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Abstract

Current inference techniques for processing multi-needle Langmuir Probe (m-NLP) data are often based on the Orbital Motion-

Limited (OML) theory which relies on several simplifying assumptions. Some of these assumptions, however, are typically not

well satisfied in actual experimental conditions, thus leading to uncontrolled uncertainties in inferred plasma parameters. In

order to remedy this difficulty, three-dimensional kinetic particle in cell simulations are used to construct synthetic data sets,

which are then used to train and validate regression-based models capable of inferring electron density and satellite potentials

from 4-tuples of currents collected with fixed-bias needle probes similar to those on the NorSat-1 satellite. Based on our synthetic

data, the techniques presented enable excellent inferences of the plasma density, and floating potentials, while the generally

accepted OML inferred densities are approximately three times too high. The new inference techniques that we propose, are

applied to NorSat-1 data, and compared with OML inferences. While both regression and OML based inferences of floating

potentials agree well with synthetic data, only regression inferred potentials are consistent with satellite measured currents,

indicating that the regression based inference models are more robust and accurate when applied to satellite data.
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Abstract16

Current inference techniques for processing multi-needle Langmuir Probe (m-NLP) data17

are often based on adaptations of the Orbital Motion-Limited (OML) theory which re-18

lies on several simplifying assumptions. Some of these assumptions, however, are typ-19

ically not well satisfied in actual experimental conditions, thus leading to uncontrolled20

uncertainties in inferred plasma parameters. In order to remedy this difficulty, three-dimensional21

kinetic particle in cell simulations are used to construct a synthetic data set, which is22

used to compare and assess different m-NLP inference techniques. Using a synthetic data23

set, regression-based models capable of inferring electron density and satellite potentials24

from 4-tuples of currents collected with fixed-bias needle probes similar to those on the25

NorSat-1 satellite, are trained and validated. The regression techniques presented show26

promising results for plasma density inferences with RMS relative errors less than 20 %,27

and satellite potential inferences with RMS errors less than 0.2 V for potentials rang-28

ing from -6 V to -1 V. The new inference approaches presented are applied to NorSat-29

1 data, and compared with existing state-of-the-art inference techniques.30

1 Introduction31

Langmuir probes are widely used to characterize space plasma and laboratory plasma.32

A variety of Langmuir probe geometries are being used, such as spherical (Bhattarai &33

Mishra, 2017), cylindrical (Hoang, Clausen, et al., 2018), and planar probes (Lira et al.,34

2019; Johnson & Holmes, 1990; Sheridan, 2010). Probes can be operated in sweep mode35

(Lebreton et al., 2006), harmonic mode (Rudakov et al., 2001), or fixed biased mode (Jacobsen36

et al., 2010), for different types of missions and measurements. Despite operational dif-37

ferences, all Langmuir probes consist of conductors exposed to plasma to collect current38

as a function of bias voltage. A common approach to infer plasma parameters from Lang-39

muir probes is to sweep the bias voltage and produce a current-voltage characteristic,40

which can be analyzed using theories such as the Orbital Motion-Limited (OML) (Mott-41

Smith & Langmuir, 1926) theory, the Allen-Boyd-Reynolds (ABR) theory (Allen et al.,42

1957; Chen, 1965, 2003), and the Bernstein-Rabinowitz-Laframboise (BRL) theory (Bernstein43

& Rabinowitz, 1959; Laframboise, 1966) to obtain plasma parameters such as density,44

temperature, and satellite floating potential. The temporal and, on a satellite, the spa-45

tial resolution of Langmuir probe measurements are determined by the sweep time, which46

varies based on the mission’s scientific need and available resources. Considering the or-47

bital speed to be around 7500 m/s for a satellite in low Earth orbit (LEO), the spatial48

resolution of sweep bias Langmuir probe can vary from tens of meters, to kilometers, de-49

pending on the sweep frequency. In order to study the formation of density irregular-50

ities that scale from meters to tens of kilometers at high and low latitudes, a sampling51

frequency of near 1 kHz is required (Hoang, Røed, et al., 2018; Jacobsen et al., 2010).52

A solution, proposed by Jacobsen is to use multiple fixed biased needle probes (m-NLPs)53

to sample plasma simultaneously at different bias potentials in the electron saturation54

region (Jacobsen et al., 2010). This approach would eliminate the need for sweeping the55

bias voltage, and greatly increase the sampling rate of the instrument.56

The first inference models for m-NLPs relied on the OML approximation, from which57

the current Ie collected by a needle probe in the electron saturation region is written as:58

Ie = −neeA
2√
π

√
kTe

2πme

(
1 +

e(Vf + Vb)

kTe

)β

, (1)59

where ne is the electron density, A is the probe surface area, e is the elementary charge,60

k is Boltzmann’s constant, Te is the electron temperature, Vf is the satellite floating po-61

tential, Vb is the bias potential of the probe with respect to the satellite, and β is a pa-62

rameter related to probe geometry, density, and temperature (Marholm & Marchand,63

2020; Hoang, Røed, et al., 2018). Several assumptions were made in the derivation of this64

inference equation; such as the probe length must be much larger than the Debye length,65
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and the plasma is non-drifting. If these assumptions are valid, then β = 0.5, and as first66

suggested by Jacobsen, a set of m-NLPs can be used to infer the electron density inde-67

pendently of the temperature (Jacobsen et al., 2010). For a satellite in near-Earth or-68

bit at altitudes ranging from 550 km to 650 km, we can expect a Debye length of around69

2-50 mm, and an orbital speed of around 7500 m/s. A common length for m-NLP in-70

strument used on small satellites is ∼ 25 mm (Bekkeng et al., 2010; Hoang, Clausen,71

et al., 2018; Hoang et al., 2019), which is often comparable to, and sometimes smaller72

than the Debye length. In lower Earth orbit, ion thermal speeds are usually less than73

the orbital speed, while electron thermal speeds are usually higher than the orbital speed.74

Thus, the orbital speed is expected to mainly affect ion saturation region currents for75

