The sediment green-blue color ratio as a proxy for biogenic silica productivity along the Chilean Margin.

Chen Li¹, Vincent J Clementi², Samantha Claudia Bova², Yair Rosenthal³, Laurel B Childress⁴, James Wright², and Zhimin Jian⁵

¹Tongji University
²Rutgers University
³Rutgers, The State University of New Jersey
⁴International Ocean Discovery Program, Texas A&M University
⁵State Key Laboratory of Marine Geology, Tongji University

November 26, 2022

Abstract

Sediment cores recently collected from the Chilean Margin during D/V JOIDES Resolution Expedition 379T (JR100) document high- and low-frequency variability in shipboard-generated records of the spectral Green/Blue (G/B) ratio. These changes show a strong coherence with foraminiferal isotope composition, Antarctic ice core records, and sediment lithology (e.g., higher diatom abundances in greener sediment intervals), suggesting a climate-related control on the G/B ratio. Here, we test the utility of G/B as a proxy for diatom productivity at Sites J1002 and J1007 by calibrating G/B to measured biogenic opal. Strong exponential correlations between measured opal content and the G/B ratio were found at both sites. We use the empirical regressions to generate continuous records of opal contents (opal%) on the Chilean Margin. Redox-sensitive sedimentary U/Th generally co-varies with the reconstructed opal% at both sites, supporting the association between sediment color, sedimentary U/Th, and productivity. Lastly, we calculated opal mass accumulation rate (MAR) at Site J1007 over the last ~150,000 years. The G/B-derived opal MAR record from Site J1007 largely tracks existing records derived from traditional wet-alkaline digestion from the south and eastern equatorial Pacific Ocean, with a common opal flux peak at ~ 50 ka suggesting that this increased diatom productivity in the eastern equatorial Pacific was likely driven by enhance nutrient supply from the Southern Ocean rather than dust inputs as previously suggested. Collectively, our results identify the G/B ratio as a useful tool with the potential to generate reliable, high-resolution paleoceanographic records that circumvent the traditionally laborious methodology.

1	The	sediment green-blue color ratio as a proxy for biogenic silica productivity along
2		the Chilean Margin.
3		
4 5		Li ^{1,2} *, Vincent J. Clementi ¹ *, Samantha C. Bova ^{1,3} , Yair Rosenthal ^{1,4} , Laurel B. ress ⁵ , James D. Wright ⁴ , Zhimin Jian ² , and Expedition 379T Scientists [†]
6		
7	-	rtment of Marine and Coastal Sciences, Rutgers University, New Brunswick, New Jersey,
8	USA	
9		Key Laboratory of Marine Geology, Tongji University, Shanghai, China
10 11		nt address: Department of Geological Sciences, San Diego State University, San Diego, rnia, USA
12		rtment of Earth and Planetary Sciences, Rutgers University, New Brunswick, New Jersey,
13	USÂ	
14	⁵ Interr	national Ocean Discovery Program, Texas A&M University, College Station, Texas, USA
15		
16 17	[†] A list	of authors and affiliations appears at the end of the paper
17	Corre	sponding authors: Chen Li (1532983@tongji.edu.cn), Vincent J. Clementi
19		enti@marine.rutgers.edu)
20	*Thes	e authors contributed equally to this work.
21		
22	Key P	Points:
23	1.	Sediment green-to-blue ratio serves as a novel proxy for changes in diatom productivity
24		on the Chilean Margin.
25	2.	Continuous opal percent and opal mass accumulation rates derived from sediment green-
26		to-blue ratio agree with existing records spanning the last 150 kyr but provide greater
27		detail.
28	3.	The sediment green-to-blue ratio proxy is potentially applicable in other regions of high
29		diatom productivity but would require a site-specific calibration.

31 Abstract

32 Sediment cores recently collected from the Chilean Margin during D/V JOIDES Resolution 33 Expedition 379T (JR100) document high- and low-frequency variability in shipboard-generated 34 records of the spectral Green/Blue (G/B) ratio. These changes show a strong coherence with 35 foraminiferal isotope composition, Antarctic ice core records, and sediment lithology (e.g., 36 higher diatom abundances in greener sediment intervals), suggesting a climate-related control on 37 the G/B ratio. Here, we test the utility of G/B as a proxy for diatom productivity at Sites J1002 38 and J1007 by calibrating G/B to measured biogenic opal. Strong exponential correlations 39 between measured opal content and the G/B ratio were found at both sites. We use the empirical 40 regressions to generate continuous records of opal contents (opal%) on the Chilean Margin. 41 Redox-sensitive sedimentary U/Th generally co-varies with the reconstructed opal% at both 42 sites, supporting the association between sediment color, sedimentary U/Th, and productivity. 43 Lastly, we calculated opal mass accumulation rate (MAR) at Site J1007 over the last ~150,000 44 years. The G/B-derived opal MAR record from Site J1007 largely tracks existing records derived 45 from traditional wet-alkaline digestion from the south and eastern equatorial Pacific Ocean, with 46 a common opal flux peak at ~ 50 ka suggesting that this increased diatom productivity in the 47 eastern equatorial Pacific was likely driven by enhance nutrient supply from the Southern Ocean 48 rather than dust inputs as previously suggested. Collectively, our results identify the G/B ratio as 49 a useful tool with the potential to generate reliable, high-resolution paleoceanographic records 50 that circumvent the traditionally laborious methodology.

51 Plain Language Summary

52 The color of marine sediments often corresponds to oceanic and sedimentary processes that can 53 influence the global climate system. Visual inspection of new sediment cores collected from the 54 Chilean Margin revealed substantial downcore changes in green and blue sediment colors. 55 Greener sediment intervals were usually enriched with diatoms, whereas bluer sediments were 56 rich in clay minerals. A specialized camera was used to scan the cores and enable us to quantitatively describe the core colors using the green/blue ratio. The similarity of the downcore 57 58 green/blue ratio with Antarctic ice core records suggests that it may serve as a quick tool to 59 estimate the age of the cores during the cruise. In this paper, we show that changes in the 60 green/blue ratio are a function of diatom (biogenic opal) productivity and use a calibrated relationship to calculate a continuous record of opal flux at the Chilean Margin over the last 61 62 150,000 years. A distinct opal flux maxima at 50,000 years ago is observed, similar to previous 63 studies in the eastern equatorial Pacific. This common event implies a tight link between the high- and low- latitude eastern Pacific Ocean, potentially attributable to enhanced nutrient supply 64 65 from the Southern Ocean.

66 1. Introduction

Variations in Southern Ocean and South Pacific primary productivity have been invoked as 67 68 possible drivers of glacial-interglacial climate change and atmospheric CO₂ variability (Brzezinski et al., 2002; Matsumoto et al., 2002; Sigman & Boyle, 2000; Toggweiler et al., 69 70 2006). Our understanding of the role primary productivity plays in the climate system on these 71 timescales is partly attributable to records of opal mass accumulation rates (MAR) in marine 72 sediments (Anderson et al., 2009; Bradtmiller et al., 2007; Charles et al., 1991; Dubois et al., 73 2010). Many of the records spanning glacial timescales, however, do not have adequate 74 resolution to resolve (sub)millennial-scale changes, which have been shown to influence both the inception and termination of glacial periods (Jouzel et al., 2007). This is partly because the 75 76 traditional wet-alkaline methods that are used to derive these records are laborious (e.g.,

Mortlock & Froelich, 1989), which limits the viability of generating continuous, high-resolution
 records of opal MAR across glacial-interglacial intervals.

