
P
os
te
d
on

24
N
ov

20
22

—
T
h
e
co
p
y
ri
gh

t
h
ol
d
er

is
th
e
au

th
or
/f
u
n
d
er
.
A
ll
ri
gh

ts
re
se
rv
ed
.
N
o
re
u
se

w
it
h
ou

t
p
er
m
is
si
on

.
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
10
02
/e
ss
oa
r.
10
51
06
80
.1

—
T
h
is

a
p
re
p
ri
n
t
a
n
d
h
as

n
ot

b
ee
n
p
ee
r
re
v
ie
w
ed
.
D
a
ta

m
ay

b
e
p
re
li
m
in
a
ry
.

Wildfire Classification using PETSc-based Support Vector

Machines on Distributed-Memory GPU-based Parallel Computers

Richard Mills1, Zachary Langford2, Jitendra Kumar2, and Forrest Hoffman2

1Argonne National Laboratory
2Oak Ridge National Laboratory

November 24, 2022

Abstract

As high-resolution geospatiotemporal data sets from observatory networks, remote sensing platforms, and computational Earth

systems increase in abundance, fidelity, and richness, machine learning approaches that can fully utilize increasingly powerful

parallel computing resources are becoming essential for analysis and exploration of such data sets. We explore one such approach,

applying a state-of-the-art distributed memory parallel implementation of Support Vector Machine (SVM) classification to

large remote-sensing data sets. We have used MODIS 8-day surface reflectance (MOD09A1) and land surface temperature

(MOD11A2) for classifying wildfires over Alaska and California. Monitoring Trends in Burn Severity (MTBS) burn perimeter

data was used to set boundaries of burned and unburned areas for our two-class problem. MTBS covers years from 1984-2019,

recording only fires over 1000 acres or greater in the western United States. We seek to find a parallel computing solution

(using the PermonSVM solver, described below) to accurately classify wildfires and find smaller unrecorded wildfires. An

initial assessment for wildfire classification over interior Alaska shows that PermonSVM has an accuracy of 96% and over 5000

false positives (i.e., fires unrecorded in MTBS). Next steps include mapping larger regions over Alaska and California and

understanding the tradeoffs of scalability and accuracy. The parallel tool we employ is PermonSVM, which is built on top of

the widely-used open source toolkit PETSc, the Portable, Extensible Toolkit for Scientific Computation. Recent developments

in PETSc have focused on supporting cutting-edge GPU-based high-performance computing (HPC) architectures, and these

can be easily leveraged in PermonSVM by using appropriate GPU-enabled matrix and vector types in PETSc. We achieve

significant GPU speedup for the SVM calculations on the Summit supercomputer at Oak Ridge National Laboratory – currently

one of the best available “at scale” proxies for upcoming exascale-class supercomputers – and are actively working to further

improve computational efficiency on Summit as well as on prototype exascale node architectures.

1



Wild�re Classi�cation using PETSc-based Support Vector Machines on Distributed-Memory GPU-based Parallel Computers
Richard Tran Mills � , Zachary Langford� , Jitendra Kumar� , Forrest M. Ho�man �

� Argonne National Laboratory � Oak Ridge National Laboratory

1. Introduction

As high-resolution geospatiotemporal data sets from observatory networks, remote sens-
ing platforms, and computational Earth system models increase in abundance, �delity,
and richness, machine learning approaches that can fully utilize increasingly powerful
parallel computing resources are becoming essential for analysis and exploration of
such data sets. We explore one such approach, applying a state-of-the-art distributed
memory parallel implementation of Support Vector Machine (SVM) classi�cation to
large remote-sensing data sets in which we want to identify wild�re-a�ected areas.
The parallel tool we employ is PermonSVM, which is built on top of the widely-used
open source toolkit PETSc, the Portable, Extensible Toolkit for Scienti�c Computation.
Recent developments in PETSc have focused on supporting cutting-edge GPU-based
high-performance computing (HPC) architectures, and these can be easily leveraged
in PermonSVM by using appropriate GPU-enabled matrix and vector types in PETSc.
This combines the existing extreme inter-node scalability of PETSc to be combined
with e�cient use of the on-node, �ne-grained parallelism that is representative of the
design of upcoming exascale-class supercomputers

