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Abstract

Solar-induced fluorescence (SIF) shows enormous promise as a proxy for photosynthesis and as a tool for modeling variability

in gross primary productivity (GPP) and net biosphere exchange (NBE). In this study, we explore the skill of SIF and other

vegetation indicators in predicting variability in global atmospheric CO2 observations, and thus global variability in NBE. We

do so using a four-year record of global CO2 observations from NASA’s Orbiting Carbon Observatory 2 (OCO-2) satellite

and using a geostatistical inverse model. We find that existing SIF products closely correlate with space-time variability in

atmospheric CO2 observations in the extra-tropics but show weaker explanatory power across the tropics. In the extra-tropics,

all SIF products exhibit greater skill in explaining variability in atmospheric CO2 observations compared to an ensemble of

process-based CO2 flux models and other vegetation indicators. Furthermore, we find that using SIF as a predictor variable

in the geosatistical inverse model shifts the seasonal cycle of estimated NBE and yields an earlier end to the growing season

relative to other vegetation indicators. In tropical biomes, by contrast, the seasonal cycles of SIF products and estimated NBE

are out of phase, and existing respiration and biomass burning estimates do not reconcile this discrepancy. Overall, our results

highlight several advantages and challenges of using SIF products to help predict global variability in GPP and NBE.
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Key Points:16

• SIF products adeptly explain variability in atmospheric CO2 observations, and17

thus in CO2 fluxes, in the extra-tropics but not the tropics.18

• Inverse model estimates of net biospheric exchange (NBE) that are informed by19

SIF exhibit a different seasonal cycle in the extra-tropics20

• The seasonal cycle of SIF products in tropical biomes is out of phase with inverse21

estimates of NBE.22
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Abstract23

Solar-induced fluorescence (SIF) shows enormous promise as a proxy for photosynthe-24

sis and as a tool for modeling variability in gross primary productivity (GPP) and net25

biosphere exchange (NBE). In this study, we explore the skill of SIF and other vegeta-26

tion indicators in predicting variability in global atmospheric CO2 observations, and thus27

global variability in NBE. We do so using a four-year record of global CO2 observations28

from NASA’s Orbiting Carbon Observatory 2 (OCO-2) satellite and using a geostatis-29

tical inverse model. We find that existing SIF products closely correlate with space-time30

variability in atmospheric CO2 observations in the extra-tropics but show weaker explana-31

tory power across the tropics. In the extra-tropics, all SIF products exhibit greater skill32

in explaining variability in atmospheric CO2 observations compared to an ensemble of33

process-based CO2 flux models and other vegetation indicators. Furthermore, we find34

that using SIF as a predictor variable in the geosatistical inverse model shifts the sea-35

sonal cycle of estimated NBE and yields an earlier end to the growing season relative to36

other vegetation indicators. In tropical biomes, by contrast, the seasonal cycles of SIF37

products and estimated NBE are out of phase, and existing respiration and biomass burn-38

ing estimates do not reconcile this discrepancy. Overall, our results highlight several ad-39

vantages and challenges of using SIF products to help predict global variability in GPP40

and NBE.41

1 Introduction42

CO2 uptake by photosynthesis, also known as gross primary productivity (GPP),43

is a key driver of the carbon cycle (e.g., Beer et al., 2010; Field et al., 1995). However,44

global-scale patterns in GPP are difficult to estimate. For example, terrestrial biospheric45

flux models (TBMs) give widely different estimates of GPP; models do not show con-46

sensus on the global magnitude of GPP, seasonal amplitude, or inter-annual variability47

– often due to divergent model responses to environmental conditions (e.g., Anav et al.,48

2015; Huntzinger et al., 2012, 2017). Huntzinger et al. (2012) further argue that uncer-49

tainties in estimated GPP dominate uncertainties in modeled net biospheric exchange50

(NBE), at least in an analysis of North America. In addition to models, multiple data-51

driven GPP estimates are available, like those generated from eddy flux towers. How-52

ever, eddy flux sites are unevenly distributed across the globe, and the data are often53

up-scaled using machine learning algorithms to obtain a global GPP estimate (Jung et54

al., 2019). These estimates also show numerous differences relative to TBMs (Jung et55

al., 2020).56

These uncertainties have motivated a longstanding interest in generating remote57

sensing products that can help predict space-time patterns in GPP. Numerous studies58

have argued that solar-induced fluorescence (SIF) holds particular promise in this regard59

(e.g., Damm et al., 2015; Frankenberg et al., 2011; Guan et al., 2015; Guanter et al., 2014;60

Köhler et al., 2018; X. Li, Xiao, & He, 2018; X. Li, Xiao, He, Arain, et al., 2018; Luus61

et al., 2017; MacBean et al., 2018; Shiga et al., 2018a; Y. Sun et al., 2018; Verma et al.,62

2017; Wood et al., 2017). SIF is radiation emitted in the red and near-infrared by chloro-63

phyll. Hence, it can serve as an indicator of sunlight absorption by chlorophyll and there-64

fore has the potential as a predictor of photosynthesis in plants. In the past decade, a65

growing number of space-based sensors provide information on SIF, opening a new win-66

dow into studying photosynthesis and GPP at local to global spatial scales.67

Over the past decade, there has been a profusion of research on SIF and the car-68

bon cycle. Several studies quantify the relationships between SIF and GPP, explore the69

linearity or non-linearity of those relationships, and how those relationships vary across70

different vegetation types (e.g., A. Chen et al., 2021; Gu et al., 2019; Helm et al., 2020;71

Kim et al., 2021; Z. Li et al., 2020; X. Li & Xiao, 2022; Magney et al., 2017; Magney,72

Frankenberg, et al., 2019; Marrs et al., 2020; Y. Sun et al., 2018; Verma et al., 2017; Wood73
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et al., 2017). Additional studies explore how SIF varies during climate anomalies like heat-74

waves or drought (e.g., Guan et al., 2016; He et al., 2019; Helm et al., 2020; Jiao et al.,75

2019; Shekhar et al., 2020; L. Zhang et al., 2019).76

In general, most studies show a close correlation between SIF and GPP at space-77

time scales that are observable by current satellite observations of SIF (e.g., Franken-78

berg et al., 2011; Guanter et al., 2012, 2014; X. Li, Xiao, He, Arain, et al., 2018; Y. Sun79

et al., 2018; Verma et al., 2017; Wood et al., 2017). By contrast, the relationship between80

SIF and GPP can be non-linear and/or weak at the scale of individual leaves or plants,81

partly due to variability in photosynthetic efficiency at these scales (e.g., Magney et al.,82

2020). With that said, the non-linearities found at sub-canopy scales often average out83

at kilometer spatial scales (Magney et al., 2020) and when SIF is upscaled from instan-84

taneous to daily or monthly scales (e.g., Hu et al., 2018; Pierrat et al., 2022). Specifi-85

cally, SIF-GPP relationships are likely strongest across coarser space-time scales where86

GPP closely correlates with absorbed photosynthetically active radiation (APAR) (e.g.,87

Magney et al., 2020; Marrs et al., 2020).88

Numerous works also compare and contrast SIF against other vegetation indica-89

tors that are commonly used to model the global carbon cycle, including the enhanced90

vegetation index (EVI) and normalized difference vegetation index (NDVI) (e.g., Chang91

et al., 2019; Doughty et al., 2021; Jeong et al., 2017; Magney, Bowling, et al., 2019; Shiga92

et al., 2018a; Yang et al., 2015; J. Zhang et al., 2022; Zuromski et al., 2018). In general,93

SIF appears to reflect changes in GPP induced by seasonal or climate-related variabil-94

ity more quickly than either EVI or NDVI (e.g., Luus et al., 2017; Jeong et al., 2017; Mag-95

ney, Bowling, et al., 2019; Meroni et al., 2009; Shekhar et al., 2020; F. Wang et al., 2020).96