79

80 One potential avenue to circumvent this obstacle and generate high-resolution opal MAR records 81 is by utilizing the color spectrum of marine sediments derived from core image scanning (Mix et 82 al., 1995; Nederbragt et al., 2000). Generation of sedimentary red-green-blue (RGB) records 83 upon core recovery is standard for most paleoceanographic coring operations and can provide 84 millimeter-scale resolution of sediment properties (e.g., Mix et al., 1992). These data are often 85 translated to L*, a*, and b* values, which have been widely used for core stratigraphy and paleoceanographic reconstructions (e.g., Peterson et al. 2000). However, the raw RGB data may 86 87 be of equal utility since variations in the sediment color often correspond to key oceanic or 88 sediment processes (e.g., primary productivity, terrigenous input, and sediment diagenesis). For 89 example, Mix et al. (1992) documented a close correlation between high Red/Blue ratios and the 90 presence of sulfides in Eastern Equatorial Pacific (EEP) marine sediment, and Penkrot et al. 91 (2018) reported that the Green/Blue ratio closely tracks biogenic opal in sediment cores taken 92 from the Gulf of Alaska. While these are important observations, the established relationships 93 are qualitative. To leverage these high-resolution records for reconstructing regional primary 94 productivity, an empirical relationship between RGB variables (e.g., Green/Blue) and a 95 lithologic component (e.g., biogenic opal) must be established. 96 97 Recent drilling operations on the south Chilean Margin (D/V JOIDES Resolution Exp. 379T

98 funded through the NSF JR100 program) recovered 100-m sediment cores to investigate

99 (sub)millennial-scale to glacial-interglacial variability since the penultimate glaciation. Here, we

100	utilize sites J1002 and J1007 (Figure 1), which document high-frequency changes in the
101	sediment spectral Green/Blue (G/B) ratio. The G/B data were initially used onboard as a
102	stratigraphic tool owing to similarities with global climate records (e.g., EDML ice core).
103	Shipboard lithologic analyses subsequently revealed that sediments enriched with diatoms
104	coincide with high spectral green values, whereas clay-rich sediments corresponded with high
105	blue values. Thus, G/B records in Chilean Margin cores may serve as a paleoceanographic
106	archive of opal percentage in regional sediments.
107	
108	In this paper, we first explore the conceptual background of the proxy itself, as well as the
109	rationale for using G/B in our stratigraphic efforts. We then test the hypothesis that the G/B
110	record correlates with opal content in sediments on the Chilean Margin by calibrating the proxy
111	to biogenic opal concentrations quantified by traditional methods (Mortlock & Froelich 1989).
112	Lastly, we use the G/B records and initial core stratigraphy based on radiocarbon ages and
113	benthic oxygen isotope records to generate continuous opal MAR records for the last ~150,000
114	years at Site J1007, offering the highest resolution record of diatom productivity in the south
115	Pacific Ocean through most of the last glacial cycle.

117 **2. Materials and Methods**

118 2.1 Geological and oceanographic settings

119 Our study region in the southeast Pacific Ocean ranges from the central to south Chilean Margin,

120 where the northward deflection of Antarctic Circumpolar Current (ACC) forms the Peru-Chile

121 Current (PCC, a.k.a Humboldt Current) between 40°S-45°S (Strub et al., 1998). The northward

122 flowing PCC dominates the surface circulation pattern along the west coast of South America

123	(Figure 1). The poleward flowing Gunther Undercurrent underlies the PCC between 100-400 m
124	water depth (Hebbeln et al., 2000; Strub et al., 1998). Between 500-1200 m water depth flows
125	Antarctic Intermediate Water (AAIW), which forms today at the Subpolar Front by mixing cold,
126	fresh Polar Front waters with Subantarctic Mode Water (Piola and Georgi 1982; Sallée et al.
127	2010; Sloyan and Rintoul, 2001). Beneath AAIW sits the northern flowing Antarctic Bottom
128	Water and sluggish Pacific Deep Water (PDW) return flow, which enters the Southern Ocean at
129	mid-depths (Talley, 2013). Coastal upwelling is intensive throughout the year north of 35°S but
130	is restricted to late spring and early fall between 35°S-42°S. South of 42°S, coastal upwelling is
131	inhibited by the prevailing southern westerly winds (Strub et al., 1998).
132	
133	The current oceanographic regime makes the Chilean Margin a remarkably productive region in
134	the modern setting. Annual chlorophyll concentration in surface waters along the Chilean Margin
135	reaches up to 4 mg/m ³ (Figure 1b). Annual primary productivity in this region is dominated by
136	diatoms (Abrantes et al., 2007), and based on satellite-measured pigments is estimated to about
137	~150 gC/m ² /yr off central Chile (31°S-37°S) and ~60 gC/m ² /yr along the south Chilean Margin
138	(i.e., south of 37°S; Antoine and Morel, 1996). The latitudinal distribution pattern of opal
139	contents (opal%) and organic carbon contents (C_{org} %) in surface sediment samples reflect the
140	overlying pigment concentration; surface sediment opal% ranges from ~5% off central Chile to
141	~3% in the south (Romero and Hebbeln, 2003). Despite the high diatom productivity in this
142	region, the opal percentages in the sediments are very low because of the extremely high
143	sedimentation rates on the margin, which can exceed 200 cm/kyr (Hebbeln et al., 2007). High
144	sedimentation rates along the Chilean Margin are largely attributable to significant regional
145	precipitation and high elevations of the Coastal Range and the Andes. Precipitation can vary

146 from <1000 mm/yr in central Chile to >2500 mm/yr south of 40° S, leading to increased

147 terrigenous supply in the south (Stuut et al., 2006).

148

149	2.2 Study sites
150	Sites J1002 and J1007 were recovered from the Chilean Margin using the D/V JOIDES
151	Resolution drilling platform during Expedition 379T in Summer 2019 (Figure 1). Site J1002 (46°
152	4.2964'S, 75° 41.2300'W) is located on the south Chilean Margin offshore Northern Patagonia
153	on a bench in the continental slope at a water depth of 1534 m. At present, this site lies under the
154	northern extent of the ACC and is bathed in PDW. Site J1007 (36° 32.5400'S, 73° 39.9900'W) is
155	located on the continental crust 60 km shoreward of the Chile Trench. With a water depth of 808
156	m, Site J1007 lies in the heart of modern AAIW (Bova et al., 2021).

