and J.-Y. Yu, 2017: Distinguishing the Quasi-Decadal and Multidecadal Sea Level and Climate Variations in the Pacific: Implications for the ENSO-Like Low-Frequency Variability. *Journal of Climate*, **30** (13), 5097–5117, https://doi.org/ 10.1175/JCLI-D-17-0004.1, URL http://journals.ametsoc.org/doi/ 10.1175/JCLI-D-17-0004.1.
- Martín-Rey, M., I. Polo, B. Rodríguez-Fonseca, T. Losada, and A. Lazar, 2018: Is There Evidence of Changes in Tropical Atlantic Variability Modes under AMO Phases in the Observational Record? *Journal of Climate*, **31** (2), 515–536, https://doi.org/10.1175/JCLI-D-16-0459.
 1, URL https://journals.ametsoc.org/doi/10.1175/JCLI-D-16-0459.
 1.
- Martín-Rey, M., B. Rodríguez-Fonseca, I. Polo, and F. Kucharski, 2014: On the Atlantic–Pacific Niños connection: A multidecadal modulated mode. *Climate dynamics*, 43 (11), 3163–3178, iSBN: 1432-0894 Publisher: Springer.
- McCarthy, G. D., I. D. Haigh, J. J.-M. Hirschi, J. P. Grist, and D. A. Smeed, 2015: Ocean impact on decadal Atlantic climate variability revealed by sea-level observations. *Nature*, **521** (7553), 508– 510, https://doi.org/10.1038/nature14491, URL http://www.nature. com/articles/nature14491.

- Meehl, G. A., and Coauthors, 2021: Atlantic and Pacific tropics connected by mutually interactive decadal-timescale processes. *Nature Geoscience*, 14 (1), 36–42, https://doi.org/10. 1038/s41561-020-00669-x, URL http://www.nature.com/articles/ s41561-020-00669-x.
- Minobe, S., M. Terada, B. Qiu, and N. Schneider, 2017: Western Boundary Sea Level: A Theory, Rule of Thumb, and Application to Climate Models. *Journal of Physical Oceanography*, 47 (5), 957–977, https://doi.org/10.1175/JPO-D-16-0144.1, URL http://journals.ametsoc.org/doi/10.1175/JPO-D-16-0144.1.
- New, A. L., D. A. Smeed, A. Czaja, A. T. Blaker, J. V. Mecking, J. P. Mathews, and A. Sanchez-Franks, 2021: Labrador Slope Water connects the subarctic with the Gulf Stream. *Environmental Research Letters*, **16** (8), 084 019, https://doi.org/10.1088/1748-9326/ac1293, URL https://iopscience.iop.org/article/10.1088/1748-9326/ac1293.
- Nigam, S., A. Sengupta, and A. Ruiz-Barradas, 2020: Atlantic-Pacific Links in Observed Multidecadal SST Variability: Is the Atlantic Multidecadal Oscillation's Phase Reversal Orchestrated by the Pacific Decadal Oscillation? *Journal of Climate*, **33** (**13**), 5479–5505, https://doi.org/10.1175/JCLI-D-19-0880. 1, URL https://journals.ametsoc.org/jcli/article/33/13/5479/345327/ AtlanticPacific-Links-in-Observed-Multidecadal-SST.
- Peterson, I., B. Greenan, D. Gilbert, and D. Hebert, 2017: Variability and wind forcing of ocean temperature and thermal fronts in the Slope Water region of the Northwest Atlantic: TEMPERATURE IN SLOPE WATER REGION. *Journal of Geophysical Research: Oceans*, **122** (9), 7325–7343, https://doi.org/10.1002/2017JC012788, URL http://doi.wiley.com/10.1002/2017JC012788.
- Piecuch, C. G., K. Bittermann, A. C. Kemp, R. M. Ponte, C. M. Little, S. E. Engelhart, and S. J. Lentz, 2018a: River-discharge effects on United States Atlantic and Gulf coast sea-level changes. *Proceedings of the National Academy of Sciences*, **115** (30), 7729– 7734, https://doi.org/10.1073/pnas.1805428115, URL http://www. pnas.org/lookup/doi/10.1073/pnas.1805428115.
- Piecuch, C. G., S. Dangendorf, R. M. Ponte, and M. Marcos, 2016: Annual sea level changes on the North American Northeast Coast: influence of local winds and barotropic motions. *Journal of Climate*, 29 (13), 4801–4816.
- Piecuch, C. G., P. Huybers, C. C. Hay, A. C. Kemp, C. M. Little, J. X. Mitrovica, R. M. Ponte, and M. P. Tingley, 2018b: Origin of spatial variation in US East Coast sea-level trends during 1900–2017. *Nature*, 564 (7736), 400–404, https://doi.org/10.1038/s41586-018-0787-6, URL http://www.nature.com/articles/s41586-018-0787-6.
- Poli, P., and Coauthors, 2016: ERA-20C: An Atmospheric Reanalysis of the Twentieth Century. *Journal of Climate*, 29 (11), 4083–4097, https://doi.org/10.1175/JCLI-D-15-0556.1, URL https://doi.org/10. 1175/JCLI-D-15-0556.1.
- Power, S., and Coauthors, 2021: Decadal climate variability in the tropical Pacific: Characteristics, causes, predictability, and prospects. *Science*, **374** (6563), eaay9165, https://doi.org/10. 1126/science.aay9165, URL https://www.science.org/doi/10.1126/ science.aay9165.
- Roussenov, V. M., R. G. Williams, C. W. Hughes, and R. J. Bingham, 2008: Boundary wave communication of bottom pressure and overturning changes for the North Atlantic. *Journal of Geophysical Research*, **113** (C8), https://doi.org/10.1029/2007JC004501, URL http://doi.wiley.com/10.1029/2007JC004501.