In addition to SIF, another vegetation indicator, known as the near-infrared reflectance97

of vegetation (NIRv), has recently gained attention as a potential proxy for GPP. NIRv98

is the estimated portion of near-infrared (NIR) reflectance that is due to vegetation (Badgley99

et al., 2017, 2019; Dechant et al., 2020, 2022). One motive for the creation of NIRv is100

to decrease contamination due to non-vegetation (branches, litter, etc.) that can be present101

in other vegetation indicators like EVI and NDVI. Existing studies show that NIRv cor-102

relates with GPP (Badgley et al., 2017), largely because NIRv indicates variation in canopy103

structure, which was shown to correlate with light use efficiency and GPP at several crop104

sites (Dechant et al., 2020).105

There has also been substantial interest in incorporating SIF within TBMs to im-106

prove regional to global estimates of GPP and NBE (e.g., Bacour et al., 2019; Luus et107

al., 2017; MacBean et al., 2018; Parazoo et al., 2020; Thum et al., 2017). However, it is108

challenging to evaluate the relationships between SIF and GPP or NBE across large re-109

gions and across the entire globe. For example, existing studies often evaluate these re-110

lationships at eddy flux sites, which have a very localized footprint (e.g., Dechant et al.,111

2022; S. Wang et al., 2021; Wood et al., 2017) or evaluate these relationships across larger112

regions using model estimates of GPP (e.g., Byrne et al., 2018; Frankenberg et al., 2011;113

Verma et al., 2017).114

Atmospheric CO2 observations, by contrast, provide an opportunity to evaluate the115

skill of vegetation indicators in describing space-time variability in GPP and NBE across116

larger regions. Satellites like OCO-2 provide global coverage of CO2 observations, includ-117

ing regions with sparse ground-based atmospheric or eddy flux CO2 data. The task of118

evaluating vegetation indicators using atmospheric CO2 observations entails several chal-119

lenges. First, atmospheric observations are influenced by all types of CO2 fluxes, not just120

GPP. Second, atmospheric CO2 observations do not provide a direct measure of surface121

CO2 fluxes and typically necessitate an atmospheric model and/or inverse model to re-122

late observations to surface fluxes.123
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Several existing studies provide a possible road map for how to connect atmospheric124

CO2 observations with vegetation indicators. For example, a handful of studies directly125

compare the seasonal cycles of SIF against satellite-based CO2 observations across the126

Amazon (e.g., Parazoo et al., 2013; Albright et al., 2022); these studies report that the127

seasonality of SIF and atmospheric CO2 are modestly anti-correlated, implying that GPP128

is driving the seasonality of NBE in this region (Parazoo et al., 2013). Additional stud-129

ies use SIF to help interpret space-time patterns in NBE estimated using atmospheric130

CO2 observations and inverse modeling (e.g., Liu et al., 2017, 2020; Byrne et al., 2021).131

Shiga et al. (2018a) use a different approach to evaluate vegetation indicators us-132

ing atmospheric CO2 observations across North America. The authors estimate NBE us-133

ing a geostatistical inverse model (GIM) that is paired with an atmospheric transport134

model. They test out different vegetation indicators as predictor variables of NBE within135

the inverse model and evaluate how well each helps the inverse model match atmospheric136

CO2 observations. Using this framework, the authors find a stronger correlation between137

atmospheric CO2 observations and SIF relative to other vegetation indicators. The au-138

thors posit that SIF better captures peak CO2 uptake in croplands and better describes139

seasonal transitions in boreal evergreeen forests.140

In the present study, we use atmospheric CO2 observations and a GIM to evalu-141

ate the ability of SIF products, NIRv, and other vegetation indicators to help constrain142

global patterns in NBE. We are particularly interested in why SIF products are (or are143

not) better predictors of space-time variability in atmospheric CO2 observations rela-144

tive to other vegetation indicators. We then compare the ability of SIF products to help145

describe variability in atmospheric CO2 observations against state-of-the-art TBMs. We146

are also interested in how estimated NBE changes globally when we use different veg-147

etation indicators as predictors.148

2 Methods149

The overall approach in this study is to incorporate different vegetation indicators150

as predictor variables of NBE in a geostatistical inverse model (GIM). The GIM is fit-151

ted to global CO2 observations from OCO-2 or in situ CO2 observations. The approach152

used here follows that of Shiga et al. (2018a), who evaluate the relationships between SIF153

and NBE across North America using in situ CO2 observations. It also builds upon the154

methodology developed in previous GIM studies using both in situ and satellite CO2 ob-155

servations (e.g., Gourdji et al., 2008; Shiga et al., 2018b; S. M. Miller et al., 2020a; Z. Chen156

et al., 2021a, 2021b).157

2.1 The atmospheric inverse model158

A GIM will produce an estimate of CO2 fluxes (in this case, the sum of NBE, an-159

thropogenic emissions, and ocean fluxes) using atmospheric CO2 observations, an atmo-160

spheric transport model, and predictor variables of CO2 fluxes. Specifically, a GIM mod-161

els CO2 fluxes as the sum of two different components (e.g., Kitanidis & Vomvoris, 1983;162

Michalak et al., 2004; Fang et al., 2014; Z. Chen et al., 2021a):163

s = Xβ + ζ (1)164

The first component (Xβ) is a linear model of different predictor variables that may help165

describe variability in NBE. In the above equation, s are total CO2 fluxes, the sum of166

NBE, ocean fluxes, and anthropogenic emissions. The dimensions of s are m×1, where167

m is the number of model grid cells at all different times and locations. The variable X168

is a matrix of different predictor variables, and each column of X is a different predic-169

tor. If there are p predictor variables, then X has dimensions m×p. In previous stud-170

ies, these predictor variables have included vegetation indicators, environmental data (e.g.,171

estimates of soil moisture or PAR), estimates of biomass burning CO2 fluxes, estimates172
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of ocean CO2 fluxes, and estimates of anthropogenic CO2 emissions (e.g., Gourdji et al.,173

2008, 2012; Fang et al., 2014; Fang & Michalak, 2015; Shiga et al., 2018a, 2018b; Z. Chen174

et al., 2021a, 2021b). The coefficients (β, dimensions p×1) scale the overall magnitude175

of each predictor variable. These coefficients are estimated as part of the GIM to opti-176

mize the model fit against CO2 observations, a topic discussed later in this section.177

It is unlikely that any combination of predictor variables will be able to perfectly178

match actual CO2 fluxes (e.g., Gourdji et al., 2008, 2012; Z. Chen et al., 2021a). There179

may be errors in these predictor variables, and/or there may be complex processes gov-180

erning NBE that cannot be explained by a linear combination of available predictor vari-181

ables. In the second component of Eq. 1, denoted ζ (dimensions m×1), the GIM will182

quantify additional patterns in CO2 fluxes such that the CO2 flux estimate better matches183

atmospheric CO2 observations (e.g., Michalak et al., 2004). This component can vary184

in each model grid box and at each time step (in this case, each day).185

Note that we subtract anthropogenic emissions from our estimate of s to obtain186

an estimate of NBE. In this study, we use an anthropogenic emissions estimate from the187

Open-source Data Inventory for Anthropogenic CO2 (ODIAC, Oda et al., 2018) as a188

predictor variable in X, and we subsequently subtract ODIAC from our estimate of s189

to obtain an estimate of NBE. Note that it is standard practice in existing inverse mod-190

eling studies of CO2 to subtract the influence of anthropogenic emissions in order to ob-191

tain an estimate of NBE (e.g., Gourdji et al., 2012; Z. Chen et al., 2021a, 2021b; Peiro192

et al., 2022). We do not attempt to further partition the NBE estimate into GPP, res-193

piration, or biomass burning fluxes. We argue that the atmospheric CO2 observations194

used in this study do not provide sufficient information to confidently partition the NBE195

estimate into these categories. Furthermore, no existing GIM study has attempted this196

type of partitioning (e.g., Michalak et al., 2004; Gourdji et al., 2008, 2012; Fang et al.,197