157

158 2.3 Age models 159 Age models for Site J1002 and J1007 (Figure S2, S3; see age control points in Table S3) were 160 based on a combination of AMS radiocarbon dating and the visual correlation to the LR04 benthic stack (Lisiecki and Raymo, 2005). Calendar ages for the upper parts of the core are 161 162 based on AMS ¹⁴C dating of planktonic foraminifera (*Globigerina bulloides*): eight in the upper 163 67 m of Site J1002 and seven in the upper 23 m at Site J1007, with calendar corrections using 164 IntCal20 (Reimer et al., 2020; Figure 3). Below these depths, stratigraphy is based on visual correlation between benthic foraminifer *Uvigerina spp.* δ^{18} O and the LR04 benthic stack. The 165 166 Undatable program has been used to refine the original age models (Lougheed et al., 2019), 167 improving the resolution and precision of the opal flux estimate simultaneously (See age-depth figures in Figure S1). Comparison with benthic δ^{18} O from the nearby ODP Site 1234 (36°14'S, 168

169	73°41'W, 1015 m; de Bar et al., 2018; Heusser et al., 2006; Robinson et al., 2007) is further
170	applied to constrain the J1007 age model. Nonetheless, we note that the J1007 age model below
171	66 m is loosely constrained due to limited resolution of the benthic δ^{18} O record. For J1007, the
172	interval between 82 m to 86 m is thought to represent the light δ^{18} O "plateau" of Marine Isotope
173	Stage (MIS) 5e. However, the δ^{18} O of this recognized MIS 5e stage are not significantly more
174	depleted than the Holocene as might be expected. Therefore, we caution that it is possible that
175	the real MIS 5e "plateau" was missed due to low sampling resolution and the bottom of J1007
176	does not reach MIS 5e. This uncertainty has, however, no bearings on the discussion and
177	conclusion of the paper but should be noted by potential users of the core data.
178	
179	2.4 Spectral G/B ratio
180	Although extremely high sedimentation rates along the southern Chilean Margin offer the
181	opportunity to generate high-resolution paleoproductivity records, they also pose a few
181 182	
	opportunity to generate high-resolution paleoproductivity records, they also pose a few
182	opportunity to generate high-resolution paleoproductivity records, they also pose a few challenges. First, the concentration of biogenic components (e.g., organic carbon% and opal%)
182 183	opportunity to generate high-resolution paleoproductivity records, they also pose a few challenges. First, the concentration of biogenic components (e.g., organic carbon% and opal%) are very low, approaching the detection limits of the analytical methods. And secondly, taking
182 183 184	opportunity to generate high-resolution paleoproductivity records, they also pose a few challenges. First, the concentration of biogenic components (e.g., organic carbon% and opal%) are very low, approaching the detection limits of the analytical methods. And secondly, taking advantage of the high sedimentation rates for generation of high-resolution records using
182 183 184 185	opportunity to generate high-resolution paleoproductivity records, they also pose a few challenges. First, the concentration of biogenic components (e.g., organic carbon% and opal%) are very low, approaching the detection limits of the analytical methods. And secondly, taking advantage of the high sedimentation rates for generation of high-resolution records using traditional methods is laborious and practically unattainable. Therefore, continuous methods can
182 183 184 185 186	opportunity to generate high-resolution paleoproductivity records, they also pose a few challenges. First, the concentration of biogenic components (e.g., organic carbon% and opal%) are very low, approaching the detection limits of the analytical methods. And secondly, taking advantage of the high sedimentation rates for generation of high-resolution records using traditional methods is laborious and practically unattainable. Therefore, continuous methods can offer valuable information that cannot be obtained from discrete measurements. The advantage
182 183 184 185 186 187	opportunity to generate high-resolution paleoproductivity records, they also pose a few challenges. First, the concentration of biogenic components (e.g., organic carbon% and opal%) are very low, approaching the detection limits of the analytical methods. And secondly, taking advantage of the high sedimentation rates for generation of high-resolution records using traditional methods is laborious and practically unattainable. Therefore, continuous methods can offer valuable information that cannot be obtained from discrete measurements. The advantage of such a method is more in capturing the temporal variability at high resolution than in
182 183 184 185 186 187 188	opportunity to generate high-resolution paleoproductivity records, they also pose a few challenges. First, the concentration of biogenic components (e.g., organic carbon% and opal%) are very low, approaching the detection limits of the analytical methods. And secondly, taking advantage of the high sedimentation rates for generation of high-resolution records using traditional methods is laborious and practically unattainable. Therefore, continuous methods can offer valuable information that cannot be obtained from discrete measurements. The advantage of such a method is more in capturing the temporal variability at high resolution than in providing accurate concentrations. The spectral G/B ratio is a quantitative method to describe

192	slide after splitting, and the cleaned flat face of the archive half was immediately imaged to
193	prevent color degradation at a resolution of 10 lines/mm. Data were presented as color
194	reflectance parameters of red, green, and blue (Bova et al., 2021). The spectral G/B ratio was
195	calculated as the green parameter divided by the blue parameter.
196	
197	Preliminary results of the shipboard smear slide description suggest a possible link between
198	sediment color and lithology, in agreement with previous work (e.g., Mix et al. 1992; Mix et al.
199	1995; Nederbragt et al. 2000; Penkrot et al. 2018). Elevated abundance of diatoms is typically
200	found in greener sedimentary intervals (Figure 2). Similar latitudinal distribution patterns of
201	opal%, C_{org} %, and pigment concentrations suggest that diatoms are the dominant group of
202	primary producers along the Chilean Margin (Abrantes et al., 2007; Romero and Hebbeln, 2003;
203	Stuut et al., 2006). The primary pigments of diatoms are the green chlorophyll-a and the blue-
204	green chlorophyll-c (Kuczynska et al., 2015; Stauber and Jeffrey et al., 1988). Although
205	chlorophyll can be degraded, most of the breakdown products (e.g., chlorins) are still detectable
206	by regular spectrophotometric methods (Ruess, 2005). Indeed, downcore pigment records have
207	been used to reconstruct productivity changes in lakes and estuaries for decades (Ruess et al.,
208	2005; Ruess et al., 2013). Thus, it has been hypothesized that the spectral color of green is
209	mainly produced by diatom-related pigments in this region. In contrast, cores with a dominance
210	of siliciclastic components and a lower abundance of diatoms are usually found to be bluer
211	(Figure 2). Considering the tremendous terrestrial input commonly found along the Chilean
212	Margin, the siliciclastic component likely produces the blue spectral color. We therefore
213	hypothesize that the spectral G/B ratio reflects the relative abundance of biogenic silica in

sediments, and based on our calibration, can use it as to quantify diatom productivity along theChilean Margin over time.

216

217 Given the high-temporal variability of the records, the spectral G/B ratio has also been a useful 218 tool for stratigraphic correlations among holes drilled during Expedition 379T because it is likely 219 linked to regional climate processes (Boya et al., 2021). Previous studies suggest that Antarctic 220 climate changes have a significant impact on surface water dynamics and terrestrial input off of 221 the coast of Chile (Lamy et al., 2004; Kaiser et al., 2007). Regional surface water processes are 222 closely linked to diatom production, hence the spectral green parameter of the sediments. On the 223 other hand, the terrestrial input is assumed to contribute to the spectral blue parameter in 224 sediments. The variation of spectral G/B ratio may be sensitive to climate dynamics, making it 225 applicable for stratigraphic correlations. To validate these assumptions, we compare the 226 downcore variations in G/B at J1002 and J1007 with the benthic foraminiferal δ^{18} O record at each site. The remarkable consistency between the G/B and benthic δ^{18} O at both sites validates 227 228 the use of the G/B ratio for stratigraphic correlations along the Chilean Margin (Figure 3). 229 Moreover, G/B ratios at both sites show good correlations with Antarctic ice core δ^{18} O records, 230 with higher G/B values usually corresponding to warm intervals near Antarctica and lower G/B 231 values corresponding with cold intervals; this observation further demonstrates its utility for 232 stratigraphic correlations (Figure 3). This tool has been especially useful for shipboard 233 correlation as other sedimentary property records in these regions (e.g., magnetic susceptibility, 234 natural gamma radiation, and other color properties) had muted signals. For example, magnetic 235 susceptibility was widely used for shipboard correlation among holes, but for high sedimentation 236 rate sites—especially those with thick Holocene section that were devoid of any appreciable

magnetic susceptibility signal—G/B ratios turned out to be the most applicable stratigraphy tool
(Bova et al., 2021).