Langmuir probes. However, electrons can only penetrate the ion rarefied wake region be-76

hind the probe as much as ambipolar diffusion permits (Barjatya et al., 2009). As a re-77

sult, electron saturation currents are also influenced by an orbital speed. One consequence78

is that the β = 0.5 assumption does not hold in Eq. 1, and a better approximation for79

the current is obtained with β values between 0.5 and 1. For example, in a hot filament-80

generated plasma experiment, Sudit and Woods showed that β can reach 0.75 for a ra-81

tio between the probe length and the Deybe length in the range of 1 to 3. For larger De-82

bye lengths, they also observed an expansion of the probe sheath from a cylindrical shape83

into a spherical shape (Sudit & Woods, 1994). Ergun and co-workers showed that with84

a ram speed of 4300 m/s in their simulations, the current collected by a 40.8 cm needle85

probe is better approximated with Eq. 1 using a β value of 0.67 instead of 0.55 calcu-86

lated in a stationary plasma (Ergun et al., 2021). In the ICI-2 sounding rocket exper-87

iment, β calculated from three 25 mm m-NLPs varied between 0.3 to 0.7 at altitudes rang-88

ing from 150 to 300 km (Hoang, Røed, et al., 2018). Simulation results by Marholm et89

al. showed that even a 50 mm probe at rest can be characterized by a β ∼ 0.8 (Marholm90

et al., 2019), in disagreement with the OML theory. In practice, needle probes are mounted91

on electrically isolated and equipotential guards in order to attenuate end effects on the92

side to which they are attached. The distribution of the current collected per unit length93

is nonetheless not uniform along the probe, as more current is collected near the end op-94

posite to the guard. A study by Marholm & Marchand showed that for a cylindrical probe95

length that is 10 times the Debye length, β is approximately 0.72. For a probe length96

that is 30 times the Debye length, β is approximately 0.62, and with a guard, this num-97

ber is reduced to 0.58 (Marholm & Marchand, 2020). Although this number approaches98

0.5, 30 times the Debye length is a stringent requirement for OML to be valid, and it99

is hardly ever fulfilled in practice. Experimentally, Hoskinson and Hershkowitz showed100

that even with a probe length 50 times the Debye length, β is approximately 0.6, and101

the density inference based on an ideal β = 0.5 is 25 % too high (Hoskinson & Hershkowitz,102

2006). Barjatya estimated that even a 10% error in β (to 0.55) can result in a 30 % or103

more relative error in the calculated density based on the β = 0.5 assumption (Barjatya104

& Merritt, 2018). In what follows, we find that densities estimated using Eq. 1 assum-105

ing β = 0.5 are about three times larger than the known values used as input in our106

simulations, as illustrated in section 3.1. This is consistent with findings in (Barjatya &107

Merritt, 2018; Guthrie et al., 2021), considering β calculated in our simulation is in the108

range of 0.75 to 1. Another approach proposed to account for the fact that β is gener-109

ally different from 0.5, consists of determining the ne, Vb, Te and β, as adjustable pa-110

rameters in nonlinear fits of measured currents as a function of voltages. This led to re-111

markable agreement with density measured using a radio frequency impedance probe on112

the international space station (Barjatya et al., 2009, 2013; Debchoudhury et al., 2021).113

This method was originally applied to a probe operated in sweep voltage mode, but it114

can be straightforwardly adapted to fixed bias m-NLP measurements (Barjatya et al.,115

2009; Barjatya & Merritt, 2018; Hoang, Røed, et al., 2018).116

In the following, we assess different techniques to infer plasma densities, and satel-117

lite potentials from fixed bias needle probe measurements based on synthetic data ob-118

tained from kinetic simulations. We also present a new method to interpret m-NLP mea-119

surements based on multivariate regression. Our kinetic simulation approach and the con-120
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Figure 1. Scatter plot of plasma parameters obtained from the IRI model, corresponding to

different latitudes, longitudes, altitudes, and times, as listed in Table 1. The x and y axes, and

the color bar refer respectively, to the electron density, electron temperature, and the ion effective

mass. Numbered squares identify the set of parameters used in the kinetic simulations.

struction of a synthetic data set are presented in Sec. 2. In Sec. 3, regression models are121

trained using synthetic data sets, and they are assessed using distinct validation sets.122

In Sec. 4, the same models are applied to NorSat-1 data, to infer densities and satellite123

potentials from in situ measured currents. Section 5 summarizes our findings and presents124

some concluding remarks.125

2 Methodology126

In this section, we briefly describe our kinetic simulation approach, and how it is127

used to construct synthetic data sets used to train and validate inference models, using128

two regression techniques. We then describe the various models to infer density, and satel-129

lite potential from m-NLP measurement.130

2.1 Kinetic simulations131

The space plasma parameters considered in our simulations are selected so as to132

be representative of conditions expected for a satellite in low Earth orbit at altitudes rang-133

ing between 550 and 650 km. This is done by sampling ionospheric plasma parameters134

using the International Reference Ionosphere (IRI) (Bilitza et al., 2014) model in a broad135

range of latitudes, longitudes, altitudes, and times as shown in Fig. 1. The ranges con-136

sidered for these parameters are summarized in Tab. 1. Forty-five sets of plasma param-137

eters approximately evenly distributed in this parameter space are selected as input in138

simulations, as shown in numbered squares in Fig. 1. The three-dimensional PIC code139

PTetra (Marchand, 2012; Marchand & Lira, 2017) is used to simulate probe currents in140

this study. Cross comparisons are made between PTetra simulation results and analytic141

results under conditions when those are valid, and with other independently developed142

simulation codes, and show excellent agreement (Deca et al., 2013; Marchand et al., 2014).143
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Figure 2. Illustration of a m-NLP geometry (left), and the simulation domain (right). The

needle probe has a length of 25 mm and a radius of 0.255 mm, with a guard of 15 mm in length

and 1.1 mm in radius. The ram flow is from the top of the simulation domain and is assumed to

be 7500 m/s.

In PTetra, space is discretized using unstructured adaptive tetrahedral meshes (Frey &144

George, 2007; Geuzaine & Remacle, 2009). Poisson’s equation is solved at each time step145

using Saad’s GMRES sparse matrix solver (Saad, 2003) in order to calculate the elec-146

tric field in the system. Then, electron and ion trajectories are calculated kinetically us-147

ing their physical charges and masses self consistently. The mesh for the m-NLP and the148

simulation domain illustrated in Fig. 2, is generated with GMSH (Geuzaine & Remacle,149

2009). The needle probe used in the simulation has a length of 25 mm and a diameter150

of 0.51 mm, as those on the NorSat-1. The needle probe is attached to a 15 mm long151

and 2.2 mm diameter guard which is biased to the same voltage as the probe. The outer152

boundary of the simulation domain is closer to the probe on the ram side, and farther153

on the wake side, as shown in Fig. 2. The simulations are made using two different do-154

main sizes depending on the Debye length of the plasma. For plasma densities below 2×155