2. Wild�re Detection

In this study, wild�re detection is a binary classi�cation problem where the model will
classify a wild�re pixel or non-wild�re pixel. Knowing the location and extent of wild�re
burns can help with a variety of applications (evacuation routes, ecological restoration,
climate modeling, etc.). We focus on the 2004 wild�re season for Alaska and the 2020
wild�re season for California (largest wild�re seasons for both states). The study re-
gion for Alaska (Figure 1 top) consisted of interior Alaska, while we focus on the entire
state for California (Figure 1 bottom). The 2004 Alaska wild�re season was the worst
on record in terms of area burned by wild�re, burning more than 27,000 km2 (6 mil-
lion acres) of land. The 2020 California wild�re season was also the worst on record,
burning more than 17,000 km2 (4 million acres) of land.

2.1 Data Collection
We used 500 m MODIS 8-day surface re�ectance (MOD09A1) for classifying wild-
�res over Alaska and California. Google Earth Engine was used to extract MODIS
products for the wild�re season. MOD09A1 consists of 7 bands ranging from 620
nm to 2155 nm in wavelength. Table 1 describes the time periods for data collec-
tion and the amount of pixels for the wild�re and non-wild�re class for our study
regions. We plan to look into 8-day land surface temperature (MOD11A2) in future
research. California wild�re boundaries for 2020 was collected from the California
Department of Forestry and Fire Protection's Fire and Resource Assessment Program
(https://frap.fire.ca.gov ). Alaska wild�re boundaries for 2020 was collected
from the Monitoring Trends in Burn Severity (MTBS) project, a multi-agency program
(https://www.mtbs.gov/ ).

Figure 1: Study regions showing MODIS surface re�ectance and �re boundaries for Alaska (A) and

California (B).

2.2 Data Processing
After the data was collected, we processed the data as follows:

ˆ Convert wild�re boundaries to raster pixels (e.g., -1 = no wild�re and 1 = wild�re)

ˆ Combine all MODIS images together into a single image (i.e.,gdal_merge )

ˆ Convert 3D array into 2D dataframe, where each feature consists of a band (Figure 2)

ˆ Split data in train and test sets, randomly shu�ing rows, using 70% for training and
30% for testing

ˆ Convert dataframes into PETSc binary array for PermonSVM

Figure 2: Subset of the data converted into dataframe.

Table 1: Description of data, where pixels is equal to 500 m.

State Year Start End
Area Burned
(pixels)

Area Other
(pixels)

CA 2020 June October 81392 1735393
AK 2004 May September 43680 684069

2.3 Results
Table 2 shows the results on the test dataset, displaying the true positives (TP),
false positives (FP), true negatives (TN), false negatives (FN), accuracy, precision,
recall and F1 (harmonic mean of precision and recall). We compared PermonSVM to
Python's scikit-learn SVM using the default parameters (https://scikit-learn.
org/stable/modules/generated/sklearn.svm.SVC.html ). Figure 3 shows
how precision and recall are calculated from TP, FP, and FN. Both classi�ers show
similar scores for accuracy and F1 but PermonSVM shows more false positives for both
AK and CA. Since MTBS does not map wild�res under 1000 acres, more false posi-
tives (i.e., classifying non-wild�re pixel as wild�re pixel) would be more of interest than
having more false negatives.

Table 2: Results comparing PETSc PermonSVM to Python scikit-learn SVM.