239

240 2.5 Biogenic opal analyses

241 J1002 and J1007 were sampled at intervals spanning the range of G/B values measured at each 242 site to investigate the relationship between opal% and G/B. Biogenic silica concentrations were 243 measured by conventional wet-alkaline digestion, including mineral correction procedures 244 modified after Conley et al. (2001). The mineral correction was critical for sediments with 245 relatively low biogenic silica contents as it minimizes the effect of mineral silicates. A total of 22 246 samples from J1002 and 41 samples from J1007 were analyzed. About 250 mg of freeze-dried 247 sediments were homogenized using a mortar and pestle and digested by 1 mol/L Na₂CO₃ 248 solution in an 80°C water bath. The tubes were shaken quickly for complete digestion every 20 249 minutes. Subsamples of 1 mL were taken after 3, 4, and 5 hours of digestion time. Silicate 250 concentration of each subsample was measured by molybdate blue spectrophotometric 251 measurements using an Agilent Cary 60 UV-Vis Spectrophotometer at Rutgers University 252 peaked at 812 nm, modified after Mortlock and Froelich (1989) (see detailed experimental and 253 data-processing procedure in Text S1). Ideally, a linear regression was made with the three 254 subsamples, with extrapolation to the intercept providing the final biogenic silica concentration 255 (DeMaster, 1979). Finally, opal% was calculated as biogenic silica concentration multiplied by 256 2.4 (Mortlock and Froelich, 1989). The standard error of our measurements was 0.35% based on 257 14 duplicate measurements. Wet-alkaline digestion could be affected by "noise" from clay 258 (Conley et al., 2001). Our mineral correction protocol suggests, however, that clay only

contributes to a stable background noise of 0.3% (Figure S1), which was then removed during
the data-processing procedure.

262	2.6 Quantifying U and Th contents with shipboard natural gamma radiation data
263	Full natural gamma radiation (NGR) data for Site J1002 and J1007 were collected during
264	Expedition 379T. Original NGR spectra obtained on board were composed of numerous peaks
265	for the ²³⁸ U and ²³² Th series. Thus, sedimentary contents of thorium (²³² Th), and uranium (²³⁸ U)
266	were estimated by identifying and quantifying their characteristic energy peaks using a
267	MATLAB algorithm by De Vleeschouwer et al. (2017).
268	
269	3. Results and Discussions
270	3.1 Calibration of spectral G/B with measured opal%
271	Shipboard spectral G/B records exhibit a generally northward increasing trend along the Chilean
272	Margin, in agreement with annual chlorophyll distribution in surface waters (Figure 1b). In
273	addition to lower average values, the G/B for Site J1002 also shows smaller variabilities than
274	J1007. Measured opal% for Site J1002 and Site J1007 vary between 0.36-4.36% and 1.89-
275	5.35%, respectively. In general, measured opal% covary with the G/B, with higher measured
276	opal% usually found in greener sediments (Figure 4a). Eight samples from J1007 and one sample
277	from J1002, however, apparently underestimate opal% with respect to G/B (Table S2). In all
278	cases these intervals are associated with prominent low values of magnetic susceptibility (Figure
279	5), which hints to the possibility of diagenetic overprints.
280	

281	At Site J1007, the organic carbon percentage (C_{org} %) correlates well with measured opal%
282	(n=21, r^2 =0.51, p<0.05; Figure 4b), in agreement with the robust correlation between opal% and
283	$C_{org}\%$ in the nearby surface sediments (Romero and Hebbeln, 2003). Those samples with
284	potentially underestimated opal%, within low magnetic susceptibility intervals, are similarly
285	offset from the expected values based on average correlation between opal% and C_{org} %.
286	Preliminary shipboard analysis shows the frequent presence of nannofossils and diatoms in
287	sediments along the Chilean Margin (Bova et al., 2021). Combining downcore and surface
288	sediment records, it can be deduced that primary productivity in this area is dominated by
289	diatomaceous species, with carbonate nannofossil species as a minor contributor. In contrast,
290	C_{org} % shows only a weak correlation with G/B (Figure 4c), which suggests one or both
291	indicators are impacted by degradation. As most degradation products of chlorophyll retain their
292	original color (Ruess, 2005), it is likely the G/B proxy is a more robust indicator and possibly
293	independent of organic matter preservation. Nonetheless, with these caveats in mind, data from
294	low magnetic susceptibly intervals should be considered with higher uncertainty.

296 Excluding the underestimated data points (20% of entire data set, shown in figure 5), strong 297 exponential correlations are found between G/B and measured opal% at both sites (J1002: $\ln(y)=5.8x-6.3$, n=14, r²=0.73, p<0.05; J1007: $\ln(y)=5.8x-5.5$, n=22, r²=0.48, p<0.05; where x 298 299 and y are G/B values and opal%; Figure 4a). The calibrations of J1002 and J1007 show the same 300 slope but different intercept, indicating similar sensitivity of G/B and differences in background 301 colors. Root mean square deviation (RMSD) were calculated based on the differences between 302 measured opal% and the reconstructed opal% derived from G/B values. The RMSD is 0.68% for 303 J1002 and 0.72% for J1007, reflecting the uncertainty of regression models in this study.

305	Note that while the relationships between G/B, opal%, and $C_{\rm org}$ % are robust, the empirical
306	calibrations are site-specific to J1002 and J1007 and cannot be transferred to other sites, even
307	those in the same region. We hypothesize that variable clay mineralogies along the meridional
308	transect (e.g., Lamy et al., 1998) cause spatial differences in the total "blue" content in the
309	sediments, which were presented by different intercepts of the calibration equations. Similar to
310	X-ray fluorescence (XRF) scanning records of cores, the G/B ratio may also provide a semi-
311	quantitative record that will require a site-specific calibration at each site to convert the relative
312	changes to a record of opal%. It is noteworthy, however, that the two studied sites represent an
313	extreme case where the opal concentrations are very low due to dilution from the very high
314	sedimentation rates. It is likely that the method and calibration would be more robust in sites
315	where the contribution of clays and sedimentation rates are lower than those encountered on the
316	Chilean Margin.

317

318 3.2 Reconstructing opal% records

319 Having established the G/B proxy as a tracer of opal% at our study sites, we now use the 320 exponential regression equations above to reconstruct past changes of opal% from the G/B 321 records. Downcore opal% ranges between 0.6-2.5% and 1.6-8.8% for J1002 and J1007, 322 respectively (Figure 5). Reconstructed opal% shows relatively large-scale variability at Site 323 J1007, with the highest opal% for the past 150 kyr found during Termination II and MIS 3 324 (Figure 5a). At Site J1002, reconstructed opal% shows a prominent peak during Holocene, but 325 remains low and stable before Last Glacial Maximum (LGM, 23-19 ka) (Figure 5b). At Site 326 J1002, opal% only ranges ~1% before the LGM, which can be almost entirely attributed to

reconstruction uncertainty (2*RMSD=1.36%, see pink shading in Figure 5). Thus, we caution
against the utility of the J1002 opal% reconstruction before the LGM and do not use it for
paleoceanographic interpretation.