1010 m−3 corresponding to a Debye length of 1.9-7.2 cm, a lager domain is used. For plasma156

densities above 2×1010 m−3, corresponding to a Debye length of 0.2-2.2 cm, a smaller157

domain with finer resolution is used. The simulation size, the resolution, the number of158

tetrahedra, and the corresponding Debye length are summarized in Tab. 2. There is over-159

lap between the two simulation domains for simulations with Debye lengths around 2160

cm. No obvious difference was found in the simulated currents, indicating that simula-161

tion results from both domains are consistent in the transition range. Simulation results162

from both domains are included when training the regression models. All simulations163

are run initially with 100 million ions and electrons, but these numbers vary through a164

simulation, due to particles being collected, leaving, or entering the domain. In the sim-165

ulations, the probe is segmented into five segments of equal lengths, making it possible166

to estimate a rough distribution of the current along its length. The current used to build167

regression models is a sum of the currents of the five different segments. The orbital speed168

of the satellite is assumed to be fixed at 7500 m/s in the simulations, with a direction169

perpendicular to the probe. For the voltages considered, probes are expected to collect170

mainly electron currents. For simplicity, only two types of ions are considered in the sim-171

ulation, O+ and H+ ions, and no magnetic field is accounted for, which is justified by172

the fact that the Larmor radius of the electron considered is much larger than the ra-173

dius of the probe. The probes are assumed to be sufficient far on the ram side, away from174

other satellite components, to be unaffected by their presence. NorSat-1 satellite has a175

Sun synchronous orbit, thus is moving approximately parallel to the magnetic field near176

the equator. As a result, in these regions V⃗ ×B⃗ should be small at low and mid mag-177

netic latitudes, and it is not accounted for in the simulations.178
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Table 1. Spatial and temporal parameters used to sample ionospheric plasma conditions in

IRI, and the corresponding ranges in space plasma parameters.

Environment and plasma conditions Parameter range

Years 1998 2001 2004 2009
Dates Jan 4 Apr 4 Jul 4 Oct 4
Hours 0-24 with increment of 8 hours
Latitude −90◦ - +90◦ with increment of 5◦

Longitude 0◦ - −360◦ with increment of 30◦

Altitude 550-650 km with increment of 50 km

Ion temperature 0.07-0.16 eV
Electron temperature 0.09-0.25 eV
Effective ion mass 2-16 amu
Density 2× 109 − 1× 1012m−3

Table 2. Parameters used in the two simulation domains are listed. The first two columns give

the distances between the probe to the outer boundary on the ram side (Dram), and the wake

side (Dwake) respectively, followed by the simulation resolutions at the probe, guard, and the

outer boundary. The number of tetrahedra used in the simulations is in the order of millions.

The corresponding range in Debye lengths is also listed.

Dram Dwake Probe
resolution

Guard
resolution

Boundary
resolution

Tetrahedra Debye
length

3.5 cm 7 cm 51 µm 220 µm 2 mm 2.5 M 0.2-2.2 cm
30 cm 40 cm 51 µm 220 µm 1 cm 1.7 M 1.9-7.2 cm

Figure 3. Comparison between calculated currents from PIC simulations, and fitted values

using Eq. 6, assuming a density of 2 × 1010 m−3, an effective mass of 8 amu, an electron and ion

temperatures of 0.15 and 0.12 eV respectively, corresponding to point 16 in Fig. 1. The fitting

errors in the figure are calculated over all 45 sets of plasma conditions using Eq. 3 and 5.
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2.2 Synthetic solution library179

In order to assess the inference skill of a regression model, a cost function is de-180

fined with the following properties: i) it is non-negative, ii) it vanishes if model inferences181

agree exactly with known data in a data set, and iii) it increases as inferences deviate182

from actual data. The cost functions used in this work are: the root mean square error,183

RMS =

√√√√ 1

Ndata

Ndata∑
i=1

(Ymodi − Ydatai)
2
, (2)184

the root mean square relative error185

RMSr =

√√√√ 1

Ndata

Ndata∑
i=1

(Ymodi
− Ydatai

)
2

Y 2
modi

, (3)186

the maximum absolute error187

MAE = max {|Ymod − Ydata|} , (4)188

and the maximum relative error189

MRE = max

{∣∣∣∣Ymod − Ydata

Ymod

∣∣∣∣} , (5)190

where Ydata and Ymod represent respectively known and inferred plasma parameters, and191

Ndata is the total number of data points.192

For each of the 45 sets of plasma conditions corresponding to squares in Fig. 1, 5193

simulations are made assuming 5 probe voltages with respect to background plasma, and194

the simulated currents vs probe voltage are fitted analytically with:195

I = a

(
b+

eV

kTe

)c

, (6)196

where a, b, and c are adjustable fitting parameters. The MRE calculated for the 45 fits197

is 1.4%, and the RMSr is 0.7%, which shows excellent agreement with simulated collected198

currents. A comparison between fitted and computed currents is shown in Fig. 3. The199

NorSat-1 m-NLP probes fixed biases Vb are +10, +9, +8, and +6 V, and the probe volt-200

age with respect to background plasma is given by the sum of the spacecraft floating po-201

tential and the probe bias V = Vf + Vb. In simulations, probe currents calculated for202

voltages with respect to background plasma in the range between 0 to 9 volts are con-203

sidered as shown in Fig. 3. Considering the probe bias voltages Vb given above, probe204

currents can be determined, corresponding to arbitrary floating potentials between -1205

V and -6 V. A synthetic solution library is created for randomly distributed spacecraft206

floating potentials in the range between -1 and -6 V with corresponding currents obtained207

by interpolation using Eq. 6 with the fitting parameters computed for each of the 45 cases208

considered. The result is a synthetic solution library consisting of four currents collected209

by the four needle probes at the four different bias voltages, for 160 randomly distributed210

spacecraft potentials in the range between -1 V to -6 V for each of the 45 sets of plasma211

parameters. In each entry of the data set, these four currents are followed by the elec-212

tron density, the spacecraft potential the electron and ion temperatures, and the ion ef-213

fective mass as listed in Tab. 3. The resulting solution library consisting of 45×160 =214

7200 entries is then used to construct a training set with 3600 randomly selected nodes215

or entries, and a validation set with the remaining 3600 nodes. The cost functions re-216

ported in what follows, used to assess the accuracy of inferences, are all calculated from217

the validation data set unless stated otherwise.218

2.3 Multivariate regression219

In a complex system where the relation between independent variables and depen-220

dent variables cannot readily be cast analytically, multivariate regressions based on ma-221

chine learning techniques are powerful alternatives to construct approximate inference222
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Table 3. Example entries of the synthetic data set, with currents I1, I2, I3, and I4 calculated

using Eq. 6, and Vb set to 10, 9, 8, and 6 V, respectively. The floating potential Vf is selected

randomly in the range of -1 to -6 V, and the probe voltages with respect to background plasma

are given by V= Vb+Vf . The coefficients, a, b and c are obtained from a nonlinear fit of the sim-

ulated currents using Eq. 6. The first and second entries correspond respectively to points 16 and

21 in Fig. 1.