CA 2020
PermonSVM

CA 2020
scikit-learn

AK 2004
PermonSVM

AK 2004
scikit-learn

TP 18199 18028 6925 8461
TN 519253 519287 135131 204784
FP 6069 1132 1681 403
FN 1515 6589 1813 4677
Accuracy 0.98 0.98 0.97 0.97
Precision 0.75 0.94 0.80 0.95
Recall 0.94 0.73 0.79 0.64
F1 0.83 0.82 0.80 0.77

Figure 3: Diagram explaining precision and recall (sourcehttps://towardsdatascience.com/

whats-the-deal-with-accuracy-precision-recall-and-f1-f5d8b4db1021 )

3. Parallel Solution of SVM Problems using PermonSVM and PETSc

3.1 PermonSVM and PETSc
We build our SVM models using PermonSVM, an SVM implementation designed for
distributed-memory parallel HPC resources that is part of the PERMON package
(http://permon.vsb.cz/ ):

ˆ Solves the dual formulation for soft-margin SVM problems

ˆ Supports full and relaxed-bias (used here) formulations

ˆ Supports grid search with k-fold and strati�ed k-fold cross-validation for hyperpa-
rameter tuning

ˆ Solves the quadratic programming problems for SVM training using PermonQP, which
provides an assortment of sophisticated QP solvers, or, optionally, using the TAO nu-
merical optimization solvers that are part of PETSc

ˆ PermonSVM and PermonQP are built on top of PETSc, which provides parallel
communication constructs, parallel matrix and vector operations, Krylov solvers, and
(optionally) numerical optimization solvers used by PERMON.

PETSc (the Portable, Extensible Toolkit for Scienti�c Computation,https://petsc.
org/ ) is a software library for the scalable solution of linear, nonlinear, and ODE/DAE
systems, computation of adjoints (sometimes called sensitivities) of ODE systems, and
optimization. It is most often used in PDE-based simulation, but one of us (Mills) has
recently been applying it to model-parallel machine learning problems.

Figure 4: Diagram illustrating the hierarchical organization of PETSc components and
some key features

3.2 Utilizing GPUs in PermonSVM via PETSc

PETSc's design for GPU support (https://arxiv.org/abs/2011.00715 ) en-
ables existing codes that use PETSc to invoke its GPU-enabled backends with very
little, or sometimes no, changes to user code:

ˆ Every PETSc object is an instance of a class whose data structure and functionality
is provided by specifying a delegated implementation type at runtime.

� For example, a matrix in compressed sparse row representation is created as an
instance of classMat with type MATAIJ, whereas a sliced ELLPACK storage
matrix has typeMATSELL.

ˆ Using GPUs to execute the linear algebra operations de�ned overVec and Mat is
accomplished by choosing the appropriate delegated type.

� For instance, the computations will use the vendor-provided kernels from NVIDIA if
VECCUDAand MATAIJCUSPARSEare speci�ed in user code or through command
line options.

� Alternatively, Kokkos kernels will be used when VECKOKKOS and
MATAIJKOKKOSare speci�ed

ˆ Because the higher-level classes such as timesteppers (TS) ultimately employ Vec
and Mat operations for the bulk of their computations, this provides a means to of-
�oad most of the computation for PETSc solvers�even the most complicated and
sophisticated�onto GPUs.

� This includes both the TAO optimization solvers and the PermonQP solvers (which
rely almost entirely on PETScMat and Vec operations).

Figure 5: PETSc application developers are able to use a variety of programming models for GPUs

independently of PETSc's internal programming model. At left is a conceptual diagram illustrating the

separation between supported GPU programming models for user code and the PETSc backends. At right

are examples of PETSc usage with Kokkos-cuLIB-CUDA, OpenMP-ROCm-HIP, and all combinations.

Here cuLIB indicates the cuBLAS and cuSPARSE libraries from NVIDIA.

ˆ We have made a small set of modi�cations to PermonSVM and PermonQP (adding
84 lines of code) to allow the types of allMat and Vec objects to be set via PETSc's
runtime database.

ˆ PETSc's GPU back-ends can thus be used by simply specifying appropriate
command-line options when invoking the PermonSVM driver.