330

331 Over the past 30 kyr, opal% at J1007 and J1002 gradually increases from the last glacial period 332 to the Holocene. During the late Holocene, J1007 opal% is 4-5%, similar to the opal content of 333 ~5% in nearby surface sediments (Romero and Hebbeln, 2003). Meanwhile, J1002 opal% of 334 about 2.5% during the Holocene agrees with opal contents of ~4% in surface sediments at 44° S 335 (Chase et al., 2015; Romero and Hebbeln, 2003). The opal% range for J1007 over the last 30 kyr 336 (2-6%) is similar to that of two nearby sites, and the variation trend mimics GeoB 3395-3. At Site J1002, the low opal% prior to the last glacial period is attributable to a marked increase in 337 338 sedimentation rate (>3 m/kyr), which appears to significantly dilute the opal% relative to the 339 Holocene.

340

341 Previous opal% reconstructions along the Chilean Margin only covered the past 30 kyr, and most 342 vary in a similar range but with different patterns. On the central Chilean Margin, site GeoB 343 3395-3 (35°13'S, 72°48.5'W, 678 m) has opal% ranging from ~1.5-5% for the past 23 kyr, with 344 the highest values appearing during late Holocene (Romero and Hebbeln, 2003; Romero et al., 345 2006). The opal% at ODP Site 1234 (36°14'S, 73°41'W, 1015 m) range from ~2-5% for the last 346 30 kyr, with peak values occurring during the last glacial period (26-20 ka), but slightly before 347 LGM (Chase et al., 2014). Moreover, it is worth noting that the chlorins content at nearby site 348 GeoB 7165-1 (36°33'S, 73° 40'W, 797 m) also increases from the LGM to late Holocene 349 (Mohtadi et al., 2008). Further south, the diatom abundance record from ODP Site 1233 (41°S,

74°27′W, 838 m) is very similar to that of ODP 1234 (Chase et al., 2014). Overall, the consistent
range of reconstructed opal% at J1002 and J1007 with nearby sites strongly support the
robustness of spectral G/B-opal% proxy.

353

354 3.3 Sedimentary U/Th

In nature, thorium occurs almost entirely as ²³²Th while uranium primarily exists as ²³⁸U, both of 355 356 which are primarily supplied to the oceans by riverine runoff (McManus et al., 2006). As a non-357 redox-sensitive metal, ²³²Th has low solubility in rivers and oceans, and is largely absorbed on the surface of clay minerals (Harmsen et a., 1980). On the other hand, ²³⁸U exist as both soluble 358 U(VI) and insoluble U(IV) phases (Langmuir, 1978). In oxygenated seawater, ²³⁸U is present 359 360 dominantly as a stable U(VI) carbonate complex, with a small fraction associated with 361 particulate organic carbon flux (McManus et al., 2005). Under suboxic conditions, authigenic U 362 accumulates in the sediments as a combination of the bio-authigenic phase associated with 363 settling organic particles and that formed by diffusion of U into sedimentary pore waters (Barnes 364 and Cochran, 1990; Henderson and Anderson, 1999; McManus et al., 2005). Therefore, 365 sedimentary U/Th, which minimizes the influence of variable detrital sources and sedimentation 366 rates (thus the authigenic U burial rate), can be used as a non-quantitative indicator of redox 367 conditions of the sediments.

368

Both the thorium and uranium contents are higher at Site J1002 than Site J1007, corresponding

370 to larger terrestrial input to the south Chilean Margin. In contrast, U/Th at Site J1007 was found

- 371 to be higher than that of J1002 (Figure 5). Higher U/Th reflects more suboxic sedimentary
- 372 conditions (referring to low dissolved oxygen availability in bottom waters), high organic carbon

373	rain rates, or some combination of both processes (McManus et al., 2006). We observe marked
374	similarities in both trends and magnitudes between measured opal%, G/B-reconstructed opal%,
375	and U/Th profiles at both sites (Figure 5). The co-occurrence of high productivity intervals (high
376	opal %, high G/B) and suboxic conditions, as indicated by high U/Th, supports the use of G/B as
377	a proxy of diatom productivity on the Chilean Margin.
378	
379	3.4 Reconstructed opal MAR
380	Previous studies along the Chilean Margin provide only short and relatively low-resolution
381	records of opal MAR (Chase et al., 2014; Hebbeln et al., 2002; Mohtadi et al., 2004; Romero et
382	al., 2006). To fill the research gap on sub-orbital-scale variability in diatom productivity, we
383	generated opal MAR records with G/B-derived opal% from Site J1007. Opal MAR was
384	calculated as:
385	$Opal MAR = opal\% * \rho_{dry} * LSR $ (Eq. 1)
386	where the opal% is calculated from the calibrated spectral G/B ratio, ρ_{dry} is the shipboard-
387	measured dry bulk density of the sediment (g/cm ³), and LSR is the linear sedimentation rate
388	(cm/kyr) as established by J1007 age model.
389	
390	In general, the sedimentary record of opal MAR shows large-amplitude variation at Site J1007
391	(Figure 6). Over the last 30 kyr, opal MAR of 2-3 g/cm ² /kyr were found before the LGM, which
392	decreased to ~1 g/cm ² /kyr during the deglaciation and into the Holocene. The opal flux records
393	from two adjacent sites (GeoB 3395-3 and ODP Site 1234) show a distinct peak of ~1.5
	from two adjacent sites (Ocob 5575-5 and ODF Site 1254) show a distinct peak of ~1.5

394 g/cm²/kyr during the LGM (Figure 6a; Chase et al., 2014; Romero et al., 2006). Further south,

395	opal MAR from ODP Site 1233 reaches a peak during the last glacial period (1.8 g/cm ² /kyr) and
396	decreases below 0.2 g/cm ² /kyr since 20 ka (Chase et al., 2014). Note that ²³⁰ Th normalization
397	was applied to opal MAR calculations at ODP Site 1234 and ODP Site 1233, but not at GeoB
398	3395-3. The opal MAR variation of Site J1007 shows higher levels with longer duration than
399	observed at the other three nearby sites. The difference may be due to the difference in the data
400	sources. The J1007 record is based on continuous high-resolution G/B ratio, whereas the other
401	records are based on low-resolution discrete wet analyses (Figure 5). In fact, comparing the latter
402	with our discrete samples from J1007 suggests a greater consistency among the record in terms
403	of regional changes in opal productivity. We note, however, that changes in sedimentation rate at
404	Site J1007 impart the largest influence on the opal MAR, and the broad peak reflects this.
405	
405 406	On a longer timescale, the most outstanding features of the Site J1007 opal MAR record are two
	On a longer timescale, the most outstanding features of the Site J1007 opal MAR record are two large peaks, one at ~50 ka and a secondary peak that we tentatively place at Termination II based
406	
406 407	large peaks, one at ~50 ka and a secondary peak that we tentatively place at Termination II based
406 407 408	large peaks, one at ~50 ka and a secondary peak that we tentatively place at Termination II based on benthic δ^{18} O tuning (Figure 3; Figure 6b). Similar opal flux maxima during MIS 3 have been
406 407 408 409	large peaks, one at ~50 ka and a secondary peak that we tentatively place at Termination II based on benthic δ^{18} O tuning (Figure 3; Figure 6b). Similar opal flux maxima during MIS 3 have been documented at the site of V19-30 (Figure 6b) and other sites in the EEP (e.g., TR163-31, ME-24)
406 407 408 409 410	large peaks, one at ~50 ka and a secondary peak that we tentatively place at Termination II based on benthic δ^{18} O tuning (Figure 3; Figure 6b). Similar opal flux maxima during MIS 3 have been documented at the site of V19-30 (Figure 6b) and other sites in the EEP (e.g., TR163-31, ME-24) (Dubois et al., 2010; Kienast et al., 2007; Hayes et al., 2011). These opal MAR changes along

