Wildfire Classification using PETSc-based Support Vector Machines on Distributed-Memory GPU-based Parallel Computers

Richard Mills¹, Zachary Langford², Jitendra Kumar², and Forrest Hoffman²

¹Argonne National Laboratory ²Oak Ridge National Laboratory

November 24, 2022

Abstract

As high-resolution geospatiotemporal data sets from observatory networks, remote sensing platforms, and computational Earth systems increase in abundance, fidelity, and richness, machine learning approaches that can fully utilize increasingly powerful parallel computing resources are becoming essential for analysis and exploration of such data sets. We explore one such approach, applying a state-of-the-art distributed memory parallel implementation of Support Vector Machine (SVM) classification to large remote-sensing data sets. We have used MODIS 8-day surface reflectance (MOD09A1) and land surface temperature (MOD11A2) for classifying wildfires over Alaska and California. Monitoring Trends in Burn Severity (MTBS) burn perimeter data was used to set boundaries of burned and unburned areas for our two-class problem. MTBS covers years from 1984-2019, recording only fires over 1000 acres or greater in the western United States. We seek to find a parallel computing solution (using the PermonSVM solver, described below) to accurately classify wildfires and find smaller unrecorded wildfires. An initial assessment for wildfire classification over interior Alaska shows that PermonSVM has an accuracy of 96% and over 5000 false positives (i.e., fires unrecorded in MTBS). Next steps include mapping larger regions over Alaska and California and understanding the tradeoffs of scalability and accuracy. The parallel tool we employ is PermonSVM, which is built on top of the widely-used open source toolkit PETSc, the Portable, Extensible Toolkit for Scientific Computation. Recent developments in PETSc have focused on supporting cutting-edge GPU-based high-performance computing (HPC) architectures, and these can be easily leveraged in PermonSVM by using appropriate GPU-enabled matrix and vector types in PETSc. We achieve significant GPU speedup for the SVM calculations on the Summit supercomputer at Oak Ridge National Laboratory - currently one of the best available "at scale" proxies for upcoming exascale-class supercomputers - and are actively working to further improve computational efficiency on Summit as well as on prototype exascale node architectures.

Wild re Classi cation using PETSc-based Support Vector Machines on Distributed-Memory GPU-based Parallel Computers

1. Introduction

As high-resolution geospatiotemporal data sets from observatory networks, remote sensing platforms, and computational Earth system models increase in abundance, delity, and richness, machine learning approaches that can fully utilize increasingly powerful parallel computing resources are becoming essential for analysis and exploration of such data sets. We explore one such approach, applying a state-of-the-art distributed memory parallel implementation of Support Vector Machine (SVM) classi cation to large remote-sensing data sets in which we want to identify wild re-a ected areas. The parallel tool we employ is PermonSVM, which is built on top of the widely-used open source toolkit PETSc, the Portable, Extensible Toolkit for Scienti c Computation. Recent developments in PETSc have focused on supporting cutting-edge GPU-based high-performance computing (HPC) architectures, and these can be easily leveraged in PermonSVM by using appropriate GPU-enabled matrix and vector types in PETSc. This combines the existing extreme inter-node scalability of PETSc to be combined with e cient use of the on-node, ne-grained parallelism that is representative of the design of upcoming exascale-class supercomputers

2. Wild re Detection

In this study, wild re detection is a binary classi cation problem where the model will classify a wild re pixel or non-wild re pixel. Knowing the location and extent of wild re burns can help with a variety of applications (evacuation routes, ecological restoration, climate modeling, etc.). We focus on the 2004 wild re season for Alaska and the 2020 wild re season for California (largest wild re seasons for both states). The study region for Alaska (Figure 1 top) consisted of interior Alaska, while we focus on the entire state for California (Figure 1 bottom). The 2004 Alaska wild re season was the worst on record in terms of area burned by wild re, burning more than 27,000 km million acres) of land. The 2020 California wild re season was also the worst on record. burning more than 17,000 k²/m(4 million acres) of land.

2.1 Data Collection

We used 500 m MODIS 8-day surface re ectance (MOD09A1) for classifying wildres over Alaska and California. Google Earth Engine was used to extract MODIS products for the wild re season. MOD09A1 consists of 7 bands ranging from 620 nm to 2155 nm in wavelength. Table 1 describes the time periods for data collection and the amount of pixels for the wild re and non-wild re class for our study regions. We plan to look into 8-day land surface temperature (MOD11A2) in future research. California wild re boundaries for 2020 was collected from the California Department of Forestry and Fire Protection's Fire and Resource Assessment Program). Alaska wild re boundaries for 2020 was collected (https://frap.fire.ca.gov from the Monitoring Trends in Burn Severity (MTBS) project, a multi-agency program (https://www.mtbs.gov/

Figure 1: Study regions showing MODIS surface re ectance and re boundaries for Alaska (A) and California (B).