2014; Fang & Michalak, 2015; Shiga et al., 2018a, 2018b; Z. Chen et al., 2021a, 2021b).198

The CO2 fluxes from the inverse model (s), when passed through an atmospheric199

model (h()), should match atmospheric CO2 observations (z) (e.g., Fang et al., 2014; Z. Chen200

et al., 2021a):201

z = h(s) + ϵ (2)202

Specifically, the CO2 fluxes (s) should match the atmospheric observations (z) within203

a margin of error specified by the inverse modeler (ϵ). The variance of ϵ needs to be spec-204

ified by the user before running the inverse model, and this point is discussed in greater205

detail in the SI. z and ϵ have dimensions n×1, where n are the number of observations.206

In this study, we use 10-second averages of version 10r CO2 observations from OCO-2207

(land nadir, land glint, and target observations only) (e.g. Peiro et al., 2022) and in situ208

observations from the NOAA CO2 Obspack v3.2 developed for the OCO-2 model inter-209

comparison project (MIP) (NOAA Global Monitoring Laboratory, 2021). In addition,210

we use the GEOS-Chem forward and adjoint models (version 9-02) for the atmospheric211

transport (h()). The global simulations here are driven by winds from the Modern-Era212

Retrospective Analysis for Research and Applications 2 (MERRA-2) (Gelaro et al., 2017)213

and have a spatial resolution of 4◦ latitude by 5◦ longitude. Furthermore, the simula-214

tions in this study cover September 2014 through December 2018. Note that we initial-215

ize model simulations for September 2014 using estimated atmospheric CO2 fields from216

NOAA’s CarbonTracker CT2019 product (Jacobson et al., 2020). We discard 2014 as217

a model spin-up period, following the procedure used in Z. Chen et al. (2021a) and Z. Chen218

et al. (2021b).219

Both the CO2 fluxes (s) and coefficients (β) are unknown and must be estimated220

as part of the GIM. The coefficients are calculated by solving a linear equation (e.g., Fang221

et al., 2014; Z. Chen et al., 2021a):222

β̂ = (h(X)TΨ−1h(X))−1h(X)TΨ−1z (3)223

–5–
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In this equation, Ψ (dimensions n×n) is a covariance matrix that describes the uncer-224

tainties in the model-data system (i.e., describes the residuals z − h(Xβ)). This ma-225

trix is defined by the modeler and is described in more detail in the SI. Furthermore, this226

equation requires inputting each vegetation indicator and predictor variable into the at-227

mospheric transport model in place of a CO2 flux estimate. In other words, we input each228

vegetation indicator in GEOS-Chem as if it were a CO2 flux to calculate h(X). GEOS-229

Chem will then translate patterns in surface-level variables like SIF into an atmospheric230

tracer with patterns defined by SIF. Note that the units or absolute magnitude of the231

vegetation indicators are not important in this framework (e.g., Shiga et al., 2018a, 2018b).232

Rather, the coefficients (β) estimated using the GIM will scale the magnitude of each233

vegetation indicator or predictor variable to create a model of CO2 fluxes that optimally234

matches atmospheric CO2 observations (z).235

Note that we run the GIM for the entire globe, but we estimate different coefficients236

(β) for different biomes and for different years, the same approach used in S. M. Miller237

et al. (2018), S. M. Miller and Michalak (2020b), Z. Chen et al. (2021a), and Z. Chen238

et al. (2021b). These biomes are shown in Fig. S1 and are the same biomes used in the239

aforementioned studies. This setup accounts for the fact that the relationships between240

NBE and vegetation indicators like SIF may be different in boreal forests versus deserts241

or tropical grasslands (e.g., A. Chen et al., 2021). We also analyze the results at this biome242

level. The use of different coefficients in different years also means that the model is be-243

ing fitted to spatial and seasonal variability within each year; spurious multi-year trends244

in the predictor variables will not adversely impact the model-data fit. With that said,245

we present the estimated coefficients (β̂) and NBE estimate averaged across the four-246

year study period (2015–2018). The SI, by contrast, presents year-to-year differences in247

the estimated coefficients.248

The choice of biomes here is specifically informed by several previous studies of OCO-249

2 observations (S. M. Miller et al., 2018; S. M. Miller & Michalak, 2020b). These stud-250

ies find that recent versions of the observations can be used to constrain NBE across large251

biome-based regions in most seasons. If we attempt to estimate different coefficients (β)252

for smaller regions, we generally obtain unrealistic and unphysical estimates because OCO-253

2 observations do not provide sufficient information to constrain the coefficients across254

smaller regions. Hence, the biomes used here balance our desire to obtain detailed in-255

formation about NBE with the limitations of currently-available CO2 observations.256

In contrast to the coefficients (β), estimating the CO2 fluxes (s) is more involved.257

This step requires minimizing a cost function (e.g., Kitanidis & Vomvoris, 1983; Micha-258

lak et al., 2004):259

L =
1

2
(z − h(s))TR−1(z − h(s)) +

1

2
(s−Xβ)TQ−1(s−Xβ) (4)260

The first component of the cost function quantifies how well the estimated CO2 fluxes261

, when passed through GEOS-Chem, match the atmospheric observations (z−h(s), aka262

ϵ). They should match within a margin specified by R (dimensions n×n), a covariance263

matrix defined by the modeler. The second term governs the properties of ζ or, equiv-264

alently, s−Xβ (Eq. 1). ζ should have spatial and temporal properties that match the265

covariance matrix Q (dimensions m×m), which is also defined by the modeler. These266

covariance matrices are described in greater detail in the SI. We minimize the cost func-267

tion with respect to s using an iterative solver, described in S. M. Miller et al. (2020a),268

Z. Chen et al. (2021a), and Z. Chen et al. (2021b).269

2.2 Remote sensing vegetation indicators and predictor variables270

We incorporate several vegetation indicators as predictor variables of NBE in the271

GIM. We specifically use four different SIF products based on SIF retrievals from OCO-272

2 – SIFOCO2 005 (Yu et al., 2019a), CSIF (Y. Zhang et al., 2018), GOSIF (X. Li & Xiao,273

–6–



manuscript submitted to Global Biogeochemical Cycles

2019b), and a SIF product from scientists at the Jet Propulsion Laboratory (referred to274

as JPL SIF) (Madani et al., 2022). The first three products are created by interpolat-275

ing SIF retrievals from OCO-2 onto a global grid using machine learning algorithms. The276

last product (JPL SIF) is created by binning high-quality OCO-2 SIF retrievals into monthly,277

4◦ latitude by 4◦ longitude grid boxes and taking a simple mean of all retrievals in each278

grid box. Note that other satellite sensors also provide SIF retrievals (e.g., the Green-279

house Gases Observing Satellite (GOSAT) and the TROPOspheric Monitoring Instru-280

ment (TROPOMI)), but we specifically use SIF products from OCO-2 retreivals because281

these products are available for the same time period as the modeling simulations in this282

study (2015–2018) and are generated from the same satellite (OCO-2) as the CO2 ob-283

servations used in this study.284

Although all four SIF products are based on OCO-2 SIF observations, these prod-285

ucts show several notable differences. First, the JPL SIF product is based on a much sim-286

pler method than any of the machine-learning (ML) based products. Second, different287

OCO-2 SIF retrievals are used in these products. GOSIF and CSIF use the 757 nm wave-288

lenth, while SIFOCO2 005 uses the average of 757nm and 771 nm wavelengths, and JPL289