415 Enhanced opal preservation related to EEP dust flux (Dubois et al., 2010) and increased

416 contribution of northern hemisphere waters with higher Si:N (Hayes et al., 2011; Kienast et al.,

417 2007) have been discussed as possible drivers for the 50 ka flux peak in the EEP. However, our

418	new opal MAR record from the mid-latitudes clearly refute both the EEP dust controlled or
419	Northern Hemisphere-sourced mechanisms. This common 50 ka event along the eastern Pacific
420	meridional transect, paired with a peak diatom productivity offshore Southeastern Australia,
421	implies a climatic connection between the high and low latitudes in the Southern Hemisphere,
422	likely through nutrient-rich intermediate waters exported from the Pacific-sector of the Southern
423	Ocean (Talley, 2013). Southern Ocean Intermediate Waters supply nitrogen, phosphorous, and
424	silicate to the global thermocline, thereby supporting up to 75% of tropical production (Ayers et
425	al., 2013; Sarmiento et al., 2004). The widely presented MIS 3 opal flux peak supports the idea
426	of enhanced Si supply to low latitudes (Hayes et al., 2011), depicting a clear route of "oceanic
427	tunneling" between the Antarctic and the equatorial Pacific (Pena et al., 2008; Spero and Lea,
428	2002). Moreover, the opal flux at Site J1007 is nearly ten times greater that of EEP records,
429	implying that mid-latitude continental margins could have served as an important sink for
430	leaking Si from the glacial Southern Ocean (Bradtmiller et al., 2009).

432 **4.** Conclusions

433 Diatom production plays a major role in the biological pump, especially in the Southern Ocean 434 and upwelling regions such as along the EEP and western margins of South American. 435 However, because measuring opal% in sediment is analytically very laborious, obtaining high 436 resolution sedimentary records of opal accumulation is practically impossible, especially in cores 437 with very high-sedimentation rates like those along the Chilean Margin. This study demonstrates 438 that using shipboard measurements of the spectral G/B ratio from newly recovered sediment 439 cores on the Chilean Margin, coupled with calibration of discrete samples using traditional 440 methods, can offer a new approach to generate high-resolution paleoceanographic records for

reconstructing glacial-interglacial changes in South Pacific diatom productivity. In more detail,we conclude the following:

The spectral green/blue (G/B) ratio in Chilean Margin sediments can serve as an efficient
shipboard stratigraphic tool, where other shipboard data (e.g., magnetic susceptibility) are
not conclusive.

446 2. The G/B records provide high-resolution proxy records for regional changes in diatom

447 productivity over time. The conversion of G/B data to opal% records requires site-specific

448 calibrations from discrete opal% analysis using traditional wet-alkaline digestive methods.

- 449 Offsets among sites in the G/B ratio to opal% relationships are likely related to lithological
- 450 effects. Nevertheless, the records suggest that, despite diagenetic effects on biogenic silica
- 451 and organic matter preservation, the G/B records may more reliably record
- 452 paleoproductivity, especially in very high sedimentation rates environments where their

453 concentration are diluted.

454 3. Continuous records of opal mass accumulation rate on the Chilean Margin over the last

455 ~150,000 years largely tracks existing records from the EEP, with a common opal flux peak

456 at ~50 ka. This suggests a climatic link between high and low latitudes in the South Pacific
457 through intermediate waters.

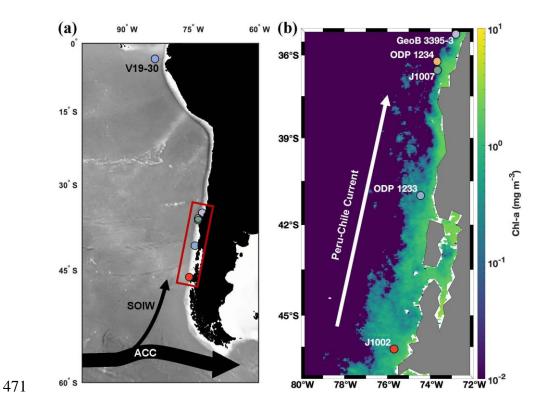
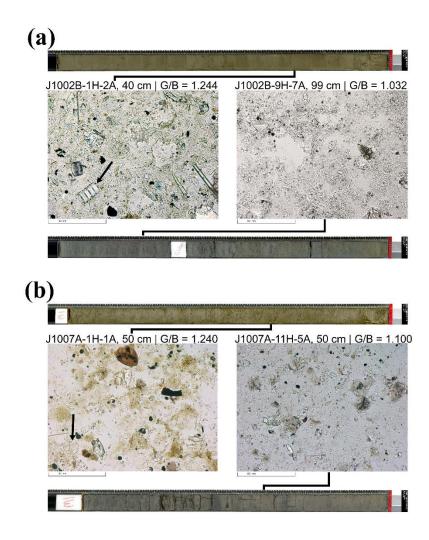

Core Name	Latitude	Longitude	Water Depth (m)	Reference
J1002	46° 4.30′	75° 41.23′W	1534	This study
J1007	36° 32.54′	73° 39.99′W	808	This study
ODP Site 1233	41°S	74°27′W	838	Chase et al, 2014
ODP Site 1234	36°14′S	73°41′W	1051	Chase et al, 2014
GeoB 3395-3	35°13′S	72°48.5′W	678	Romero et al., 2006
V19-30	3°22.98′	83°31.02′W	3091	Hayes et al., 2011

Table 1. Site locations in Figure 1


462 FIGURES AND CAPTIONS

463

Figure 1. Map of the South Pacific and study region. A. Core locations of J1002, J1007, and
other sites discussed in this paper (Table 1). Black arrows show the path of the Southern Ocean
Intermediate Water, the surface flow of the Antarctic Circumpolar Current, and the Peru-Chile
Current. B. Zoomed-in view of the Chilean Margin (red box in A), with core locations
superimposed on mean annual sea-surface chlorophyll-a concentration. J1002 (red), ODP Site
1233 (light blue), J1007 (green), ODP Site 1234 (orange), and GeoB 3395-3 (light purple) are
shown. Chlorophyll-a data are from the MODIS-Aqua Level 3 database.

473 Figure 2. Core photos and smear slide photos representing intervals with high and low G/B 474 values Site J1002 (A) and Site J1007 (B). Core photos were taken by line-scan camera on SHIL 475 and smear slide photos under microscope during Expedition 379T. Greener sedimentary intervals 476 (top core sections in both panels) and bluer sedimentary intervals (bottom core sections in both 477 panels) for each site are evident from visual inspection. In both A and B, smear slide photos in 478 the left panels show intervals with abundant diatom presence, corresponding to greener 479 sedimentary intervals, whereas the right panel smear slide images reflect low diatom abundance 480 intervals from bluer intervals. Black arrows show typical diatoms observed in smear slides.

