Does the Reduction in the Southern Ocean Radiation Bias Alleviate the double-ITCZ Problem?

Hideaki Kawai¹, Tsuyoshi Koshiro¹, and Seiji Yukimoto¹

¹Meteorological Research Institute

November 22, 2022

Abstract

The radiation bias over the Southern Ocean was terribly bad in MRI-CGCM3 that was used for CMIP5 simulations. However, the bias is significantly reduced in MRI-ESM2 (Yukimoto et al. 2019) that is used for CMIP6 simulations by various modifications related to clouds (Kawai et al. 2019). On the other hand, the double-ITCZ problem is also alleviated in the MRI-ESM2 (Tian and Dong, 2020). Is the reduction in the Southern Ocean radiation bias the cause of alleviation of the double-ITCZ problem? Each modification that contributed to the reduction of the Southern Ocean radiation bias in the MRI-ESM2 was progressively reverted to the corresponding older treatment in order to examine their individual impacts on the ITCZ problem. Results show the double-ITCZ problem worsens almost monotonically when the excessive shortwave insolation over the Southern Ocean increases (Kawai et al. 2020, 2021).

AGU Fall Meeting 2021: New Orleans & Online, Dec 2021

Does the reduction in the Southern Ocean radiation bias alleviate the double-ITCZ problem?

Hideaki Kawai, Tsuyoshi Koshiro, & Seiji Yukimoto Meteorological Research Institute, JMA

Kawai, H., T. Koshiro, and S. Yukimoto, 2021: Relationship between shortwave radiation bias over the Southern Ocean and the double-intertropical convergence zone problem in MRI-ESM2. Atmos. Sci. Let., 22, e1064, https://doi.org/10.1002/asl.1064.

Mid/High-latitude radiation budget affects tropical precipitation?

More SH tropical precipitation

Hwang and Frierson 2013

Southern Ocean radiation bias & ITCZ based on energy transport concept

Hwang and Frierson 2013

Mid/High-latitude radiation budget affects tropical precipitation?

Kang et al. (2008, 2009) etc.

based on slab ocean models

Not so clear using A-O coupled models because the energy due to excess of SW radiation is mainly transported by the ocean?

Kay et al. (2016) Hawcroft et al. (2017) etc.

based on atmosphere-ocean coupled models

Improvement in clouds in MRI-ESM2

Model performan	се	
net radiation	MRI-CGCM3: MRI-ESM2:	27th among 48 CMIP5 models7th best among 47 CMIP6 models(2m temperature 5th best)
double ITCZ	MRI-CGCM3: MRI-ESM2:	Worst among 25 CMIP5 models 8th best among 26 CMIP6 models (Tian & Dong 2020)

Question

Is the reduction in the radiation bias the cause of alleviation of the double-ITCZ problem?

Experiments

Each modification that contributed to the reduction of the Southern Ocean radiation bias in the MRI-ESM2 (not expected to improve convections directly) was progressively reverted to the corresponding older treatment. (using atmosphere ocean coupled configuration for 1984-2014)

	CNTL	EXP1	EXP2	EXP3	EXP4
stratocumulus scheme	new	old	old	old	old
shallow convection conditional turning off	yes	yes	no	no	no
WBF effect	new	new	new	old	old
fine sea aerosols	yes	yes	yes	yes	no

Impact on Radiation Budget ToA SW radiation bias (upward) EXP1 CNTL 60N 60N 301 ΕQ EQ 30S 30S 60S 60S 120W 60W 120W 60W 60E 120E 180 60E 180 120E \cap 0 EXP2 EXP3 60N 30N 30N EQ 30S 30S 60S 60S 60E 120E 180 12'0W 60W 120E 180 12⁰W 6ÓW 0 60E 0

EXP4 60N 301 ΕQ CERES (2001-2010) 60S 60E 120E 120W 60W 180 0

Obs.

Radiation bias is larger, especially over the SO, when EXPs are closer to the old model.

20 30

-30 -20 -10 10

40

40 W/m^2

Impact on ToA radiation budget (difference from CNTL)

Precipitation bias

Radiation bias increases over the SO when EXPs are closer to MRI-CGCM3 (old model)

Precipitation increases (deteriorates) in the Southern Tropics when EXPs are closer to MRI-CGCM3 (old model)

Radiation bias over the Southern Ocean and the ITCZ in MRI-ESM2

Clear relationship! Larger SH radiation bias -> worse ITCZ

Impact on Energy Transport

difference from CNTL

(Northward: positive)

- Northward energy transport increases for EXPs with larger insolation bias over SH.
- Energy transport increase due to the ocean is 2 times that due to the atmosphere.
- But the energy transport due to the atmosphere still increases too.
 - \rightarrow This part corresponds to the deterioration of double ITCZ.

Impact on mass stream function

Contour: Climatology Shade: Diff from CNTL

Upward anomaly south of eq. and downward anomaly north of eq. strengthen when EXPs are closer to MRI-CGCM3 (old model) (consistent with Hwang and Frierson 2013)

Summary

- The representations of clouds in climate model MRI-ESM2 (for CMIP6) are significantly improved, especially over the Southern Ocean.
- Impact on ITCZ is investigated by intentionally increasing the radiation bias by making the cloud representation closer to the old model version (using an A-O coupled model.)
- We could confirm that the alleviation of double ITCZ problem in MRI-ESM2 can be mostly attributed to the reduction in the (SW) radiation bias.
- It is interesting that the double-ITCZ problem was substantially alleviated by the model modifications which are to reduce the SO radiation biases, although we did not try to reduce the tropical precipitation bias intentionally.

References

- Hwang, Y.-T., Frierson, D.M.W., 2013. Link between the double-Intertropical Convergence Zone problem and cloud biases over the Southern Ocean. *Proc. Natl. Acad. Sci.* **110**, 4935–4940.
- Kawai, H., and T. Inoue, 2006: A Simple Parameterization Scheme for Subtropical Marine Stratocumulus. *SOLA*, **2**, 17-20.
- Kawai, H., T. Koshiro, and M. J. Webb, 2017: Interpretation of Factors Controlling Low Cloud Cover and Low Cloud Feedback Using a Unified Predictive Index. *J. Climate*, **30**, 9119-9131.
- Kawai, H., S. Yukimoto, T. Koshiro, N. Oshima, T. Tanaka, H. Yoshimura, and R. Nagasawa, 2019: Significant Improvement of Cloud Representation in Global Climate Model MRI-ESM2. *Geosci. Model Dev.*, **12**, 2875-2897.
- Kawai, H., T. Koshiro, and S. Yukimoto, 2021: Relationship between shortwave radiation bias over the Southern Ocean and the double-intertropical convergence zone problem in MRI-ESM2. Atmos. Sci. Let., 22, e1064, https://doi.org/10.1002/asl.1064.
- Yukimoto, S., et al., 2019: The Meteorological Research Institute Earth System Model version 2.0, MRI-ESM2.0. *J. Meteor. Soc. Japan*, **97**, 931-965.

Acknowledgements

This work was partly supported by the Integrated Research Program for Advancing Climate Models (TOUGOU) Grant Number JPMXD0717935561 from the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan. It was also supported by the Japan Society for the Promotion of Science (JSPS) KAKENHI Grant Numbers JP18H03363, JP19K03977, and JP19H05699, and the Environmental Restoration and Conservation Agency, Japan (the Environment Research and Technology Development Fund [grant no. 2–2003])