SIF uses the 740 nm wavelength. Third, although three of the four SIF products are ML-290

based, they use either a Cubist regression tree-based method (GOSIF) or feed-forward291

neural networks (CSIF and SIFOCO2 005). However, Wen et al. (2020) find a similar pre-292

diction performance of these two types of ML methods, and therefore the difference in293

the ML method alone may not yield notable differences in the final SIF products. Fourth,294

different sets of predictor variables are used in each of the three ML-based products. The295

nadir bidirectional reflectance distribution adjusted reflectance (NBAR) from MODIS296

is the only predictor in the model for CSIF (MCD43C4) and SIFOCO2 005 (MCD43A4297

and MCD43C4) products, and the MCD43 surface reflectance may contain some miss-298

ing values in tropical forests due to clouds (Yu et al., 2019a; Y. Zhang et al., 2018). By299

contrast, the GOSIF study does not include the MODIS NBAR as a predictor. Instead,300

they use environmental data such as EVI from MODIS (MCD12), PAR, vapor pressure301

deficit, and air temperature from MERRA-2 (X. Li & Xiao, 2019b). Lastly, these stud-302

ies use different strategies to fit the ML model. Specifically, GOSIF and CSIF are fit-303

ted globally, while SIFOCO2 005 is fitted separately for each individual biome.304

Note that for the setup here, we aggregate the GOSIF, CSIF, and SIFOCO2 005 prod-305

ucts and other predictor variables (described below) to a 16-day time resolution before306

inputting them into the GIM, ensuring a fairer comparison among different GIM sim-307

ulations using different vegetation indicators (e.g., Shiga et al., 2018a; Z. Chen et al., 2021a).308

Note that JPL SIF is available at a monthly time resolution; OCO-2 SIF observations309

are spatially sparse, and the monthly time resolution ensures that there are enough ob-310

servations in each grid box to obtain a reliable mean. Refer to SI Sect. S3 for more dis-311

cussion of this point.312

In addition to SIF, we also include several additional vegetation indicators as pre-313

dictor variables in the inverse model – NDVI, EVI, and NIRv. NDVI is the difference314

between NIR reflectance and visible red reflectance, divided by the sum of these two quan-315

tities (e.g., NASA, 2000). Green vegetation reflects in the NIR but not in the visible red,316

and NDVI therefore provides a measure of vegetation greenness. EVI additionally in-317

cludes a correction for atmospheric effects and background noise (e.g., USGS, 2022). We318

use 16-day EVI and NDVI from MODIS Terra (product MOD13C1 with best, good, and319

mixed quality assurance flags; QA =0, 1 and 2, respectively). NIRv, by contrast, is the320

product of vegetation indicator NIR reflectance and NDVI, and we construct NIRv us-321

ing red (620–670 nm) and NIR (841–876 nm) reflectance data from MODIS Terra (prod-322

uct MCD43, reflectance bands 1 and 2). We further re-grid each product from the orig-323

inal 0.05◦ by 0.05◦ degree resolution provided by NASA to the 4◦ by 5◦ resolution of GEOS-324

Chem.325
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In addition to these vegetation indicators, we include environmental driver data326

(e.g., estimated meteorological variables) as predictor variables of NBE. These additional327

predictor variables may help account for space-time variability in respiration, and may328

describe additional patterns in GPP not described by the vegetation indicators. The use329

of environmental driver data in the GIM follows numerous existing studies (Gourdji et330

al., 2008, 2012; Fang et al., 2014; Fang & Michalak, 2015; Shiga et al., 2018a, 2018b; Z. Chen331

et al., 2021a, 2021b). We specifically consider driver data from MERRA-2 – 2 m air tem-332

perature, precipitation, PAR, surface downwelling shortwave radiation, soil temperature333

at 10 cm depth, soil moisture at 10 cm depth, specific humidity, and relative humidity.334

We also include a non-linear function of air temperature from Mahadevan et al. (2008).335

In a recent GIM study using CO2 observations from OCO-2, Z. Chen et al. (2021a) find336

that air temperature is a poor predictor variable and does little to help the inverse model337

describe patterns in CO2 observations. Rather, they find that a non-linear function of338

air temperature has much better explanatory power in the GIM. Refer to SI Sect. S3339

for a discussion of uncertainties in these environmental driver data.340

We do not assimilate all of these environmental driver data from MERRA-2 as pre-341

dictor variables in the GIM; several of these variables are highly correlated or colinear342

and including all of these variables would likely overfit the CO2 observations from OCO-343

2 and in situ sites. Instead, we use model selection based on the Bayesian Information344

Criterion (BIC) to determine which combination of variables in different biomes can best345

complement the vegetation indicators and optimize model-data fit against CO2 obser-346

vations from OCO-2. Numerous GIM studies to date employ the BIC to decide on a set347

of environmental predictor variables for the GIM (e.g., Gourdji et al., 2012; Fang et al.,348

2014; Fang & Michalak, 2015; S. Miller et al., 2014a; S. M. Miller et al., 2016a; Shiga349

et al., 2018a, 2018b; Z. Chen et al., 2021a, 2021b). Furthermore, the approach used here350

mirrors that used in Z. Chen et al. (2021a) and Z. Chen et al. (2021b) and is described351

in greater detail in the Supplement.352

In some GIM simulations (e.g., Sect. 3.3), we also consider respiration estimates353

from an ensemble of TBMs for use as predictor variables in the GIM. We specifically in-354

corporate respiration estimates from 15 flux models that are part of the Global Carbon355

Projects’ Trends in Net Land Atmosphere Carbon Exchanges (TRENDY) model inter-356

comparison (version 8, Friedlingstein et al., 2019; Sitch et al., 2015). Note that we use357

TRENDY scenario three, which includes all forcings (e.g., climate and land use forcings).358

These respiration estimates are available for the time period of this study (2014–2018)359

and are reported at variable spatial resolution and monthly temporal resolution, described360

in the Supplement.361

All model simulations in this study further include estimates for other CO2 source362

types: fossil fuel fluxes from ODIAC (Oda et al., 2018), ocean fluxes from the Circula-363

tion and Climate of the Ocean consortium (ECCO-Darwin, Carroll et al., 2020), and364

Global Fire Emissions Database (GFED) version 4.1 (Giglio et al., 2013). These flux es-365

timates are incorporated as predictor variables in the GIM (in X, as in Z. Chen et al.,366

2021a, 2021b).367

2.3 Analysis using the inverse model and predictor variables368

We use the inverse model or GIM to conduct two analyses. In the first analysis,369

we evaluate how well we are able to reproduce patterns in atmospheric CO2 observations370

using a linear model of vegetation indicators and other predictor variables. For this anal-371

ysis, we use the first component of the CO2 flux estimate from the GIM (Xβ in Eq. 1).372

We input this component of the flux estimate into GEOS-Chem and compare the results373

against CO2 observations. This linear model provides a convenient way to evaluate veg-374

etation indicators like SIF and NIRv using atmospheric CO2 observations.375
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For the second analysis, we investigate how NBE estimated by the inverse model376

changes when we incorporate different vegetation indicators as predictors. For this anal-377

ysis, we evaluate the full NBE estimate from different GIM simulations that use differ-378

ent vegetation indicators. This analysis illustrates the potential of SIF products to in-379

form inverse estimates of NBE; it highlights the additional information on NBE provided380

by SIF products compared to inverse estimates of NBE using other vegetation indica-381

tors (e.g., Shiga et al., 2018a). Note that estimating the linear model (Xβ) using Eq.382

3 requires relatively little computing time while estimating NBE using Eq. 4 requires383

several weeks on a supercomputer cluster. Hence, we only discuss a few representative384

examples for this second set of analyses using estimated NBE.385

The vegetation indicators evaluated here are often used as proxies for GPP, and386

we acknowledge that GPP is not the only component of NBE. With that said, we ar-387

gue that atmospheric CO2 observations and the GIM can help inform the use of these388

vegetation indicators. First, in many biomes, GPP likely dominates large-scale space-389

time patterns in NBE (e.g., Parazoo et al., 2013; Shiga et al., 2018a; W. Sun et al., 2021).390