2.2 Data Processing

After the data was collected, we processed the data as follows:

- [^] Convert wild re boundaries to raster pixels (e.g., -1 = no wild re and 1 = wild re)
- [^] Combine all MODIS images together into a single image (i.eqdal_merge
- [^] Convert 3D array into 2D dataframe, where each feature consists of a band (Figure 2) Split data in train and test sets, randomly shu ing rows, using 70% for training and
- 30% for testing
- [^] Convert dataframes into PETSc binary array for PermonSVM

State	Year	Start	End	Area Burned	Area Other
Slale				(pixels)	(pixels)
CA	2020	June	October	81392	1735393
AK	2004	May	September	43680	684069

2.3 Results Table 2 shows the results on the test dataset, displaying the true positives (TP), false positives (FP), true negatives (TN), false negatives (FN), accuracy, precision, recall and F1 (harmonic mean of precision and recall). We compared PermonSVM to Python's scikit-learn SVM using the default parametersh(ttps://scikit-learn. org/stable/modules/generated/sklearn.svm.SVC.html). Figure 3 shows how precision and recall are calculated from TP, FP, and FN. Both classi ers show similar scores for accuracy and F1 but PermonSVM shows more false positives for both AK and CA. Since MTBS does not map wild res under 1000 acres, more false positives (i.e., classifying non-wild re pixel as wild re pixel) would be more of interest than having more false negatives.

> TP ΤN FN Accu Prec Reca F1

Figure 3: Diagram explaining precision and recall (sourclettps://towardsdatascience.com/ whats-the-deal-with-accuracy-precision-recall-and-f1-f5d8b4db1021

3. Parallel Solution of SVM Problems using PermonSVM and PETSc

3.1 PermonSVM and PETSc We build our SVM models using PermonSVM, an SVM implementation designed for distributed-memory parallel HPC resources that is part of the PERMON package (http://permon.vsb.cz/

- rameter tuning

Figure 2: Subset of the data converted into dataframe.

Richard Tran Mills , Zachary Langford , Jitendra Kumar , Forrest M. Ho man Argonne National Laboratory Oak Ridge National Laboratory

Table 1: Description of data, where pixels is equal to 500 m.

Table 2: Results comparing PETSc PermonSVM to Python scikit-learn SVM.

	CA 2020	CA 2020	AK 2004	AK 2004
	PermonSVM	scikit-learn	PermonSVM	scikit-learn
	18199	18028	6925	8461
	519253	519287	135131	204784
	6069	1132	1681	403
	1515	6589	1813	4677
uracy	0.98	0.98	0.97	0.97
cision	0.75	0.94	0.80	0.95
all	0.94	0.73	0.79	0.64
	0.83	0.82	0.80	0.77

[^] Solves the dual formulation for soft-margin SVM problems

[^] Supports full and relaxed-bias (used here) formulations

Supports grid search with k-fold and strati ed k-fold cross-validation for hyperpa-

[^] Solves the quadratic programming problems for SVM training using PermonQP, which provides an assortment of sophisticated QP solvers, or, optionally, using the TAO numerical optimization solvers that are part of PETSc

PermonSVM and PermonQP are built on top of PETSc, which provides parallel communication constructs, parallel matrix and vector operations, Krylov solvers, and (optionally) numerical optimization solvers used by PERMON.

PETSc (the Portable, Extensible Toolkit for Scienti c Computatiorhttps://petsc.

org/) is a software library for the scalable solution of linear, nonlinear, and ODE/DAE systems, computation of adjoints (sometimes called sensitivities) of ODE systems, and optimization. It is most often used in PDE-based simulation, but one of us (Mills) has recently been applying it to model-parallel machine learning problems.

Figure 4: Diagram illustrating the hierarchical organization of PETSc components and

3.2 Utilizing GPUs in PermonSVM via PETSc

PETSc's design for GPU support h(ttps://arxiv.org/abs/2011.00715) enables existing codes that use PETSc to invoke its GPU-enabled backends with very little, or sometimes no, changes to user code:

- is provided by specifying a delegated implementation type at runtime.
- matrix has typeMATSELL
- accomplished by choosing the appropriate delegated type.
- line options.
- MATAIJKOKKOSare speci ed

Secause the higher-level classes such as timesteppers ultimately employ Vec and Mat operations for the bulk of their computations, this provides a means to ofoad most of the computation for PETSc solvers even the most complicated and sophisticated onto GPUs.