I1(nA) I2(nA) I3(nA) I4(nA) Vf (V ) ne(m
−3) Te(eV) Ti(eV) meff(amu)

233 208 183 129 -2.50 2× 1010 0.15 0.12 8
596 533 467 323 -2.93 5× 1010 0.07 0.07 4

models. In this approach, the model must be capable of capturing the complex relation-223

ship between dependent and independent variables. Once the model is trained using the224

training set, it can then be used to make inferences for cases not included in the train-225

ing data set. In this work, two multivariate regression approaches are used to infer plasma226

parameters: the Radial Basis Function and Feedforward Neural Networks. The models227

are trained by minimizing their cost function on the training data set, and then applied228

to the validation data set to calculate the validation cost function without further op-229

timization. The use of a validation set is to avoid “overfitting” because there are certain230

limitations on the refinement of a model on a training set, such that further improve-231

ment of model inference skill in the training set will worsen the model inference skill in232

the validation set. A good model is one with the right level of training so as to provide233

the best inference skill in the validation set.234

2.3.1 Radial basis function235

Radial basis function (RBF) multivariate regression is a simple and robust tool used236

in many previous studies to infer space plasma parameters using a variety of instruments237

with promising results (Liu & Marchand, 2021; Olowookere & Marchand, 2021; Chalaturnyk238

& Marchand, 2019; Guthrie et al., 2021). A general expression for RBF regression for239

a set of independent n-tuples X̄ and corresponding dependent variable Y is given by:240

Y =

N∑
i=1

aiG
(∣∣X̄ − X̄i

∣∣) . (7)241

In general, the dependent variable Y can also be a tuple, but for simplicity, and with-242

out loss of generality, we limit our attention to scalar dependent variables. In Eq. 7, the243

X̄i represents the N centers, G is the interpolating function, and the ai are fitting col-244

location coefficients which can be determined by requiring collocation at the centers; that245

is, by solving the system of linear equations246

N∑
i=1

aiG(|X̄k − X̄i|) = Yk (8)247

for k = 1, ..., N . Here, the dependent variable Y corresponds to the physical param-248

eter to be inferred, and the independent variable X̄ is a 4-tuple corresponding to the cur-249

rents or the normalized currents from the m-NLPs depending on which physical param-250

eters are being inferred. There are different ways to distribute the centers in RBF re-251

gression. One straightforward approach is to select centers from the training data set,252

and evaluate the cost function over the entire training data set for all possible combi-253

nations of centers, then select the model which yields the optimal cost function. For this254

–8–
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Figure 4. Schematic of a feedforward neural network.

approach, the number of combinations required for N data points and N centers is given255

by256 (
N
N

)
=

N !

N !(N −N)!
. (9)257

This, of course, can be prohibitively large and time-consuming for a large training data258

set or using a large number of centers. An alternative strategy is to successively train259

models with randomly selected small subsets of the entire training data set using the straight-260

forward approach, while calculating the cost function on the full training set, and then261

carrying the optimal centers from one iteration to the next. This “center-evolving strat-262

egy” is very efficient in finding near-optimal centers for large training data sets and has263

proven to be as accurate as the straightforward extensive approach (Liu & Marchand,264

2022). The RBF models here follow this procedure. Different G functions and cost func-265

tions are tested, and only the models that yield optimal results are reported in this pa-266

per.267

2.3.2 Feedforward neural network268

The second multivariate regression approach is a Feedforward neural network as269

illustrated in Fig. 4. This consists of an input layer, hidden layers, and an output layer.270

Each node j in a given layer i in the network is assigned a value ui,j , and the node in271

the next layer i+1 are “fed” from numerical values from the nodes in the previous layer272

according to273

ui+1,k = f

 ni∑
j=1

wi,j,kui,j + bi,k

 , (10)274

where wi,j,k are weight factors, bi,j are bias terms, and f is a nonlinear activation func-275

tion (Goodfellow et al., 2016). In this work, the input layer neurons contain the four-276

needle probe currents or normalized currents depending on the physical parameter to277

be inferred, whereas the output layer contains one physical parameter. The number of278

hidden layers and the number of neurons in the hidden layers are adjusted to fit the spe-279

cific problem, and attain good inference skills. The Feedforward neural network is built280

using TensorFlow (Abadi et al., 2016) with Adam optimizer (Kingma & Ba, 2015), and281

using the ReLU activation function defined as f(x) = max(0, x). The input variables282

are normalized using the preprocessing.normalization TensorFlow built-in function283

which normalizes the data to have a zero mean and unit variance. The structure of the284

network will be described later when presenting model inferences.285
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2.4 Space plasma and satellite parameter inference models286

The next step is to construct models that maps the measured currents to the cor-287

responding plasma and satellite conditions in the solution library. Various models used288

to infer plasma densities and satellite potentials are described in this section.289

2.4.1 Density inference290

The density can be inferred directly from the above two multivariate regression mod-291

els using the currents collected by the four probes as inputs. The density can also be in-292

ferred using Eq. 1 which can be rewritten as293

ne

T
β− 1

2
e

=

√
π2me

2A2e3

I
1
β

1 − I
1
β

2

V1 − V2

β

. (11)294

In this equation, subscripts 1 and 2 indicate different probes. A special case of this equa-295

tion was first proposed by Jacobsen, assuming an infinitely long probe, for which β =296

0.5, resulting in297

ne =

√
π2me

2A2e3

√
I21 − I22
V1 − V2

, (12)298

which gives an expression for the electron density, independently of the temperature (Jacobsen299

et al., 2010). With currents from more than two probes, the density can be calculated300

from the slope of the current squared as a function of the bias voltage from a linear least-301

square fit of all probes (Jacobsen et al., 2010). This will be referred as the “Jacobsen lin-302

ear fit” (JLF) approach. It is now well known however, that for finite length probes, with303

lengths not much larger than the Debye length, β typically ranges between 0.6 and 1.304