ˆ Testing with the PermonQP MPGP solver and the TAO BQNLS and BLMVM solvers
indicates that approximately 100% of the �oating-point operations in the solve step
are executed on the GPU when CUDAMat and Vec types are used on machines
equipped with NVIDIA GPUs

4. Computational Experiments

We have experimented with the Alaska (2004) and California data sets (using a larger
data set of the 2016�2020 data, as well as a smaller one from 2020 only) on Summit,
the IBM AC922 system at Oak Ridge National Laboratory (ORNL). Our SVM model
performance has already been described in section 2. Here, we focus on a discussion of
our selection of the underlying optimization solvers and on observed computational per-
formance on Summit. Because our interest is in working with large data sets by scaling
across HPC resources, we work with the largest data set we had available (California
for years 2016�2020), although this is actually a relatively small dataset for Summit
nodes (we aim to eventually use much larger data sets).

4.1 Hardware platform: Summit IBM AC922 system at ORNL

One of the reasons that we have chosen Summit is that its GPU-centric design re-
�ects a trend we expect to continue in upcoming supercomputers, both large and small:
NERSC Perlmutter, OLCF Frontier, and ALCF Aurora all feature a similar node design
with several extremely powerful GPUs. And very powerful GPUs have also become a
mainstay of workstations used for data science.

Summit System totals

ˆ � 200 PFlop/s theoretical peak
143 PFlop/s LINPACK�#2 in TOP500

ˆ 4,608 compute nodes

Node con�guration

ˆ Compute:

� Two IBM Power9 CPUs, each 22 with cores,
0.5 DP TFlop/s

� Six NVIDIA Volta V100 GPUs, each with 80
SMs�32 FP64 cores/SM, 7.8 DP TFlop/s

ˆ Memory:

� 512 GB DDR4 memory
� 96 (6 � 16) GB high-bandwidth GPU memory
� 1.6 TB nonvolatile RAM (I/O burst bu�er)

Almost all compute power is in GPUs!

4.2 SVM Training performance on Summit

4.2.1 Solver selection

ˆ We explored three optimization solvers, MPGP from PermonQP and two quasi-
Newton methods, BQNLS and BLMVM, from PETSc/TAO:

� MPGP is the Modi�ed Proportioning with (reduced) Gradient Projections algo-
rithm

� BQNLS is the Bounded Quasi-Newton Line Search method for nonlinear mini-
mization with bound constraints; it approximates the action of the inverse-Hessian
with a limited memory quasi-Newton formula.

� BLMVM is the Bounded Limited Memory Variable Metric; it solves the Newton
step Hkdk = � gk using an approximationBk in place ofHk, whereBk is composed
using the BFGS update formula

ˆ MPGP's convergence for our data sets was too slow to be practical, requiring more
wall-clock time for convergence than the queue limits on Summit allow.

ˆ BQNLS and BLMVM are both able to use the GPU back-ends in PETSc for all of
their FLOPs, as their limited-memory formulations consist of many vector operations
that can be o�oaded to GPU.

ˆ BQNLS convergence was fragile for our problems, often determining that it had sat-
is�ed the convergence criteria in very few iterations, but then producing very poor
quality SVM model performance scores; we therefore use BLMVM for the results
presented here.

4.2.2 Selection of MPI rank count per GPU

For several technical and design reasons, PETSc does not directly use multithread-
ing in its CPU code; CPU parallelism is leveraged using an MPI-only model. Using
more MPI ranks may enable greater parallelism in code that executes on CPUs, but
having many MPI ranks sharing a GPU can incur signi�cant overhead; conversely,
using too few CPU cores may make it di�cult to feed the powerful GPUs enough
work to keep them busy. We investigated the number of MPI ranks to use per Sum-
mit node and determined that 24 ranks (4 per GPU) was optimal for our workloads.

Figure 6: A study to determine the optimal number of MPI ranks per Summit node (or
MPI ranks per GPU�there are 6 GPUs per node).

4.2.3 Strong Scalability on Summit

Figure 7 displays our preliminary performance observations with the 2016�2020 Cali-
fornia data set (5.6 GB in size).