Specifically, GPP is a large component of NBE, and other flux processes like autotrophic391

respiration likely exhibit similar seasonal patterns as GPP (albeit with opposite sign)392

(e.g., Huntzinger et al., 2012). Furthermore, existing regional-scale atmospheric stud-393

ies show a correlation between GPP and NBE in both tropical and extra-tropical regions394

(e.g., Parazoo et al., 2013; Shiga et al., 2018a; W. Sun et al., 2021).395

Second, our primary goal is not to evaluate the absolute performance of the GIM396

relative to atmospheric CO2 observations. Rather, we are interested in the relative per-397

formance of simulations that use vegetation indicators as one of several predictor vari-398

ables of NBE. Uncertainties in GFED and the environmental driver data, among other399

uncertainties, could lower overall model performance relative to the CO2 observations,400

but these uncertainties are unlikely to erroneously make one vegetation indicator appear401

more skilled than another.402

Third, in instances where SIF products do not show favorable results in the GIM403

compared to other vegetation indicators, we also examine the possible role of uncertain-404

ties in respiration and biomass burning to explain the discrepancies.405

3 Results and discussion406

3.1 Summary of global results407

A linear model of SIF products is able to describe substantial variability in CO2408

observations from OCO-2. Specifically, a model that consists of a linear combination of409

SIF products can describe between 40–85% of all variability in the OCO-2 observations,410

depending upon the biome (Fig. 1a). This result reaffirms the skill of SIF to describe411

regional spatial and seasonal patterns in NBE. Existing studies using atmospheric CO2412

observations indicate a strong correlation between SIF and NBE in a handful of regions413

– across southern Amazonia (Parazoo et al., 2013) and across North America (Shiga et414

al., 2018a), and this study suggests strong correlations across much broader global biomes.415

SIF products are also more skilled at predicting variability in CO2 observations com-416

pared to other vegetation indicators, at least in the extra-tropics (Fig. 1a). In these biomes,417

model-data comparisons using the SIF-based linear model show higher R2 values com-418

pared to models based on EVI, NDVI, and NIRv (Fig. 1a). Indeed, this result comple-419

ments several studies of eddy flux data that show a stronger relationship between SIF420

and GPP than NDVI or EVI and GPP (e.g., Guan et al., 2016; Magney, Bowling, et al.,421

2019; Shiga et al., 2018a; Yang et al., 2015; J. Zhang et al., 2022; Zuromski et al., 2018).422

It also mirrors regional studies that find large-scale, seasonal decoupling between GPP423

and measures of greenness like EVI and NDVI in numerous extra-tropical biomes (e.g.,424

Walther et al., 2016; Jeong et al., 2017; Luus et al., 2017; Pierrat et al., 2021). In Sect.425
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3.2, we discuss in detail why a linear model of SIF is a better fit against OCO-2 obser-426

vations in the extra-tropics, and we explore how inverse estimates of NBE that are in-427

formed by SIF differ from those informed by other vegetation indicators.428

By contrast, SIF products do not show the same advantage relative to other veg-429

etation indicators in the tropics (Fig. 1a). Linear models using SIF products, EVI, and430

NIRv exhibit similar R2 values relative to OCO-2 observations in tropical biomes. This431

topic is the focus of Sect. 3.3.432

We also note that all model simulations (i.e., using EVI, NDVI, SIF, and NIRv)433

exhibit a lower R2 value relative to OCO-2 observations in the tropics (Fig. 1a). This434

lower model skill could be explained by the fact that NBE often has a larger seasonal435

cycle in the extra-tropics than in the tropics, and seasonal patterns in CO2 observations436

are therefore likely easier to fit in the former biomes than in the latter. In addition, the437

atmospheric transport model (GEOS-Chem coupled with winds from MERRA-2) may438

be subject to larger errors in the tropics than in the extra-tropics; OCO-2 has a sun-synchronous439

orbit and passes over every location at approximately 1pm local time. At this time of440

day, there is often heterogeneous convection in biomes like tropical forests, and these fea-441

tures may be challenging to model using a global chemical transport model like GEOS-442

Chem (e.g., Jiang et al., 2013). Relatedly, biomass burning events can also create con-443

vection that is difficult to capture in atmospheric transport models (e.g., S. M. Miller444

et al., 2008), particularly in the tropics where biomass burning emissions are highly vari-445

able (e.g., Giglio et al., 2013). These factors may help explain why the overall model skill446

is lower in the tropics than in the extra-tropics. However, it does not explain why the447

model simulations using SIF products do not outperform the other vegetation indica-448

tors like EVI or NDVI in tropical biomes, as is the case in extra-tropical biomes.449

We further find that linear model simulations using different SIF products yield450

different model-data fit against CO2 observations (Fig. 1a). Globally, we find that a lin-451

ear model using either GOSIF or JPL SIF yields a slightly higher R2 in Fig. 1 relative452

to other SIF products. This result is perhaps surprising because JPL SIF is a much sim-453

pler product than the other SIF products (see Sect. 2.2). With that said, JPL SIF only454

relies on OCO-2 SIF data, while SIF products that yield lower R2 values rely on MODIS455

reflectance to interpolate the OCO-2 SIF data. The use of MODIS data makes it pos-456

sible to produce SIF estimates at a much finer spatial and temporal grid than available457

from JPL SIF (see Table S2), but these products may partly mirror patterns in that MODIS458

data instead of SIF. We focus on GOSIF in subsequent analyses – because it is one of459

two SIF products that yield the highest R2 values.460

In a subsequent analysis, we add additional predictor variables to the linear model461

– environmental data, including precipitation and a function of air temperature (Fig. 1b;462

see also Sect. 2.2 and Table S4). Vegetation indicators like SIF and EVI are often used463

as predictors of GPP. However, atmospheric CO2 observations, like those used in the model-464

data comparisons here, are influenced by many different types of CO2 fluxes, including465

GPP and respiration. The inclusions of environmental data may help the model better466

describe variability in CO2 observations caused by respiration and may help describe ad-467

ditional variability in GPP that is not described by the vegetation indicators.468

We find that the inclusion of additional predictor variables does little to improve469

the model-data fit (R2, Fig. 1b). The result may appear surprising, yet it parallels ex-470

isting studies of in situ atmospheric CO2 observations focused on North America (Shiga471

et al., 2018a; W. Sun et al., 2021). Shiga et al. (2018a) construct a similar linear model472

of SIF and other vegetation indicators. They find that the inclusion of additional pre-473

dictor variables yields a better model-data fit in croplands but does little to change model-474

data fit in other North American biomes. W. Sun et al. (2021) also find that a SIF-based475

model is as adept at describing variability in atmospheric CO2 observations as NBE es-476

timates from many of the TRENDY models and from FLUXCOM. In addition, GPP es-477
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timates from TRANSCOM, TRENDY, and MsTMIP are often able to match patterns478

in atmospheric CO2 observations as well as NBE estimates from these products.479

Several factors may help explain why the inclusion of additional predictor variables480

does little to improve model-data fit. First, Shiga et al. (2018a) note that GPP and NBE481

are highly correlated in many regions, and this fact may explain why predictors of GPP482

like SIF are able to explain a large percentage of variability in atmospheric CO2 obser-483

vations. Second, this result may also reflect the limits of using OCO-2 observations to484

constrain NBE. CO2 observations from OCO-2 are spatially sparse and represent columns485

averages, and these observations are not as sensitive as many eddy flux or ground-based486

observations to fine-scale variability in NBE or the individual components of NBE. Hence,487

this result speaks to the positive ability of SIF to help predict global-scale patterns in488