This is the case in particular for the needle probes on NorSat-1 with ratios between probe305

lengths to Debye length ranging from 0.5 to 12.5. As a consequence, when this method306

is applied to the solution library, the inferred density is typically three times larger than307

the density used in the simulation as shown with red boxes in Fig 5. Analytic inferences308

can be improve by adopting a boosting strategy. With this approach, the less accurate309

analytic model is used as a first approximation, which is then corrected by applying a310

more advanced regression technique.311

Two boosting strategies are used in this study, consisting of i) an affine transfor-312

mation, and b) RBF. Considering that the Pearson correlation coefficient R is invariant313

under an affine transformation, it follows that the offset between two data set, with a314

high value of R, can be significantly reduced with a simple affine transformation. To be315

specific, in this case, the density is first approximated using the JLF approach, and an316

affine transformation is applied to the natural log of the density as in:317

ln(naffine
e ) = a ln(nJLF

e ) + b. (13)318

where a and b are determined with a simple least square fit to the known log of the den-319

sities in the data set. In the second approach, RBF is used to model the discrepancy be-320

tween the JLF approximated density and the known densities, and the modeled discrep-321

ancy is used to correct the first JLF estimate.322

The nonlinear least square fit proposed by Barjatya is also used to infer the den-323

sity and the satellite potential. In their paper, Barjatya, et al. (Barjatya et al., 2009)324

apply this method to a full characteristic, covering the ion saturation, the electron re-325

tardation, and electron saturation regions. This enabled them to infer all four param-326

eters in Eq. 1, namely, ne, Te, Vf , and β. In our analysis, inferences are made from only327

four currents from four probes at fixed bias voltages, all in the electron saturation re-328

gion. As shown by Barjatya and Merritt (Barjatya & Merritt, 2018), however, it is dif-329

ficult to infer the temperature using this approach, owing to the weak dependence of col-330

lected currents on the electron temperature (see Eq. 11). A solution, proposed in (Barjatya331
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& Merritt, 2018; Hoang, Røed, et al., 2018), then consists of estimating the electron tem-332

perature from other measurements, or from the IRI model, and perform the fit for the333

remaining three parameters. This simplification is justified by the fact that, following334

this procedure, a 50% error in the temperature, still produces acceptable results for the335

other parameters (Barjatya & Merritt, 2018). Thus unless stated otherwise, we assume336

a fixed electron temperature (∼ 2000 K), which is in the middle of the temperature range337

considered in the simulations, and fit 4-tuples of currents using Vf , ne, and β values as338

fitting parameters. This “Barjatya nonlinear fit” (BNLF) approach will be used to in-339

fer both density and potential from a set of measurement.340

2.4.2 Analytic estimate of Vf341

The satellite potential can be inferred directly from the currents using RBF regres-342

sion. In this approach, the four currents are normalized by dividing every current by their343

sum, in order to remove the strong density dependence on the currents. A neural net-344

work does not produce satisfactory in this case, and it is not used to infer the satellite345

potential. The floating potential of the spacecraft can also be inferred using the OML346

equation, by rewriting equation 1 as:347

Vf ≈ Vf +
kTe

e
=

V2I
1
β

1 − V1I
1
β

2

I
1
β

2 − I
1
β

1

=
V3I

1
β

2 − V2I
1
β

3

I
1
β

3 − I
1
β

2

. (14)348

In this equation, the subscripts 1,2, and 3 refer to different probes, thus there must be349

at least three probes in order to solve for β. The bias voltages of the probes and their350

corresponding collected currents are known from measurements, thus β can be solved351

using a standard root finder. Given β, equation 14 then provides a value for Vf+
kTe

e .352

In this expression, kTe

e is the electron temperature in electron-volt, which in the lower353

ionosphere at mid latitudes, is of order 0.3 eV or less. Thus, considering that kTe

e is gen-354

erally much smaller than satellite potentials relative to the background plasma, any of355

the two terms in the right side of Eq. 14 provides a first approximation of Vf (Guthrie356

et al., 2021). This will be referred to as the “adapted OML” approach.357

3 Assessment with synthetic data358

In this section, we assess our models using synthetic data, which allows us to check359

the accuracy, and quantify uncertainties in our inferences. A consistency check strategy360

is also introduced to further assess the applicability of our models.361

3.1 Density and satellite potential inference362

Direct RBF regression is applied to infer the density using the four currents as in-363

put variables. When constructing an RBF model with G(x) = |x|, minimizing MRE,364

and using 6 centers, the RMSr and MRE calculated on the validation data set are 17%365

and 35%, respectively. A test is made to infer the density using RBF with 35 randomly366

selected entries from the 45 plasma conditions in the solution library. With 30 voltages,367

and the same G function, cost function and number of centers, the calculated MRE is368

also 35 %. This is an indication that 45 sets of plasma conditions and 160 voltages should369

be sufficient in terms of sampling size to construct regression models. Using a neural net-370

work with 4 nodes in the input layer, 14 nodes and 12 nodes in two hidden layers, and371

1 node in the output layer, results in a 14% RMSr and 43% MRE for the inferred den-372

sities. This is calculated using TensorFlow with ADAM optimizer with a learning rate373

of 0.005 and an RMSr as a cost function. The input layer is normalized to have a zero374

mean and unit variance, while the output layer is normalized by dividing by the largest375

density. The densities calculated using the synthetic solution library, as well as the cost376

function are shown in Fig. 5.377
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Figure 5. Correlation plot for the density inferences made with different techniques applied to

our synthetic validation set. The Pearson correlation coefficient R is calculated using the inferred

densities and the density used in the simulation. Black line represent idealized perfect correlation

line.

When using an affine transformation to boost the JLF method, the coefficients a378

and b in Eq. 13 are obtained from a least-squares fit of the log of these densities, to those379

in the training data set. The fitting coefficients in this case, a = 1.13261 and b = −4.82735,380

are then used to perform an affine transformation on the validation data set, leading to381

a significant improvement in RMSr from 74% to 19%, and in MRE from 83% to 66% com-382

pared to densities inferred from the JLF approach, as shown in Fig 5. When boosting383

JLF density with RBF, the 4-tuple of currents is used as input variable X̄. Minimizing384

the MRE using G(x) = |x|, and 5 centers, the RBF corrected JLF density yields an RMSr385

of 17 % and a MRE of 79%. The cost functions of the two boosting methods are com-386

parable, but an obvious advantage of using an affine transformation is its simplicity.387

The Python 3 LMFIT package is used to do the nonlinear fit for the BNLF approaches388

as in (Debchoudhury et al., 2021). In the fits, the initial values for the density, the po-389

tential and the β value are 5×1010 m−3, -3 V and 0.85, and the lower and upper bounds390

are 1×109 to 1×1012 m−3, -6 to -1 V, and 0.7 to 1, respectively. The potential lower391

bound of -6 V is needed to ensure that the values under exponent in Eq. 1 are positive.392