This includes both the TAO optimization solvers and the PermonQP solvers (which rely almost entirely on PETScMat and Vec operations).

Figure 5: PETSc application developers are able to use a variety of programming models for GPUs independently of PETSc's internal programming model. At left is a conceptual diagram illustrating the separation between supported GPU programming models for user code and the PETSc backends. At righ are examples of PETSc usage with Kokkos-cuLIB-CUDA, OpenMP-ROCm-HIP, and all combinations. Here cuLIB indicates the cuBLAS and cuSPARSE libraries from NVIDIA.

- runtime database.
- command-line options when invoking the PermonSVM driver.
- equipped with NVIDIA GPUs

We have experimented with the Alaska (2004) and California data sets (using a larger data set of the 2016 2020 data, as well as a smaller one from 2020 only) on Summit, the IBM AC922 system at Oak Ridge National Laboratory (ORNL). Our SVM model performance has already been described in section 2. Here, we focus on a discussion of 4.2.3 Strong Scalability on Summit our selection of the underlying optimization solvers and on observed computational per-Figure 7 displays our preliminary performance observations with the 2016 2020 Califormance on Summit. Because our interest is in working with large data sets by scaling fornia data set (5.6 GB in size). across HPC resources, we work with the largest data set we had available (California for years 2016 2020), although this is actually a relatively small dataset for Summit Using the GPUs results in approximately 2.35X speedup (vs. CPU only) when there nodes (we aim to eventually use much larger data sets). is enough work per node to keep the GPUs busy.

4.1 Hardware platform: Summit IBM AC922 system at ORNL

One of the reasons that we have chosen Summit is that its GPU-centric design reects a trend we expect to continue in upcoming supercomputers, both large and small: NERSC Perlmutter, OLCF Frontier, and ALCF Aurora all feature a similar node design with several extremely powerful GPUs. And very powerful GPUs have also become a mainstay of workstations used for data science.

[•] Every PETSc object is an instance of a class whose data structure and functionality

For example, a matrix in compressed sparse row representation is created as ar instance of classMat with type MATAIJ, whereas a sliced ELLPACK storage

Using GPUs to execute the linear algebra operations de ned overfiec and Mat is

For instance, the computations will use the vendor-provided kernels from NVIDIA if VECCUDA and MATAIJCUSPARSE are specied in user code or through command

Alternatively, Kokkos kernels will be used when VECKOKKOS and

[^] We have made a small set of modi cations to PermonSVM and PermonQP (adding) 84 lines of code) to allow the types of a Mat and Vec objects to be set via PETSc's

> PETSc's GPU back-ends can thus be used by simply specifying appropriate

[^] Testing with the PermonQP MPGP solver and the TAO BQNLS and BLMVM solvers indicates that approximately 100% of the oating-point operations in the solve step are executed on the GPU when CUDAM at and Vec types are used on machines

4. Computational Experiments

Summit System totals

- 200 PFlop/s theoretical peak
- 143 PFlop/s LINPACK #2 in TOP500
- [^] 4,608 compute nodes
- Node con guration

[^] Compute:

Two IBM Power9 CPUs, each 22 with cores,

0.5 DP TFlop/s

SMs 32 FP64 cores/SM, 7.8 DP TFlop/s

Memory:

512 GB DDR4 memory

96 (6 16) GB high-bandwidth GPU memory

1.6 TB nonvolatile RAM (I/O burst bu er)

Almost all compute power is in GPUs!

4.2 SVM Training performance on Summit

- 4.2.1 Solver selection
- [^] We explored three optimization solvers, MPGP from PermonQP and two quasi-Newton methods, BQNLS and BLMVM, from PETSc/TAO:
- MPGP is the Modi ed Proportioning with (reduced) Gradient Projections algorithm
- BQNLS is the Bounded Quasi-Newton Line Search method for nonlinear minimization with bound constraints; it approximates the action of the inverse-Hessiar with a limited memory quasi-Newton formula.
- BLMVM is the Bounded Limited Memory Variable Metric; it solves the Newtor step $H_k d_k = g_k$ using an approximatior B_k in place of H_k , where B_k is composed using the BFGS update formula
- ^ MPGP's convergence for our data sets was too slow to be practical, requiring more wall-clock time for convergence than the queue limits on Summit allow.
- [^] BQNLS and BLMVM are both able to use the GPU back-ends in PETSc for all of their FLOPs, as their limited-memory formulations consist of many vector operations that can be o oaded to GPU.
- [^] BQNLS convergence was fragile for our problems, often determining that it had satis ed the convergence criteria in very few iterations, but then producing very poor quality SVM model performance scores; we therefore use BLMVM for the results presented here.