- Saba, V. S., and Coauthors, 2016: Enhanced warming of the Northwest Atlantic Ocean under climate change: NORTHWEST ATLANTIC ENHANCED WARMING. *Journal of Geophysical Research: Oceans*, **121** (1), 118–132, https://doi.org/10.1002/ 2015JC011346, URL http://doi.wiley.com/10.1002/2015JC011346.
- Seneviratne, S., and Coauthors, 2012: Changes in climate extremes and their impacts on the natural physical environment.
- Slivinski, L. C., and Coauthors, 2019: Towards a more reliable historical reanalysis: Improvements for version 3 of the Twentieth Century Reanalysis system. *Quarterly Journal of the Royal Meteorological Society*, **145** (724), 2876–2908, https://doi.org/10.1002/qj.3598, URL https://doi.org/10.1002/qj.3598, publisher: John Wiley & Sons, Ltd.
- Soulard, N., H. Lin, and B. Yu, 2019: The changing relationship between ENSO and its extratropical response patterns. *Scientific Reports*, 9 (1), 6507, https://doi.org/10.1038/s41598-019-42922-3, URL http://www.nature.com/articles/s41598-019-42922-3.
- Stammer, D., A. Cazenave, R. M. Ponte, and M. E. Tamisiea, 2013: Causes for Contemporary Regional Sea Level Changes. *Annual Review of Marine Science*, 5 (1), 21–46, https://doi.org/10.1146/ annurev-marine-121211-172406, URL http://www.annualreviews. org/doi/10.1146/annurev-marine-121211-172406.
- Sturges, W., and B. Hong, 1995: Wind forcing of the Atlantic thermocline along 32 N at low frequencies. *Journal of physical oceanography*, **25** (7), 1706–1715.
- Sullivan, A., J.-J. Luo, A. C. Hirst, D. Bi, W. Cai, and J. He, 2016: Robust contribution of decadal anomalies to the frequency of central-Pacific El Niño. *Scientific Reports*, 6 (1), 38 540, https://doi.org/10.1038/ srep38540, URL http://www.nature.com/articles/srep38540.
- Sun, F., and J.-Y. Yu, 2009: A 10–15-Yr Modulation Cycle of ENSO Intensity. *Journal of Climate*, **22** (7), 1718–1735, https://doi.org/ 10.1175/2008JCLI2285.1, URL http://journals.ametsoc.org/doi/10. 1175/2008JCLI2285.1.
- Thompson, K. R., 1986: North Atlantic sea-level and circulation. Geophysical Journal International, 87 (1), 15–32, iSBN: 1365-246X Publisher: Blackwell Publishing Ltd Oxford, UK.
- Thompson, P. R., M. A. Merrifield, J. R. Wells, and C. M. Chang, 2014: Wind-Driven Coastal Sea Level Variability in the Northeast Pacific. *Journal of Climate*, 27 (12), 4733–4751, https://doi.org/10.1175/JCLI-D-13-00225. 1, URL https://journals.ametsoc.org/jcli/article/27/12/4733/34704/ WindDriven-Coastal-Sea-Level-Variability-in-the.
- Visbeck, M., and Coauthors, 2003: The North Atlantic oscillation: climatic significance and environmental impact. *Geophys. Monogr*, 134.
- Wang, O., and Coauthors, 2022: Local and Remote Forcing of Interannual Sea-Level Variability at Nantucket Island. *Journal of Geophysical Research: Oceans*, **127** (6), https://doi.org/10.1029/ 2021JC018275, URL https://onlinelibrary.wiley.com/doi/10.1029/ 2021JC018275.
- Wang, S.-Y., R. R. Gillies, J. Jin, and L. E. Hipps, 2010: Coherence between the Great Salt Lake Level and the Pacific Quasi-Decadal Oscillation. *Journal of Climate*, 23 (8), 2161–2177, https://doi.org/10.1175/2009JCLI2979. 1, URL https://journals.ametsoc.org/jcli/article/23/8/2161/32823/ Coherence-between-the-Great-Salt-Lake-Level-and.