We obtain 3600 fits for each of the 3600 entries of four currents in our validation data393

set. The fit minimizes RMSr as the cost function, and the overall RMSr calculated us-394

ing Eq. 3 for the 3600×4 currents is 0.2 %, and only 1.7% of the points have relative395

errors larger than 1%. The resulting density inferences have an RMSr of 27 % and a MRE396

of 61 %, which is better than the densities inferred from the JLF approach, but less ac-397

curate than those from the multivariate regression models. The β values calculated are398

in the range of 0.75 to 1. Using LMFIT, approximately 160 sets of currents can be fitted399

in one second using an AMD 5800x processor. In comparison, linear fits of the currents400

square, followed by an affine transformation of the log of the inferred density can be done401

using fixed formulas (7400 sets can be fitted in one second using an AMD 5800x), and402

thus are considerably faster than a nonlinear fit. Regression methods such as RBF or403

neural network are also numerically very efficient, considering they involve simple arith-404

metic expressions with pre-calculated coefficients. Compared to the other density mod-405
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Figure 6. Correlation plot obtained for satellite potential inferred with RBF and OML tech-

niques.

els considered, straightforward RBF yields the smallest MRE, thus it is the preferred model406

to infer density in this work. However, the affine-transformed JLF method enables den-407

sity inferences with accuracy comparable to those of more complex approaches. This sim-408

ple and practical technique should therefore be of interest in routine data analysis.409

When the adapted OML approach is used to infer satellite potentials, a MAE of410

0.3 V is calculated using currents collected with probe biases of 10, 9, and 8 volts probes.411

Referring to Eq. 14, the error of 0.3 V is likely due in part to the maximum electron tem-412

perature of 0.3 eV considered in the simulations. The β values calculated in the synthetic413

solution library is in the range of 0.75 to 1. RBF regression is also used to infer satel-414

lite potentials. In this case, using G(x) = |x|, 5 centers, and minimizing the MAE, the415

calculated MAE on the validation data set is 0.4 V. The inferred satellite potential from416

the BNLF approach has an RMS of 0.07 V, and a MAE of 0.19 V, which proves this method417

to be the most accurate compared to the other methods considered. A correlation plot418

for potentials inferred using the RBF, adapted OML, and BNLF approaches is shown419

in Fig. 6. All methods show good agreement with values from the synthetic solution li-420

brary.421

3.2 Consistency check422

In order to further assess the applicability of our inference approaches, we perform423

the following consistency check. First, RBF models M1(ne) and M1(Vf ) are constructed424

to infer the density and satellite potential using 4-tuple currents from our synthetic data425

set. A second model (M2) is constructed to infer collected currents from densities and426

floating potentials in our synthetic data set. Since we are not able to infer temperatures427

from the currents, the temperature is not included in M2. Consistency is then assessed428

in two steps, by i) using currents from synthetic data and models M1(ne) and M1(Vf )429

to infer densities and floating potentials, and ii) applying models M2 to these inferred430

values, to infer back collected currents. RBF density and floating potential inferences431

are used in M1(ne), and M1(Vf ) as described in sec. 2.4. RBF is also used in M2 with432

G(x) =
√
1 + x2.5, and minimizing RMSr with 5 centers. With perfect inference mod-433

els, the results for these back-inferred currents, should agree exactly with the starting434

currents from synthetic data. Variances between back-inferred and simulated currents435

in the synthetic data are presented as indicative of the level of confidence in our regres-436

sion techniques. The correlation plot in Fig. 7, shows back-inferred currents (green) cal-437

culated for a probe with 10 V bias against known currents from synthetic data. For com-438
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Figure 7. Correlation plot of inferred +10 V probe current against +10 V probe current from

the synthetic data set. The calculated +10 probe currents in purple curve is calculated using

the validation data set, while the green curve is calculated using inferred densities and floating

potentials from RBF regression.

parison, the figure also shows the correlation between directly inferred currents (purple)439

when model M2 is applied to densities and floating potentials in the synthetic data set.440

Both back-inferred and directly inferred currents are in excellent agreement with known441

currents from synthetic data, with comparable metric skills of ≃ 15% and ≃ 48% for442

the RMSr and the MRE, respectively. Considering that errors are compounded between443

the first and second models for the back-inferred currents, the nearly identical metric skills444

in Fig. 7 is seen as confirmation of the validity of our regression models.445

4 Application to NorSat-1 data446

In this section, we apply our density and potential inference models constructed447

with synthetic data, to in situ measurements made with the m-NLP on the NorSat-1 satel-448

lite. The NorSat-1 currents were obtained from a University of Oslo data portal (Hoang,449

Clausen, et al., 2018). The epoch considered corresponds to one and a half orbit of the450

satellite starting at approximately 10:00 UTC on January 4, 2020. We start with a com-451

parison of simulated and measured currents to verify that our simulated currents are in452

the same range as those of measured in situ currents. Inferences made with RBF, neu-453

ral network, BNLF, adapted OML, and the two corrected JLF approaches constructed454

in 3.1, are also presented.455

4.1 Measured in-situ, and simulated currents456

The relevance of the space plasma parameter range considered in the simulations,457

to NorSat-1, is assessed in Fig. 8, by plotting currents collected by the +9 V probe against458

that collected by the +10 V, from both synthetic data, and in situ measurements. The459

close overlap, and the fact that the range of in situ measurements is within the range460

of simulated currents, indicates that the physical parameters selected in the simulations,461

are indeed representative to conditions encountered along the NorSat-1 orbit.462

The current measurement resolution for the NorSat-1 m-NLP probes is approxi-463

mately 1 nA (Hoang, Clausen, et al., 2018). The noise level from the environment, how-464

ever, is estimated to be of order 10 nA. In what follows, darker colors are used to rep-465

resent inferences made using currents above 10 nA, and lighter colors are used to rep-466

resent inferences using currents between 1 to 10 nA. This is done by filtering out all data467
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that contain a current that is below 10 nA or 1 nA in any of the four probes. A word468

of caution is in order, however, for inferences made from these lower currents, as a con-469

servative estimate of the threshold for sufficient signal-to-noise ratios, is approximately470

10 nA. This lower bound current is supported by a consistency check made with mod-471

els 1 and 2 described in Sec. 3.2, and presented below in Sec. 4.3.

Figure 8. Correlation plot between currents collected by the +9 V and the +10 V probes for

both NorSat-1, and synthetic data.