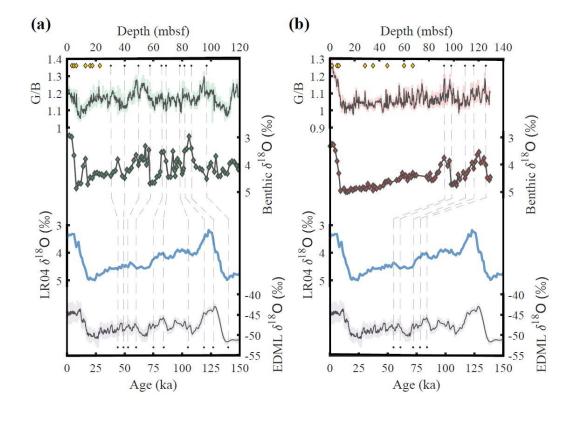
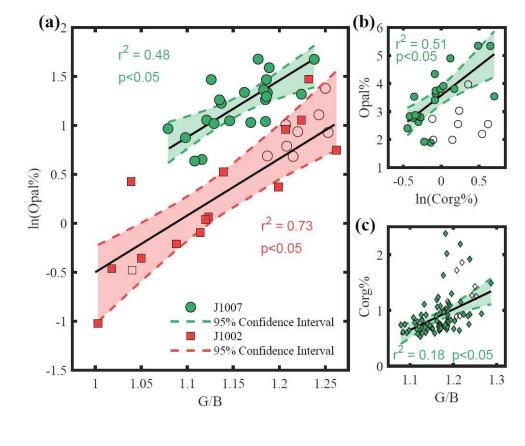
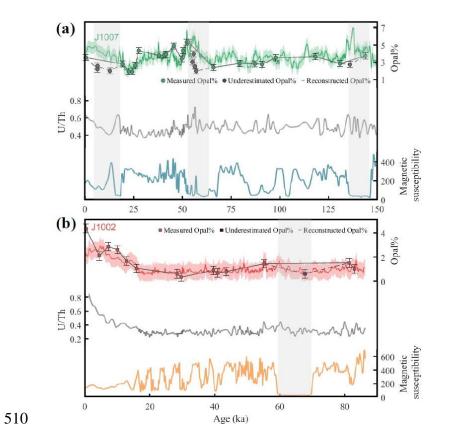
482 Figure 3. Stratigraphic correlations between Antarctic ice core δ^{18} O (EDML, EPICA

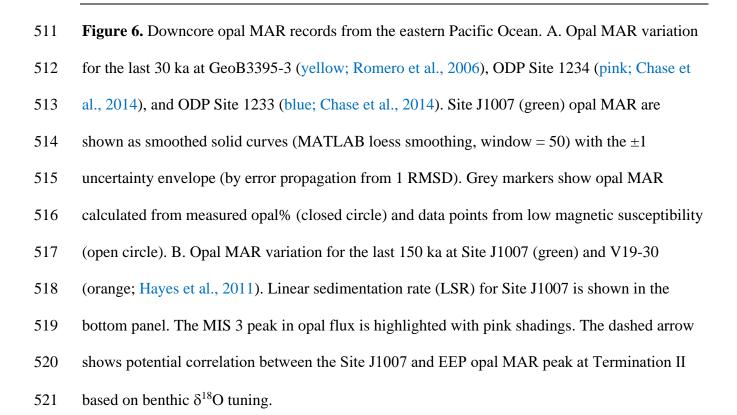
483 Community Members, 2006), LR04 benthic stack (Lisiecki and Raymo, 2005), the G/B, and

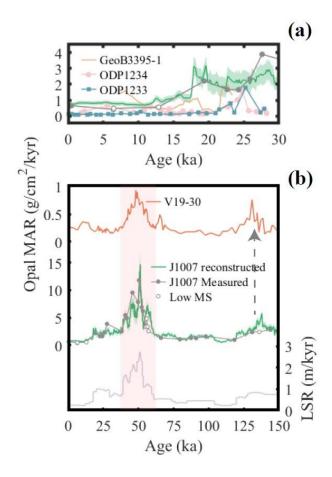
484 benthic δ^{18} O for Site J1007 (A) and Site J1002 (B). Age control points from ¹⁴C ages are

485 displayed (yellow diamonds). Tie points for visual correlation between benthic δ^{18} O and LR04

486 are denoted by vertical dashed lines.


Figure 4. Calibration of the G/B proxy. A. Correlation between opal% and the spectral G/B ratio
for Site J1002 (red squares) and Site J1007 (green circles). B. Correlation between opal% and
Corg% for Site J1007. C. Correlation between Corg% and spectral G/B ratio for Site J1007. Open
symbols in all panels represent potentially underestimated opal% data points from low magnetic
susceptibility intervals. Shaded areas represent the 95% confidence interval for each regression.



498	Figure 5. Downcore opal%, U/Th, and magnetic susceptibility records for Site J1007 (A) and
499	Site J1002 (B). Reconstructed opal% for the last ~150 ka at J1007 (green) and 90 ka at J1002
500	(red) are shown as smoothed solid curves (MATLAB loess smoothing, window = 50) with the ± 1
501	RMSD envelope. Measured opal% (green circles for J1007, red squares for J1002) are
502	superimposed on each reconstructed record. Grey symbols represented potentially
503	underestimated opal% data points from low magnetic susceptibility intervals. The standard error
504	of opal% measurements (0.35%, based on 14 duplicate measurements) was shown as error bar on
505	each data point. Note that we reject those from the calibrations but this does not affect our
506	interpretations of the G/B records. U/Th records are presented as solid grey lines. Magnetic
507	susceptibility at Site J1007 (blue) and Site J1002 (orange) are shown as smoothed solid curves
508	(MATLAB loess smoothing, window = 50). Vertical grey bars denote intervals of low MS
509	coinciding with underestimated opal% data at each site.

523 Acknowledgments

- 524 We would like to thank the captain and crew of the D/V JOIDES Resolution and JRSO for their
- 525 tireless efforts during the inaugural JR100 expedition. C.L., V.J.C., and Y.R. designed the
- 526 experiment. C.L. and V.J.C. carried out shore-based geochemical analyses, prepared figures, and
- 527 wrote the manuscript. S.C.B., Y.R., and L.B.C. organized and managed the expedition. J.D.W.
- 528 co-led shipboard stratigraphic efforts with G/B. Expedition 379T Scientists assisted in the
- 529 collection of G/B data and interpretation of shipboard sedimentological data. All authors
- 530 contributed to the interpretation of shipboard data. The expedition was funded by NSF grant
- 531 OCE-1756241. This study was funded by NSF grant OCE-1756241 to S.C.B. and Y.R. C.L. was
- 532 supported by the Chinese Scholarship Council. V.J.C. was supported by the NETL Methane
- 533 Hydrates Fellowship Program.

534 **Open Research**

- All data used for this study are available in the supporting information (for peer review), open
- 536 access database, and cited references.