- Wang, S.-Y., K. Hakala, R. R. Gillies, and W. J. Capehart, 2014: The Pacific quasi-decadal oscillation (QDO): An important precursor toward anticipating major flood events in the Missouri River Basin?: Wang et al.: Precursor of Missouri River Floods. *Geophysical Research Letters*, 41 (3), 991–997, https://doi.org/10.1002/2013GL059042, URL http://doi.wiley.com/10.1002/2013GL059042.
- Woodworth, P. L., M. A. Morales Maqueda, W. R. Gehrels, V. M. Roussenov, R. G. Williams, and C. W. Hughes, 2017: Variations in the difference between mean sea level measured either side of Cape Hatteras and their relation to the North Atlantic Oscillation. *Climate Dynamics*, **49** (7-8), 2451–2469, https://doi.org/10. 1007/s00382-016-3464-1, URL http://link.springer.com/10.1007/ s00382-016-3464-1.
- Woodworth, P. L., and Coauthors, 2019: Forcing Factors Affecting Sea Level Changes at the Coast. *Surveys in Geophysics*, 40 (6), 1351– 1397, https://doi.org/10.1007/s10712-019-09531-1, URL http://link. springer.com/10.1007/s10712-019-09531-1.
- Xu, F.-H., and L.-Y. Oey, 2011: The Origin of Along-Shelf Pressure Gradient in the Middle Atlantic Bight. *Journal of Physical Oceanography*, **41** (9), 1720–1740, https://doi.org/10.1175/2011JPO4589.1, URL http://journals.ametsoc.org/doi/10.1175/2011JPO4589.1.
- Yang, J., and K. Chen, 2021: The Role of Wind Stress in Driving the Along-Shelf Flow in the Northwest Atlantic Ocean. *Journal of Geophysical Research: Oceans*, **126** (4), https://doi.org/ 10.1029/2020JC016757, URL https://onlinelibrary.wiley.com/doi/ 10.1029/2020JC016757.
- Zhang, R., R. Sutton, G. Danabasoglu, Y. Kwon, R. Marsh, S. G. Yeager, D. E. Amrhein, and C. M. Little, 2019: A Review of the Role of the Atlantic Meridional Overturning Circulation in Atlantic Multidecadal Variability and Associated Climate Impacts. *Reviews of Geophysics*, 57 (2), 316–375, https://doi.org/10.1029/2019RG000644, URL https: //onlinelibrary.wiley.com/doi/abs/10.1029/2019RG000644.
- Zhang, R., and G. K. Vallis, 2007: The Role of Bottom Vortex Stretching on the Path of the North Atlantic Western Boundary Current and on the Northern Recirculation Gyre. *Journal of Physical Oceanography*, 37 (8), 2053–2080, https://doi.org/10.1175/JPO3102.1, URL http: //journals.ametsoc.org/doi/abs/10.1175/JPO3102.1.