472

4.2 Density and satellite potential inference473

Our models, trained with synthetic data as described in Sec. 3, are now applied474

to infer plasma densities and satellite potentials from in situ measured currents, for the475

time period considered. The results obtained with the different models presented in Sec.476

3 are shown in Fig. 9 for the inferred densities, satellite potentials, and measured cur-477

rents collected by the four probes. The position of the satellite relative to the Earth and478

the Sun given by the solar zenith angle, is also plotted in the figure. For example, a small479

solar zenith angle means that the satellite is near the equator on the dayside.480

Applying the BNLF method with only four probes at fixed bias voltages, all in the481

electron saturation region, is more challenging than applying the technique to a probe482

operated in sweep mode, covering the ion saturation, the elecron retardation, and the483

electron saturation regions. The reason is that in sweep mode, characteristics contain484

much more information than in fixed bias mode, with only four probes. In practice, in-485

ferences made from sweep mode characteristics are less sensitive to random errors in the486

currents, which, owing to their larger numbers, tend to cancel. With only four currents,487

however, noise is less likely to cancel, and inferences will be more sensitive to errors or488

noises, in measured currents. For example, the +8 V NorSat-1 probe currents are often489

slightly lower than expected for a downward concavity in I as a function of Vb, and tend490

to produce an upward concavity with β larger than 1. In this case, fitting the 4-tuples491

of currents using Eq. 1, for the density, the floating potential and β, with a specified elec-492

tron temperature is not practical. Thus we used a fixed β value of 0.85, and fit only den-493

sity and potential to the 4-tuples of currents using Eq. 1. This choice for the value of494

β is justified by the fact that it produces the best inferences when applied to synthetic495

data, with an RMS error of 0.41 V for the floating potential, and an RMSr error of 27496

% for the density. Based on comparisons made with our synthetic data sets, the use of497

a fixed β value results in a small loss in the inference accuracy for the satellite poten-498

tial, but the accuracy of the inferred density is the same as when β is included as a third499

fitting parameter. Using the fixed values of 0.172 eV for the electron temperature, and500
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Figure 9. Illustrations of NorSat-1 collected currents considered in this study in panel a, in-

ferred densities in panel b, inferred potentials in panel c, and the NorSat-1 current near 0 A in

panel d. The solar zenith angle is also plotted against the secondary axis. Curves in darker colors

are from model inferences using data above 10 nA, whereas those in lighter colors show inferences

using data with currents between 1 nA and 10 nA.
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0.85 for β, the RMSr error in the fits of the measured in situ currents, is 9%. The re-501

sulting inferred densities and satellite potentials are shown in Fig. 9. For reasons men-502

tioned above, it is clear that no satellite potential below the fitting lower bound of −6503

V can appear in the plot.504

The densities shown in Fig. 9 panel b are obtained using the five density inference505

methods mentioned in Sec. 3.1. At 10:45, the neural network density, the RBF corrected506

JLF density, and the RBF density overlap nicely, while the affine transformed JLF den-507

sity and the BNLF density (β = 0.85) are smaller than other inferred densities, par-508

ticularly near the density maxima. The density inferences nonetheless qualitatively agree509

with each other. Using the +10, +9, and +8 NorSat-1 probe currents and Eq. 14, the510

inferred satellite floating potential is about -8 V for most of the data range considered511

in this study as shown in Fig. 9 panel c. This is in stark contradiction with observations512

in Fig. 9 panel d, which shows that the +6 V biased probe collects net positive electrons513

during most of the period considered. Also, there are periods between 10:15 to 10:30,514

and after 11:45 when the + 6V probe collects ion current(negative), indicating drops in515

the satellite potential below -6V. The poor performance of Eq. 14 to infer the satellite516

potential here, results from the fact that Eq. 14 yields erratic values of β ranging from517

0.3 to 1.2. Attempts have also been made to approximate the satellite potential with Eq.518

14 using a fixed value of 0.58 and 0.78 for β, also resulting in satellite potentials in the519

−8 V range, and no improvement was found. This failure to produce acceptable values520

of the satellite potential clearly shows that the generalized OML expression in Eq.14 does521

not provide a sufficiently accurate approximation for the currents collected by the NorSat-522

1 probes.523

The RBF inferred floating potential shown in Fig. 9, is within -4 and -6 V, which524

is consistent with the observation that the +6 V probe collects electrons during most of525

the time period considered. This potential is generally lower than the potential estab-526

lished by the spacecraft on its own, likely due to the large number of electrons collected527

by the positively biased solar panels (Ivarsen et al., 2019). Interestingly, the inferred satel-528

lite potential using currents between 1 and 10 nA (light color) is seen to join smoothly529

with the darker color inferences, and to decrease below -6 V around 10:25, which is con-530

sistent with the observation that during that time the +6 V probe no longer collects elec-531

tron current. The floating potentials inferred from the BNLF model are systematically532

lower than those from RBF, and they also fit within the acceptable range for the satel-533

lite potentials. The two potentials have otherwise a very similar time dependences, and534

they are consistent with the fact that the +6 V probe collects zero net current near 10:25535

in panel d. The BNLF potential is bounded by the fitting lower limit of -6 V at these536

ranges, as opposed to RBF with which inferences are made without imposing an upper537

or lower bound. The currents collected by the probes are determined mostly by the den-538

sity and the satellite potential, and to a lesser extent, by the electron temperature. In539

Fig. 9, the density and floating potential are seen to peak at around 10:45 and 11:00 re-540

spectively. The currents from the +8, +9, and +10 V probes (green, orange, and blue)541

peak around 10:45, coinciding with the peak in the plasma density at this time. Then,542

as time goes forward to 11:00, the currents of the three probes decrease, also coinciding543

with a decrease in plasma density. However, the +6 V probe (red) current is increasing544

during these times, possibly due to an increase in floating potential. This increase is cap-545

tured in the RBF and BNLF inferred potential, but not in the one derived from adapted546

OML. Another observation is that the inferred floating potential decreases significantly547

at 10:15, as the satellite crosses the terminator. On NorSat-1, the negative terminals of548

the solar cells are grounded to the spacecraft bus while the positive side is facing the am-549

bient plasma (Ivarsen et al., 2019). A likely explanation for the potential drop is that550

the solar cells facing the ambient plasma get charged positively and suddenly start col-551

lecting more electrons upon exiting solar eclipse. This would agree with findings reported552

by Ivarsen et al. (Ivarsen et al., 2019).553
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Figure 10. Consistency check is performed in the in situ data following the same procedure as

in the synthetic data set. Both models 1 and 2 are trained with our synthetic data, and applied

to currents from the +10 V probe on NorSat-1. Darker colors refer to inferences made with cur-

rents above 10 nA, while lighter colors refer to inferences obtained with currents between 1 and

10 nA.