NBE, but this result likely also speaks to the limitations of using OCO-2 observations489

to constrain detailed space-time patterns in NBE.490

In the above analyses, we fit the linear model of predictor variables to CO2 obser-491

vations from OCO-2. We also conduct a parallel analysis using CO2 observations from492

in situ monitoring sites and find similar results (Fig. 2). This similarity indicates that493

the results are robust to the specific type of the CO2 observations used in the analysis,494

and that the results in Fig. 1 are unlikely to be aliased or unduly contaminated by ob-495

servational errors. Note that much of the analysis in the remainder of the manuscript496

focuses on results using CO2 observations from OCO-2 because it provides better data497

coverage (Fig. S2) across the tropics relative to the in situ observing network (Fig. S3).498

We also explore year-to-year differences in model-data fit relative to atmospheric499

CO2 observations. The first half of the study period (2015-2016) corresponds to a large500

El Niño event, whereas the second half of the study period (2017-2018) does not. We find501

that model-data fit is similar in El Niño versus non El Niño years – within an R2 of 0.05502

for all of the simulations using different vegetation indicators. In other words, no veg-503

etation indicator shows a discernible advantage in describing CO2 observations during504

El Niño conditions.505

We further find that the linear model using SIF products is a better model-data506

fit against OCO-2 observations in the extra-tropics than NBE estimates from the TBMs507

in TRENDY, which do not incorporate SIF (Fig. 3). We specifically compare the cor-508

relation (R2) with OCO-2 observations when we use NBE estimates from 15 different509

TRENDY models in place of the SIF-based linear model. Note that the vegetation in-510

dicators used here have a 16-day temporal resolution while the NBE estimates from TRENDY511

are available at a monthly resolution, though this fact is unlikely to place the TBMs a512

noticeable disadvantage (refer to the sensitivity study in SI Sect. S3). Furthermore, the513

TRENDY models have not been calibrated to CO2 observations from OCO-2. These facts514

not withstanding, the results suggest that SIF could be beneficial for improving TBM515

flux estimates, at least in the extra-tropics, while the SIF products discussed here are516

unlikely to yield a similar benefit in the tropics.517

Note that the inverse modeling analysis described in this section involves several518

uncertainties that may impact our ability to model variability in atmospheric CO2 ob-519

servations. These include uncertain biomass burning and anthropogenic CO2 emissions,520

NBE variability due to land use change, possible atmospheric transport errors, and is-521

sues related to the atmospheric CO2 observations (e.g., observational errors or variabil-522

ity in data coverage). Indeed, these challenges are common to inverse modeling studies523

using atmospheric CO2 observations. We specifically incorporate biomass burning emis-524

sions from GFED and anthropogenic emissions from ODIAC as predictor variables in525

the inverse model, and these sources are accounted for in all modeling simulations con-526

ducted in this study (Sect. 2.2). However, errors in either emissions estimate could lower527

the overall model-data fit relative to atmospheric CO2 observations. With that said, we528

are primarily interested in the relative model-data fit, not absolute model-data fit, of model529
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simulations informed by SIF relative to those informed by other vegetation products. In530

addition, variability in NBE due to land use change may also be a source of uncertainty.531

Land use changes that alter GPP should also impact SIF (e.g., del Rosario Uribe & Dukes,532

2021; Ding et al., 2021) and should therefore be accounted for in model simulations. With533

that said, existing studies show that CO2 observations from OCO-2 can only be used to534

constrain very broad, seasonal, biome-level variability in NBE (e.g., S. M. Miller et al.,535

2018; S. M. Miller & Michalak, 2020b). Land use changes that unfold over decades will536

undoubtedly change biome-level patterns in NBE but may not be detectable across the537

relatively short, four-year duration of this study. Lastly, atmospheric transport errors538

and issues related to the CO2 observations undoubtedly lead to uncertainties in the in-539

verse model. These issues are common to inverse modeling studies and reiterate the im-540

portance of setting accurate uncertainties (i.e., covariance matrix parameters) within the541

inverse model. We discuss the covariance matrix parameters in Sect. S1.542

3.2 The extra-tropics543

In this section, we estimate NBE using SIF products and other vegetation indica-544

tors as predictor variables in the inverse model. We then evaluate how the resulting NBE545

estimates differ among these different inverse modeling simulations.546

We find that incorporating SIF as a predictor variable in the inverse model leads547

to a different seasonal variability in NBE across the extra-tropics relative to an inverse548

model that incorporates EVI (Fig. 4). Specifically, NBE estimated using GOSIF show549

less CO2 uptake in the fall than NBE estimated using EVI. Furthermore, we see this re-550

sult in all extra-tropical biomes.551

This result, using a global-scale inverse model, parallels studies that compare veg-552

etation indicators against satellite-based GPP products and eddy flux observations. Sev-553

eral satellite-based studies report that the seasonality of greenness is decoupled from the554

seasonality of GPP in multiple extra-tropical biomes, including both evergreen and de-555

ciduous forests (e.g., Walther et al., 2016; Jeong et al., 2017; Luus et al., 2017; Y. Zhang556

et al., 2020). For example, Jeong et al. (2017) compare the seasonal cycle of SIF, NDVI,557

and satellite-based estimates of GPP for extratropical forests between 40◦ – 55◦N lat-558

itude globally. They find that the growing season determined by NDVI is 46±11 days559

longer than estimated using SIF. Studies that leverage eddy flux observations reach sim-560

ilar conclusions (e.g., Churkina et al., 2005; Gonsamo et al., 2012).561

This seasonal discrepancy is likely because leaves reduce their photosynthetic out-562

put during late summer and early autumn. However, their optical properties do not change563

as quickly, and are unlikely to be detected by greenness indicators like EVI or NDVI (e.g.,564

Jeong et al., 2017). This change is probably caused by a seasonal reduction in incom-565

ing solar radiation (e.g., Bauerle et al., 2012). Jeong et al. (2017) specifically find that566

seasonal changes and SIF and GPP products during fall correlate with changes in incom-567

ing shortwave radiation, whereas seasonal changes in greenness indicators like NDVI cor-568

relate with changes in temperature (e.g., F. Wang et al., 2020). Furthermore, Jeong et569

al. (2017) find that temperature and NDVI changes in fall are not linked to GPP and570

more likely reflect the timing of chlorophyll reduction and leaf drop (Jeong & Medvigy,571

2014). Hence, greenness indicators are less effective than SIF at predicting end-of-season572

changes in GPP. In addition, this decrease in photosynthetic activity could reflect drought573

stress as soil moisture is depleted through the summer (e.g., P. A. Schwarz et al., 2004).574

These seasonal changes may not be reflected in greenness indicators (e.g., Goerner et al.,575

2009). Also, data contamination cannot be ruled out; leaf litter and plant material that576

has not yet fallen from the plant can increase greenness indicators in the fall, yielding577

erroneous estimates for the end of growing season (e.g., Gonsamo et al., 2012; Walther578

et al., 2016).579
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Despite the differences between SIF and other vegetation indicators, Dechant et580

al. (2022) propose multiplying greenness indicators by PAR, and they argue that the re-581

sult may serve as an effective structural proxy for SIF and for photosynthesis. The au-582

thors of that study focus on the product of NIRv and PAR (NIRvP) but show that other583

greenness indicators, when multiplied by PAR, also correlate with SIF at multiple scales584

– when compared to both tower and satellite observations. The product of greenness in-585

dicators and PAR may help overcome the seasonal decoupling between greenness and586

SIF, as discussed in the previous paragraph. Furthermore, the development of a SIF proxy587

could hold practical applications. Such a proxy could be used in place of SIF in time pe-588

riods or locations when SIF is not available. For example, satellites like OCO-2 provide589

spatially sparse SIF observations, and existing studies assimilate SIF with other vege-590

tation indicators in a machine learning algorithm to create interpolated SIF maps. Other591

products, like those proposed by Dechant et al. (2022), may serve as a better proxy.592

Dechant et al. (2022) also provide a theoretical underpinning for the multiplica-
tion of greenness indicators and PAR. They start with equations for GPP and SIF:

GPP = APAR× LUE (5)

SIF = APAR× fesc × ΦF (6)

where LUE is light use efficiency, fesc is the canopy escape fraction, and ΦF is the flu-
orescence emission yield. Dechant et al. (2020) argue that fesc is correlated with LUE
at seasonal time scales, at least at the agricultural sites examined, and that fesc there-
fore plays a key role in the seasonal relationship between SIF and GPP. By contrast, they
argue that ΦF shows poor correlation with LUE. fesc can be approximated by a green-
ness or vegetation indicator (VI) and fPAR (Zeng et al., 2019):

fesc ≈ V I/fPAR (7)

where fPAR is the fraction of absorbed PAR. Given that APAR = PAR×fPAR the
following relationship should hold:

APAR× fesc ≈ V I × PAR (8)

Following this logic a greenness indicator like NIRv, EVI, and/or NDIV, when multiplied593

by PAR, may be a reasonable structural proxy for SIF.594

Indeed, we find that a linear model of NIRv × PAR (NIRvP), EVIP, and NDVIP595

are just as skilled at matching variability in CO2 observations compared to a linear model596

using GOSIF (Figs. 5a-b and S6). In addition, NBE estimated using EVIP exhibits a597

similar seasonality in the fall relative to results using GOSIF (Fig. 5c). For the large biome-598

based regions examined here, the product of greenness indicators and PAR may, in fact,599

be an effective structural proxy for SIF and overcome the seasonal decoupling described600

earlier in this section. By contrast to the extra-tropics, we find that multiplying vege-601

tation indicators by PAR does relatively little to improve model data fit against OCO-602

2 observations in the tropics (Figs. 5a-b and S6). Furthermore, these predictors actu-603

ally worsens model-data fit relative to OCO-2 observations in tropical grasslands (Figs.604

5a-b and S6). High levels of PAR can indicate decreased photosynthesis associated with605

seasonal drought and low levels of PAR can indicate increased photosynthesis associated606

with seasonal rainfall, a possible reason why PAR worsens model-data fit in tropical grass-607

lands (e.g., Ma et al., 2014). The next section describes inverse modeling results for trop-608

ical biomes in depth.609

3.3 The tropics610

We find that the seasonal cycle of SIF products in tropical biomes is shifted com-611

pared to that of NBE estimated by the inverse model. Furthermore, we are unable to612

reconcile these different seasonal cycles using existing estimates of respiration and biomass613
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burning. This seasonal mismatch may help explain why a linear model of SIF products614

is not able to explain any more variability in OCO-2 observations relative to other veg-615

etation indicators, a result discussed previously in Sect. 3.1.616

This mismatch is apparent in Fig. 6, which compares the seasonal cycle of GOSIF617

against two NBE estimates in different tropical biomes. In the Southern Hemisphere and618

in Northern Hemisphere tropical forests, GOSIF indicates an onset of seasonal CO2 up-619

take before the two NBE estimates. By contrast, GOSIF predicts peak CO2 uptake in620

roughly the same months as the two NBE estimates. Note that the seasonal cycle of each621

estimate in these panels has been normalized to have a mean of zero and a standard de-622

viation of one in order to make GOSIF directly comparable with the NBE estimates. The623

blue line in Fig. 6 displays NBE estimated by the inverse model. This inverse model in-624

corporates GOSIF as a predictor variable, yet the the seasonal cycle of NBE looks very625

different from that of GOSIF. In addition, the red line shows the NBE estimate from OR-626

CHIDEE; of all TBMs in TRENDY, ORCHIDEE exhibits the best model-data fit (R2)627

compared to OCO-2 observations in the tropics (see Fig. S9). It is possible, although628

unlikely, that CO2 observations from OCO-2 do not provide a unique constraint on the629

seasonal cycle of NBE in tropical biomes. However, the consistency between the seasonal630

cycle of the inverse model and of ORCHIDEE suggest otherwise.631

We further analyze the seasonal cycle of SIF data from the TROPOMI instrument632

to see whether the seasonal cycle of SIF from this instrument is in any better agreement633

with NBE estimates (Fig. 6). Note that the TROPOMI-SIF data do not cover the full634

range of our study time period (Jan. 2015 to Dec. 2018), and we use a multi-year monthly635

average (May 2018 to Dec. 2021) in this analysis for each tropical biome. We find that636

the GOSIF and TROPOMI-SIF have similar seasonal cycles in tropical grasslands and637

forests, which indicates that possible biases in the seasonal cycle of OCO-2 SIF prod-638

ucts are unlikely to be the cause of the seasonal discrepancies in Fig. 6.639

We also find that seasonal patterns in respiration and biomass burning cannot rec-640

oncile the seasonal differences between SIF products and NBE. We include GOSIF and641

environmental driver variables in the inverse model to help predict NBE (as in Shiga et642

al., 2018a, ; Table S4). It is possible that this combination of predictors is skilled at cap-643

turing space-time patterns in NBE due to GPP but not due to respiration. To explore644

this possibility, we re-run the linear model 15 times and each time use a different res-645

piration estimate from TRENDY in place of using environmental driver variables (Fig.646

S10a). We find that these respiration estimates do little to improve the model-data fit647

for the SIF-based linear model; the ORCHIDEE model reproduces variability in OCO-648

2 observations better than any of the linear models using GOSIF and TRENDY respi-649

ration estimates (i.e., has a higher R2), at least in tropical biomes (Fig. S10b).650

Similarly, biomass burning cannot reconcile the differing seasonal cycles between651

SIF products and the NBE estimates. Fig. 6 displays the seasonal cycle of biomass burn-652

ing emissions from GFED. In this figure, we normalize GFED such that the seasonal cy-653

cle is easier to compare against GOSIF and the NBE estimates. In most biomes, the peak654

in biomass burning has similar timing to the minimum CO2 uptake predicted by GOSIF.655

However, this peak is earlier in most tropical biomes than the peak in NBE (i.e., max-656

imum seasonal CO2 release). Note that all modeling simulations in this study include657

GFED as a predictor variable.658

It is unclear why SIF products are not more skilled predictors of NBE in the trop-659

ics relative to other vegetation indicators; there are several possible reasons. First, TBMs660

disagree on the seasonality of respiration in the tropics, and it is possible that none of661

the TBMs used here provides a skilled respiration estimate. Indeed, the seasonal mis-662

match between SIF products and NBE in Fig. 6 is most pronounced around the peak663

in NBE (i.e., maximum CO2 release), indicating that deficiencies in the respiration es-664

timates may be at play.665
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Second, the SIF products used in this study may not be an accurate representa-666

tion of SIF. SIF retrievals from OCO-2 must be interpolated to fill data gaps and cre-667

ate a continuous, gridded SIF map, and uncertainties in the gap-filling process can im-668

pact the accuracy of the resulting SIF products, particularly in the tropics. For exam-669

ple, Yu et al. (2019b) point out that SIF retrievals for some tropical regions (e.g., grass-670

lands and shrublands) exhibit a lower signal-to-noise ratio due to lower overall SIF val-671

ues in those biomes, and they explain that those biomes could experience rapid changes672

in photosynthesis that may not be captured by OCO-2 with a 16-day revisit time. Sub-673

stantial differences among the OCO-2 based SIF products further highlights the uncer-674

tainty associated with interpolation and gap-filling. In addition, SIF observations from675

OCO-2 are sensitive to atmospheric cloud/aerosol contamination or sun–sensor geom-676

etry which can confound the real seasonality photosynthesis, particularly in tropical forests677

(e.g., X. Li, Xiao, He, Arain, et al., 2018; Yu et al., 2019b).678

Third, canopy-level and/or remotely sensed SIF may not be a skilled proxy for GPP.679

This explanation, however, seems less likely given that several site-level studies find good680

correlation between SIF and GPP in a variety of tropical biomes (e.g., C. Wang et al.,681