4.2.2 Selection of MPI rank count per GPU

For several technical and design reasons, PETSc does not directly use multithreading in its CPU code; CPU parallelism is leveraged using an MPI-only model. Using more MPI ranks may enable greater parallelism in code that executes on CPUs, but having many MPI ranks sharing a GPU can incur signi cant overhead; conversely using too few CPU cores may make it di cult to feed the powerful GPUs enough work to keep them busy. We investigated the number of MPI ranks to use per Summit node and determined that 24 ranks (4 per GPU) was optimal for our workloads.

One focus of future work on data preparation for model development will be on creating an approach that takes into account regions of the state that vary by climate or ecoregion. Figure 8 illustrates a quantitative division of the state of Alaska into 10 ecoregions based on clustering of climate data. We believe that model performance Figure 6: A study to determine the optimal number of MPI ranks per Summit node may be signi cantly improved by constructing separate SVM models for each ecoregion, MPI ranks per GPU there are 6 GPUs per node). rather than for the entire state, and a next step is to explore this approach.

- As the number of nodes increases, eventually the problem size per node becomes too small to fully utilize the GPUs. (This is expected behavior in strong-scaling scenarios, as GPUs require enough work to hide high kernel cost latencies and to keep the many processing elements busy).
- We believe that the 2.35X GPU speedup we observe in these preliminary results has considerable room for improvement.

Parts of this research were supported by the Exascale Computing Project (17-SC-20-SC), a collaborative e ort of the U.S. Department of Energy O ce of Science and the National Nuclear Security Administration. Some work was supported by the Exascale Computing Project (17-SC-20-SC), a collaboratory, provided by the Director, O ce of Science, of the U.S. Department of Energy under Contract No. DE-AC02-06CH11

Six NVIDIA Volta V100 GPUs, each with 80

Even though PETSc supports it, we ended up not utilizing GPU-aware MPI, so communication between GPUs here requires copying data from GPU to CPU on send, and from GPU to GPU on receive

Our experiments using GPU-aware MPI resulted in pathologically poor performance; we believe this is related to some known performance bugs in IBM's Spectrum MPI. Using a di erent MPI implementation may solve this issue.

Although almost 100% of the BLMVM solver FLOPs are executed on GPU, the PETSc performance logs show more communicationn between CPU and GPU than might be necessary.

There are avenues for improving BLMVM performance on GPUs (see section 5).

Figure 7: A strong-scalability study (i.e., input data size is xed while number of parallel resources is increased) using the 2016 2020 California data set (5.6 GB) on Summit, comparing CPU-only with GPU-enabled runs. Note the use of log-log axes. The leftmost points correspond to 1/6 of a node, i.e., 7 CPU cores and one GPU, and performance is studied out to 16 nodes, or 672 CPU cores and 96 GPUs.

5. Summary and Future Directions

We consider this a preliminary study, with much work to be done, but so far

- SVM models constructed with PermonSVM show good performance for wild re classi cation with MODIS data.
- Scalability across nodes is good; it appears that PermonSVM can scale to very large training datasets, ones impractical to work with on single workstations.
- The Bounded Limited Memory Variable Metric (BLMVM) quasi-Newton solver in PETSc/TAO displays good convergence properties for these problems.
- With only small code changes, we have been able to leverage GPU back-ends in PETSc to o oad nearly all FLOPS in SVM training to GPUs
- `Initial GPU speedup is modest but encouraging; we have good reason to believe that this can be improved.

Future work will focus on two areas: Improving GPU utilization in SVM training, and improving the training data sets for wild re classi cation.

5.1 Improvements to GPU Utilization

- [^] The BLMVM quasi-Newton solver displays good convergence and has proved able to make moderate use of GPU resources on our problems.
- [^] PETSc/TAO developer Alp Dener has done some initial workt(ps://alp.) on a new compact dense refordener.me/files/slides/siam-pp20.pdf mulation that can better leverage fast matrix-vector products on GPUs at the cost of some additional storage, while also reducing required FLOP counts. We will continue this line of development.
- [^] Communication e ciency should be improved if we can use an implementation of GPU-aware MPI (which PETSc already supports)

5.2 Improvements to Wild re Classi cation

Figure 8: Alaska ecoregions based on Ho man et al. (2013), showing each ecoregion a di erent random color.