Supplemental Material for "Teleconnected tide gauges record the 20th century enhancement of decadal climate variability"

Christopher M. Little¹

¹Atmospheric and Environmental Research, Inc., 131 Hartwell Avenue, Lexington, MA 02421, USA.

Table S1. First 32 tide gauges included in this analysis. Completeness is the fraction of months with data over the time period beginning in the first full year and ending in the last full year, inclusive.

Tide Gauge	Lat	Lon	First Full Year	Last Full Year	Completeness
Honolulu	21.31	-157.87	1905	2019	100.0 %
Ketchikan	55.33	-131.62	1919	2019	99.0~%
Astoria (Tongue Point)	46.21	-123.77	1926	2019	98.8~%
Victoria	48.42	-123.37	1910	2018	99.0~%
San Francisco	37.81	-122.47	1900	2019	$99.9 \ \%$
Seattle	47.6	-122.34	1900	2019	$99.9 \ \%$
Los Angeles	33.72	-118.27	1924	2019	99.0~%
La Jolla (Scripps Pier)	32.87	-117.26	1925	2019	96.9~%
San Diego (Quarantine Station)	32.71	-117.17	1906	2019	98.5~%
Galveston II, Pier 21	29.31	-94.79	1909	2019	$99.5 \ \%$
Pensacola	30.4	-87.21	1924	2019	98.6~%
Key West	24.55	-81.81	1913	2019	99.2~%
Charleston I	32.78	-79.92	1922	2019	100.0~%
Balboa	8.97	-79.57	1908	2018	99.4~%
Baltimore	39.27	-76.58	1903	2019	99.8~%
Annapolis (Naval Academy)	38.98	-76.48	1929	2019	96.3~%
Sewells Point, Hampton Roads	36.95	-76.33	1928	2019	99.8~%
Philadelphia (Pier 9N)	39.93	-75.14	1901	2019	$97.5 \ \%$
New York (The Battery)	40.7	-74.01	1900	2019	99.3~%
Boston	42.35	-71.05	1921	2019	99.1~%
Portland (Maine)	43.66	-70.25	1912	2019	$99.8 \ \%$
Newlyn	50.1	-5.54	1916	2018	98.5~%
Vlissingen	51.44	3.6	1900	2018	100.0
Hoek Van Holland	51.98	4.12	1900	2018	100.0~%
Maassluis	51.92	4.25	1900	2018	100.0~%
Ijmuiden	52.46	4.55	1900	2018	100.0~%
Den Helder	52.96	4.75	1900	2018	100.0~%
West-Terschelling	53.36	5.22	1921	2018	100.0~%
Marseille	43.28	5.35	1900	2017	96.2~%
Harlingen	53.18	5.41	1900	2018	100.0~%
Delfzijl	53.33	6.93	1900	2018	100.0~%
Tregde	58.01	7.55	1928	2019	97.6~%