4.3 Consistency check554

In the absence of accurate and validated inferred densities and satellite potentials555

from NorSat-1 data, it is not possible to confidently ascertain to what extent the infer-556

ences presented above are accurate. As an alternative, we proceed with a consistency check,557

following the same procedure as presented in Sec. 3.2 with synthetic data, but using mea-558

sured currents as input. This is done by first applying models M1(ne) and M1(Vf ) trained559

with synthetic data, to infer floating potentials and densities from measured currents.560

Then M2 (also trained with synthetic data) is used to infer currents from the M1 - in-561

ferred floating potentials and densities. If the models constructed from the synthetic data562

also apply to NorSat-1 data, the inferred currents should closely reproduce the measured563

NorSat-1 currents. A correlation plot of inferred against measured currents is shown in564

Fig. 10 for the +10 V probe. In this plot, the orange and green curves show back-inferred565

currents obtained with the RBF M2 model. For the orange curve (Affine JLF), the den-566

sity used as input in M2 is obtained with the affine transformed JLF method. For the567

green curve (RBF), the density used as input in M2 is obtained with RBF density, while568

in both cases, the floating potentials are obtained with the M1(Vf ) model using RBF569

regression. The parts in lighter color are obtained using data with a 1nA filter, whereas570

the darker color parts are obtained using data with currents above 10 nA. While the graph571

only shows currents above 30 nA, the 1 nA filter curve extends to the left down to about572

5 nA, however, these calculated +10 volt probe currents plateau in this range and are573

far from the measured currents. This behavior is likely due to noise levels of about 10574

nA, thus extra caution should be taken when using model inferences for data below 10575

nA. The RMSr calculated for the 10 nA NorSat-1 current using direct RBF density as576

M1(ne) is 9%, and the MRE is 28 %, whereas these numbers for the affine transformed577

JLF densities are 11 % and 23 %, respectively. The calculated +10 V probe currents based578

on RBF regression and affine transformed JLF method nicely follow the measured +10579

volt probe current except for a small increase in the variance at lower currents, thus in-580

dicating that our model constructed with synthetic data set should be applicable to in581

situ data.582
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5 Conclusions583

Two new approaches are presented and assessed, to infer plasma and satellite pa-584

rameters from currents measured with multiple fixed bias needle Langmuir probes. In585

the first approach, inferences are made with two multivariate regression techniques, con-586

sisting of radial basis functions, and neural networks. The second approach relies on a587

simple affine transformation combined with a technique first proposed by Jacobsen to588

infer the plasma density. Yet another approach, proposed by Barjatya, et al. is consid-589

ered, which consists of performing nonlinear fits of measured currents, to an analytic ex-590

pression involving the density, the floating potential and the exponent β as fitting pa-591

rameters, while the electron temperature is estimated by other means. In all cases, the592

accuracy of inferences is assessed on the basis of synthetic data obtained from kinetic593

simulations made for space-plasma conditions representative of those encountered along594

the NorSat-1 satellite. In addition to assessments based on synthetic data, a consistency595

check is presented, whereby densities and satellite potentials inferred from collected cur-596

rents, are used as input in an inverse regression model to infer currents for one of the597

probes. The advantage of this consistency check is that it is applicable to both synthetic,598

and in situ measured currents, and in the latter case, it does not rely on a priori given599

inferred densities and satellite potentials. Inference consistency checks are made with600

both synthetic and in situ measured currents, showing excellent agreement.601

The density inference methods considered in this study yield excellent results when602

applied to the synthetic data set. The models constructed with synthetic data are then603

applied to currents measured by the four m-NLP on NorSat-1. When applied to NorSat-604

1 data, the Barjatya nonlinear fit approach is modified by assuming a fixed value for the605

temperature and β, and carrying the fit with only the electron density and satellite po-606

tential as fitting parameters. The density inferences from all methods show good agree-607

ment, confirming that either method should be a significant improvement over the com-608

monly used OML approach based on β = 0.5. From our findings, direct RBF and the609

combination of Jacobsen’s linear fit with β = 0.5 with an affine transformation, appear610

as being the most promising, and deserving of further study. These two methods pro-611

vide inferences that are consistent and quantitatively similar, while being relatively sim-612

ple and numerically efficient. The former yields the lowest maximum relative error when613

assessed with synthetic data, whereas the latter is the simplest method and produces in-614

ferences with comparable accuracy. The spacecraft floating potential is also inferred us-615

ing RBF regression, an adapted OML approach and Barjatya nonlinear fit method. The616

adapted OML inferences are inconsistent with the measurements from NorSat-1 data since617

it indicates that the satellite potential is below -6V, while measurements indicate that618

the +6 V probe is collecting electron current. Conversely, spacecraft potentials inferred619

with RBF regression, and the nonlinear fit approach yield potentials that are consistent620

with measured currents from the +6 V biased probe, showing that the satellite poten-621

tial must have been at or above -6 V for most of the one and a half orbital period con-622

sidered. This failure to produce acceptable values of the satellite potential using Eq. 14,623

and the fact that the Barjatya nonlinear fit approach with ne, Vf , and β as fitting pa-624

rameters, results in β values appreciably larger than one, shows that in situ measure-625

ments on NorSat-1 generally do not closely follow the empirical expression in Eq. 1.626

The analysis presented here has been focused on fixed bias multi-needle Langmuir627

probes, with the same dimensions as the ones mounted on NorSat-1, to which it has been628

applied as a case study. We stress, however, that the simulation-regression approach to629

infer space plasma parameters, is not limited to fixed bias probes or to this particular630

configuration of probes. With kinetic solutions capable of reproducing analytic results631

under conditions when they are valid, and also capable of accounting for more physics,632

and more realistic geometries than theories, solution libraries, training and validation633

sets can just as well be constructed for different probes, mounted on satellites, operated634

in fixed or sweep bias voltage mode. By following standard machine learning procedures,635

whereby models are trained on a subset of a solution library of known independent and636

dependent variables, and tested by applying them to distinct subsets, we can estimate637

–19–



manuscript submitted to JGR: Space Physics

uncertainty margins specifically associated with different inference techniques. Another638

important strength of the proposed simulation-regression approach is that it enables rel-639

atively straightforward incremental improvements to a model, by accounting for more640

physical processes or more detailed geometries; something that would be very difficult641

to do in a theory. Implementation of regression models and affine transformation of the642

Jacobsen linear fit model involve simple arithmetic expressions with pre-calculated co-643

efficients and can easily be programmed for onboard processing of low level data. These644

approaches, however, would require the creation of custom data sets, when applied to645

a given mission, so as to account for the geometry relevant to the measuring instruments,646

and the space environment conditions expected along a satellite orbit. In cases where647

probe characteristics are well approximated with analytic expressions such as Eq. 1, the648

BNLF technique should prove fast and convenient, as it does not require extensive sim-649

ulations. Custom simulation-regression models, on the other hand, would require more650

computational resources, which would necessitate optimization in order to be implemented651

onboard a satellite. Despite their complexity, however, such models would have the ad-652

vantage of being more general than models based on fits made with empirical analytic653

expressions. The work presented here is by no means final. The development of improved654

inference approaches based on simulations and regression techniques will require signif-655

icantly more efforts, involving collaborations between experimentalists and modelers; an656

effort well worth doing, considering the cost and years of preparation involved in scien-657

tific space missions, and the possible scientific payoff.658
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