2019; Mengistu et al., 2021). Satellite measurements may not detect all photosynthetic682

activity in tropical forests, including in the understory, mid-canopy, and the dense canopy.683

Differences in photosynthesis among these different levels can be key to estimating GPP684

and NBE of the entire forest; the canopy and understory can have very different seasonal685

dynamics in tropical forests, dynamics that may not be captured by satellite-based SIF.686

For example Tang and Dubayah (2017) find that leaf area index in the canopy and un-687

derstory are anti-correlated in tropical forests, and that dry season leaf loss from the canopy688

is associated with opportunistic leaf growth in the understory.689

4 Conclusion690

Remote sensing products like SIF and NIRv have shown enormous promise as pre-691

dictors of the global carbon cycle. Indeed, we find that existing SIF products are skilled692

at predicting variability in atmospheric CO2 observations, and thus in predicting vari-693

ability in NBE, across the extra-tropics, particularly when compared to other vegeta-694

tion indicators and to state-of-the-art TBMs that do not assimilate SIF. Specifically, in-695

verse estimates of NBE that assimilate SIF products exhibit a different seasonal cycle,696

particularly during the fall months when CO2 uptake by plants may decline more quickly697

than changes in vegetation greenness. However, we find that other vegetation indicators698

like NIRv, EVI, and NDVI are just as skilled at predicting patterns in CO2 observations699

across large global biomes when we multiply these indicators by PAR, suggesting that700

NIRvP, EVIP, and NDVIP may, indeed, be reasonable structural proxies for SIF at global701

scales. By contrast, existing SIF products do not show the same advantage relative to702

other vegetation indicators in the tropics. Notably, the seasonal cycle of SIF products703

does not match inverse estimates of NBE nor does it match the seasonal cycle of TBMs704

that are skilled at predicting patterns in CO2 observations from OCO-2. We are not able705

to reconcile this discrepancy using respiration estimates from the 15 TBMs analyzed in706

this study or using a biomass burning emissions estimate.707

Overall, the results suggest that interpolated SIF products can be a powerful tool708

to improve bottom-up NBE estimates across the global extra-tropics. Specifically, the709

direct use of SIF within diagonistic TBMs (i.e., those that use forcing data or vegeta-710

tion characteristics from an external source) could improve the characterization of sea-711

sonal variability in GPP and NBE across the extra-tropics, while SIF could serve as an712

effective tool for evaluating or tuning seasonal variability of GPP in prognostic TBMs713

(i.e., those that calculate forcing data and vegetation characteristics internally). Indeed,714

several prognostic TBMs can be used to predict SIF, but these TBMs show wide disagree-715

ment on both SIF and GPP, at least at the site level Parazoo et al. (2020). However, this716

study suggests that there is more work to be done to understand the relationships be-717
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tween SIF, GPP, and NBE in the tropics. We argue that there is a need for more atmo-718

spheric CO2 observations in the tropics that can be used to evaluate relationships be-719

tween SIF, GPP, and NBE at intermediate regional scales. These include observations720

from aircraft or tall towers, as in Alden et al. (2016), and/or geostationary satellites like721

the Geostationary Carbon Cycle Observatory (GeoCarb). Such observations could help722

bridge the gap between site-level evaluation (e.g., Irteza et al., 2021; C. Wang et al., 2019;723

Doughty et al., 2019) and global-scale efforts like the present study.724
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Doughty, R., Köhler, P., Frankenberg, C., Magney, T. S., Xiao, X., Qin, Y., . . .853

Moore, B. (2019). Tropomi reveals dry-season increase of solar-induced chloro-854

phyll fluorescence in the amazon forest. Proceedings of the National Academy855

of Sciences, 116 (44), 22393-22398. Retrieved from https://www.pnas.org/856

doi/abs/10.1073/pnas.1908157116 doi: 10.1073/pnas.1908157116857
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(a) No environmental driver data included

(b) Including environmental driver data
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Figure 1. Results from the linear model using vegetation indicators as predictor variables (a)

and using vegetation indicators plus environmental driver variables (b). This figure specifically

shows the linear model fit (R2) when compared against CO2 observations from OCO-2. Overall,

we find that SIF products yield a better model-data fit (R2) compared to other vegetation indica-

tors across the extra-tropics, but SIF products do not exhibit the same advantage in the tropics.

We also find that the inclusion of additional predictor variables to help better describe variability

in NBE (panel b) does not substantially improve or otherwise change the model-data fit. Note

that we combine boreal and tundra biomes for OCO-2 simulations, due to the paucity of OCO-2

observations over the tundra.
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Figure 2. Results from the linear model using in situ CO2 observations instead of CO2 ob-

servations from OCO-2. The linear model results using in situ CO2 observations broadly parallel

results using OCO-2 observations. Notably, a linear model using GOSIF yields a better fit to in

situ CO2 observations than other vegetation indicators, at least in the extra-tropics.
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Figure 3. A comparison between the SIF-based linear model and NBE estimates from 15

bottom-up models in TRENDY. This figure displays the model-data fit (R2) of the linear model

and TRENDY models against CO2 observations from OCO-2. In several biomes (temperate

grasslands, temperate forests, and drylands), the SIF-based results are a better fit than the

TRENDY models, which do not assimilate SIF. By contrast, in other biomes (e.g., tropical

biomes), several TRENDY models are a better fit than the SIF-based linear model. Note that

the red box indicates the mean R2 value of the 15 TRENDY models and the vertical bar is the

range of R2 values from the 15 models.
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(a) NH temperate grasslands (b) NH temperate forests

(c) NH tropical grasslands (d) NH tropical forests
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Figure 4. Estimated NBE from inverse modeling simulations that use GOSIF (yellow) and

EVI (green) as predictor variables. Panels a-d compare the seasonal cycle. Inverse modeling sim-

ulations that incorporate GOSIF yield an different seasonal cycle in the extra-tropics relative to

simulations using EVI (panels a and b). Specifically, CO2 uptake during northern hemisphere fall

declines more quickly in the SIF simulations. By contrast, results for tropical biomes (panels c

and d) show little difference between the two inverse modeling simulations. In addition, panel e

compares spatial patterns in estimated NBE during October (i.e., GOSIF simulations minus EVI

simulations), a month when the estimates yield different seasonal patterns across the northern

extra-tropics. Green colors indicate greater CO2 uptake (or less CO2 release to the atmosphere)

in simulations using EVI compared to those using GOSIF. Overall, panel e indicates broad differ-

ences between the NBE estimates across the northern extra-tropics.
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Figure 5. The fit (R2) against OCO-2 observations using a linear model of GOSIF, EVI, and

EVI × PAR as predictor variables. Panel (c) displays NBE estimated by the inverse model when

using GOSIF, EVI and EVIP as predictor variables. Note that panels (a) and (c) assimilate CO2

observations from OCO-2 while panel (b) shows the results of analysis using CO2 observations

from in situ CO2 monitoring sites. Across all simulations, we find that EVI, when multiplied by

PAR, is as skillful a predictor of NBE in the extra-tropics as SIF. Furthermore, NBE estimated

in the inverse model using EVI × PAR as a predictor variable exhibits a similar seasonal cycle as

NBE estimated using GOSIF as a predictor.
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(a) NH tropical grasslands (b) NH tropical forests

(c) SH tropical grasslands (d) SH tropical forests
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Figure 6. The seasonal cycle of NBE from the inverse model (blue), the ORCHIDEE model

(red), GOSIF (yellow), TROPOMI-SIF (green), and GFED (charcoal) in different tropical

biomes. Each product has been normalized to have a mean of zero and standard deviation of

one for easier comparison. SIF in the tropics is out of phase with the seasonal cycle of the inverse

modeling estimate and with ORCHIDEE, a bottom-up model that is more skillful at predicting

CO2 observations from OCO-2 relative to other TRENDY models.
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