Tide Gauge	Lat	Lon	First Full Year	Last Full Year	Completeness
Esbjerg	55.46	8.44	1900	2017	98.7 %
Cuxhaven 2	53.87	8.72	1900	2018	100.0~%
Heimsjo	63.43	9.1	1928	2019	96.4~%
Fredericia	55.56	9.75	1900	2017	99.2~%
Hirtshals	57.6	9.96	1900	2017	95.9~%
Aarhus	56.15	10.22	1900	2017	97.4~%
Frederikshavn	57.44	10.55	1900	2017	97.0~%
Slipshavn	55.29	10.83	1900	2017	96.4~%
Korsor	55.33	11.14	1900	2017	98.2~%
Smogen	58.35	11.22	1911	2018	100.0~%
Wismar 2	53.9	11.46	1900	2018	99.9~%
Gedser	54.57	11.93	1900	2017	99.2~%
Warnemunde 2	54.17	12.1	1900	2018	99.9~%
Hornbaek	56.09	12.46	1900	2017	98.3~%
Kobenhavn	55.7	12.6	1900	2017	97.5~%
Klagshamn	55.52	12.89	1930	2018	99.9~%
Kungsholmsfort	56.11	15.59	1900	2018	99.9~%
Olands Norra Udde	57.37	17.1	1900	2018	100.0~%
Stockholm	59.32	18.08	1900	2018	100.0~%
Visby	57.64	18.28	1916	2018	99.6~%
Foglo / Degerby	60.03	20.38	1924	2018	95.7~%
Ratan	63.99	20.89	1900	2018	99.8~%
Kaskinen / Kasko	62.34	21.21	1927	2018	97.9~%
Furuogrund	64.92	21.23	1916	2018	99.8~%
Mantyluoto	61.59	21.46	1911	2018	98.5~%
Turku / Abo	60.43	22.1	1922	2018	98.2~%
Pietarsaari / Jakobstad	63.71	22.69	1915	2018	98.3~%
Kemi	65.67	24.52	1920	2018	96.6~%
Helsinki	60.15	24.96	1900	2018	99.9~%
Oulu / Uleaborg	65.04	25.42	1900	2018	95.2~%
Hamina	60.56	27.18	1929	2018	98.7~%
Sydney, Fort Denison 2	-33.85	151.23	1915	2019	98.6~%

Table S2. As Table S1, for the last 32 tide gauges.

Figure S1. a) Monthly sea level records from tide gauges 1-20. b) Tide gauge records after interpolation (in red) and detrending.

a)

10000

9000

8000

7000

6000

5000

4000

3000

2000

1000

0

1900

16.AI

12.KEY

8.T

WWW

www.

Figure S2. a) Monthly sea level records from tide gauges 21-40. b) Tide gauge records after interpolation (in red) and detrending.

Figure S3. a) Monthly sea level records from tide gauges 41-60. b) Tide gauge records after interpolation (in red) and detrending.

Figure S4. a) Monthly sea level records from tide gauges 61-64. b) Tide gauge records after interpolation (in red) and detrending.

Figure S5. Annual mean detrended sea level records (ζ) for tide gauges 1-20, following processing described in the main text.

Figure S6. Annual mean detrended sea level records (ζ) for tide gauges 21-40, following processing described in the main text.

Figure S7. Annual mean detrended sea level records (ζ) for tide gauges 41-60, following processing described in the main text.

Figure S8. Annual mean detrended sea level records (ζ) for tide gauges 61-64, following processing described in the main text.

1900 1920 1940 1960 1980 2000

1900 1920 1940 1960 1980 2000

1900 1920 1940 1960 1980 2000

1900 1920 1940 1960 1980 2000

1900 1920 1940 1960 1980 2000

San Diego

1900 1920 1940 1960 1980 2000

1900 1920 1940 1960 1980 2000

1900 1920 1940 1960 1980 2000

1900 1920 1940 1960 1980 2000

Figure S9. As Fig. 1b (with the identical color scale), for ζ at tide gauges 1-12. Dashed line indicates a period centered on 12.4 years.

1900 1920 1940 1960 1980 2000

1900 1920 1940 1960 1980 2000

1900 1920 1940 1960 1980 2000

1900 1920 1940 1960 1980 2000

Figure S10. As Fig. 1b (with the identical color scale), for ζ at tide gauges 13-24. Dashed line indicates a period centered on 12.4 years.

32 1900 1920 1940 1960 1980 2000

32 1900 1920 1940 1960 1980 2000

32 1900 1920 1940 1960 1980 2000

32 1900 1920 1940 1960 1980 2000

Esbjerg

2

8

16

2.