ˆ Using the GPUs results in approximately 2.35X speedup (vs. CPU only) when there
is enough work per node to keep the GPUs busy.

ˆ As the number of nodes increases, eventually the problem size per node becomes
too small to fully utilize the GPUs. (This is expected behavior in strong-scaling
scenarios, as GPUs require enough work to hide high kernel cost latencies and to
keep the many processing elements busy).

ˆ We believe that the 2.35X GPU speedup we observe in these preliminary results has
considerable room for improvement.

� Even though PETSc supports it, we ended up not utilizing GPU-aware MPI, so
communication between GPUs here requires copying data from GPU to CPU on
send, and from GPU to GPU on receive

� Our experiments using GPU-aware MPI resulted in pathologically poor perfor-
mance; we believe this is related to some known performance bugs in IBM's Spec-
trum MPI. Using a di�erent MPI implementation may solve this issue.

� Although almost 100% of the BLMVM solver FLOPs are executed on GPU, the
PETSc performance logs show more communicationn between CPU and GPU than
might be necessary.

� There are avenues for improving BLMVM performance on GPUs (see section 5).

Figure 7: A strong-scalability study (i.e., input data size is �xed while number of
parallel resources is increased) using the 2016�2020 California data set (5.6 GB) on
Summit, comparing CPU-only with GPU-enabled runs. Note the use of log-log axes.
The leftmost points correspond to 1/6 of a node, i.e., 7 CPU cores and one GPU, and
performance is studied out to 16 nodes, or 672 CPU cores and 96 GPUs.

5. Summary and Future Directions

We consider this a preliminary study, with much work to be done, but so far

ˆ SVM models constructed with PermonSVM show good performance for wild�re clas-
si�cation with MODIS data.

ˆ Scalability across nodes is good; it appears that PermonSVM can scale to very large
training datasets, ones impractical to work with on single workstations.

ˆ The Bounded Limited Memory Variable Metric (BLMVM) quasi-Newton solver in
PETSc/TAO displays good convergence properties for these problems.

ˆ With only small code changes, we have been able to leverage GPU back-ends in
PETSc to o�oad nearly all FLOPS in SVM training to GPUs

ˆ Initial GPU speedup is modest but encouraging; we have good reason to believe that
this can be improved.

Future work will focus on two areas: Improving GPU utilization in SVM training, and
improving the training data sets for wild�re classi�cation.

5.1 Improvements to GPU Utilization

ˆ The BLMVM quasi-Newton solver displays good convergence and has proved able
to make moderate use of GPU resources on our problems.

ˆ PETSc/TAO developer Alp Dener has done some initial work (https://alp.
dener.me/files/slides/siam-pp20.pdf ) on a new compact dense refor-
mulation that can better leverage fast matrix-vector products on GPUs at the cost
of some additional storage, while also reducing required FLOP counts. We will
continue this line of development.

ˆ Communication e�ciency should be improved if we can use an implementation of
GPU-aware MPI (which PETSc already supports)

5.2 Improvements to Wild�re Classi�cation
One focus of future work on data preparation for model development will be on cre-
ating an approach that takes into account regions of the state that vary by climate
or ecoregion. Figure 8 illustrates a quantitative division of the state of Alaska into
10 ecoregions based on clustering of climate data. We believe that model performance
may be signi�cantly improved by constructing separate SVM models for each ecoregion,
rather than for the entire state, and a next step is to explore this approach.

Figure 8: Alaska ecoregions based on Ho�man et al. (2013), showing each ecoregion
a di�erent random color.

American Geophysical Union Fall Meeting, New Orleans, LA and Online Virtual, December 13�17, 2021. Parts of this research were supported by the Exascale Computing Project (17-SC-20-SC), a collaborative e�ort of the U.S. Department of Energy O�ce of Science and the National Nuclear Security Administration. Some work was supported by Laboratory Directed Research and Development (LDRD) funding from Argonne National Laboratory, provided by the Director, O�ce of Science, of the U.S. Department of Energy under Contract No. DE-AC02-06CH11357.