32 1900 1920 1940 1960 1980 2000

Fredericia

Figure S11. As Fig. 1b (with the identical color scale), for ζ at tide gauges 25-36. Dashed line indicates a period centered on 12.4 years. 14

32 1900 1920 1940 1960 1980 2000

32 1900 1920 1940 1960 1980 2000

32 1900 1920 1940 1960 1980 2000

32 1900 1920 1940 1960 1980 2000

Figure S12. As Fig. 1b (with the identical color scale), for ζ at tide gauges 37-48. Dashed line indicates a period centered on 12.4 years. 15

1900 1920 1940 1960 1980 2000

1900 1920 1940 1960 1980 2000

³² 1900 1920 1940 1960 1980 2000

1900 1920 1940 1960 1980 2000

1900 1920 1940 1960 1980 2000

1900 1920 1940 1960 1980 2000

2 Turku

1900 1920 1940 1960 1980 2000

Figure S13. As Fig. 1b (with the identical color scale), for ζ at tide gauges 49-60. Dashed line indicates a period centered on 12.4 years.

1900 1920 1940 1960 1980 2000

Power (cm^2)

1900 1920 1940 1960 1980 2000

Figure S14. As Fig. 1b (with the identical color scale), for ζ at tide gauges 61-64. Dashed line indicates a period centered on 12.4 years. 17

32 1900 1920 1940 1960 1980 2000

32 1900 1920 1940 1960 1980 2000

32 1900 1920 1940 1960 1980 2000

Pensacola

Figure S15. As Fig. 2b (with the identical color scale), for ζ at tide gauges 1-12. Dashed line indicates a period centered on 12.4 years. 18

32 1900 1920 1940 1960 1980 2000

Annapolis

16

32 1900 1920 1940 1960 1980 2000

Sewells Poin

8

16

32 1900 1920 1940 1960 1980 2000

32 1900 1920 1940 1960 1980 2000

Portland

Figure S16. As Fig. 2b (with the identical color scale), for ζ at tide gauges 13-24. Dashed line indicates a period centered on 12.4 years. 19

32 1900 1920 1940 1960 1980 2000

32 1900 1920 1940 1960 1980 2000

³² 1900 1920 1940 1960 1980 2000

32 1900 1920 1940 1960 1980 2000

32 1900 1920 1940 1960 1980 2000

Fsbj

Guxha

8

16

32 1900 1920 1940 1960 1980 2000

32 1900 1920 1940 1960 1980 2000

Figure S17. As Fig. 2b (with the identical color scale), for ζ at tide gauges 25-36. Dashed line indicates a period centered on 12.4 years. 20

32 1900 1920 1940 1960 1980 2000

32 1900 1920 1940 1960 1980 2000

32 1900 1920 1940 1960 1980 2000

32 1900 1920 1940 1960 1980 2000

32 1900 1920 1940 1960 1980 2000

Warnemunde 2

32 1900 1920 1940 1960 1980 2000

Figure S18. As Fig. 2b (with the identical color scale), for ζ at tide gauges 37-48. Dashed line indicates a period centered on 12.4 years. 21

1900 1920 1940 1960 1980 2000

1900 1920 1940 1960 1980 2000

1900 1920 1940 1960 1980 2000

1900 1920 1940 1960 1980 2000

1900 1920 1940 1960 1980 2000

Figure S19. As Fig. 2b (with the identical color scale), for ζ at tide gauges 49-60. Dashed line indicates a period centered on 12.4 years.

32 1900 1920 1940 1960 1980 2000

32 1900 1920 1940 1960 1980 2000

32 1900 1920 1940 1960 1980 2000

Figure S21. As Fig. 4, in 1940.

Figure S22. As Fig. 4, in 1950.

Figure S23. As Fig. 4, in 1960.

Figure S24. As Fig. 4, in 1970.

Figure S25. As Fig. 4, in 1990.

Figure S26. As Fig. 4, in 2000.