537

[†]Expedition 379T Scientists (those not listed above): Ivano W. Aiello¹, Alejandro Avila²,
William Biggs³, Christopher D. Charles⁴, Anson H. Cheung⁵, Kimberly deLong⁶, Isabel A. Dove⁷,
Xiaojing Du^{5,8}, Emily R. Estes⁹, Ursula Fuentes¹⁰, Cristina García-Lasanta¹¹, Steven L.
Goldstein¹², Anna Golub¹³, Julia Rieke Hagemann¹⁴, Robert G. Hatfield¹⁵, Laura L. Haynes¹⁶,
Anya V. Hess¹⁷, Nil Irvali¹⁸, Yael Kiro¹⁹, Minda M. Monteagudo²⁰, Jonathan E. Lambert¹²,
William M. Longo^{21,22}, Sarah McGrath⁵, Hailey Riechelson³, Rebecca S. Robinson⁷, John Sarao²³,
Adam D. Sproson²⁴, Shawn Taylor²⁵, Yusuke Yokoyama²⁶, and Siyao M. Yu¹⁷.

545

546 ¹Moss Landing Marine Laboratories, Moss Landing, California, USA. ²Center for Oceanographic 547 Research in the Eastern South Pacific (FONDAP-COPAS), University of Concepción, 548 Concepción, Chile. ³Department of Marine and Coastal Sciences, Rutgers University, New 549 Brunswick, New Jersey, USA. ⁴Scripps Institution of Oceanography, University of California, San Diego, La Jolla, California, USA. ⁵Department of Earth, Environmental, and Planetary Sciences, 550 Brown University, Providence, Rhode Island, USA. 6Ocean Sciences Department, University of 551 552 California, Santa Cruz, Santa Cruz, California, USA. ⁷University of Rhode Island Graduate School of Oceanography, Narragansett, Rhode Island, USA. 8Institute at Brown for Environment and 553 554 Society, Providence, Rhode Island, USA. 9International Ocean Discovery Program, Texas A&M

University, College Station, Texas, USA. ¹⁰Hydrographic and Oceanographic Services, Chilean 555 Navy, Valparaíso, Chile. ¹¹Geology Department, Western Washington University, Bellingham, 556 Washington, USA. ¹²Lamont-Doherty Earth Observatory, Columbia University, Palisades, New 557 558 York, USA. ¹³Department of Geology and Environmental Geoscience, Lafayette College, Easton, 559 Pennsylvania, USA.¹⁴Department of Marine Geology and Paleontology, Alfred Wegener Institute Helmholtz Center for Polar and Marine Research, Bremerhaven, Germany. ¹⁵Department of 560 561 Geological Sciences, University of Florida, Gainesville, Florida, USA. ¹⁶Department of Earth Science and Geography, Vassar College, Poughkeepsie, New York, USA. ¹⁷Department of Earth 562 563 and Planetary Sciences, Rutgers University, New Brunswick, New Jersey, USA. ¹⁸Department of 564 Earth Science and Bjerknes Centre for Climate Research, University of Bergen, Bergen, Norway. ¹⁹Department of Earth and Planetary Sciences, Weizmann Institute of Science, Rehovot, Israel. 565 566 ²⁰School of Earth and Atmospheric Sciences, Georgia Institute of Technology, Atlanta, Georgia, USA. ²¹Department of Environmental Studies, Macalester College, Saint Paul, Minnesota, USA. 567 ²²Division of Environmental Health Sciences, University of Minnesota, Minneapolis, Minnesota, 568 USA. ²³College of Geosciences, Texas A&M University, College Station, Texas, USA. 569 ²⁴Biogeochemistry Research Center, JAMSTEC, Yokosuka, Japan. ²⁵Department of Geological 570 Sciences and Environmental Studies, Binghamton University, Binghamton, New York, USA. 571 572 ²⁶Atmosphere and Ocean Research Institute, The University of Tokyo, Chiba, Japan.

574 **References**

- Abrantes, F., Lopes, C., Mix, A., & Pisias, N. (2007). Diatoms in Southeast Pacific surface
 sediments reflect environmental properties. Quaternary Science Reviews, 26(1-2), 155-169.
 doi:10.1016/j.quascirev.2006.02.022
- Anderson, R. F., Ali, S., Bradtmiller, L. I., Nielsen, S. H., Fleisher, M. Q., Anderson, B. E., &
 Burckle, L. H. (2009). Wind-driven upwelling in the Southern Ocean and the deglacial rise
 in atmospheric CO2. Science, 323(5920), 1443-1448. doi:10.1126/science.1167441
- Antoine, D., & Morel, A. (1996). Oceanic primary production: 1. Adaptation of a spectral light photosynthesis model in view of application to satellite chlorophyll observations. Global
 Biogeochemical Cycles, 10(1), 43-55. doi:10.1029/95GB02831
- Ayers, J. M., & Strutton, P. G. (2013). Nutrient variability in Subantarctic Mode Waters forced by
 the Southern Annular Mode and ENSO. Geophysical Research Letters, 40(13), 3419-3423.
 doi:10.1002/grl.50638
- Barbante, C., Barnola, J.-M., Becagli, S., Beer, J., Bigler, M., Boutron, C., . . . Chappellaz, J.
 (2006). One-to-one coupling of glacial climate variability in Greenland and Antarctica.
 Nature, 444(7116), 195-198.
- Barnes, C., & Cochran, J. (1990). Uranium removal in oceanic sediments and the oceanic U
 balance. Earth and Planetary Science Letters, 97(1-2), 94-101.
- Bova, S.C., Rosenthal, Y., Childress, L.B., and Expedition 379T Scientists (2021), Digging Deeper
 with the JR100: Extending high resolution paleoclimate records from the Chilean Margin to
 the Eemian. Pers. commun., https://zenodo.org/record/5553428#.YV4q6y2cbIE
- Bradtmiller, L. I., Anderson, R. F., Fleisher, M. Q., & Burckle, L. H. (2009). Comparing glacial
 and Holocene opal fluxes in the Pacific sector of the Southern Ocean. Paleoceanography,
 24(2), n/a-n/a. doi:10.1029/2008pa001693
- Brzezinski, M. A. (2002). A switch from Si(OH)4to NO3-depletion in the glacial Southern Ocean.
 Geophysical Research Letters, 29(12). doi:10.1029/2001gl014349

- Charles, C. D., Froelich, P. N., Zibello, M. A., Mortlock, R. A., & Morley, J. J. (1991). Biogenic
 opal in Southern Ocean sediments over the last 450,000 years: Implications for surface water
 chemistry and circulation. Paleoceanography, 6(6), 697-728. doi:10.1029/91PA02477
- 603 Chase, Z., Kohfeld, K. E., & Matsumoto, K. (2015). Controls on biogenic silica burial in the
 604 Southern Ocean. Global Biogeochemical Cycles, 29(10), 1599-1616.
 605 doi:10.1002/2015gb005186
- 606 Chase, Z., McManus, J., Mix, A. C., & Muratli, J. (2014). Southern-ocean and glaciogenic
 607 nutrients control diatom export production on the Chile margin. Quaternary Science Reviews,
 608 99, 135-145. doi:10.1016/j.quascirev.2014.06.015
- Clementi, V. J., & Sikes, E. L. (2019). Southwest Pacific Vertical Structure Influences on Oceanic
 Carbon Storage Since the Last Glacial Maximum. Paleoceanography and Paleoclimatology,
 34(5), 734-754. doi:10.1029/2018PA003501
- 612 Conley, D. J., & Schelske, C. L. (2001). Biogenic Silica. In J. P. Smol, H. J. B. Birks, W. M. Last,
 613 R. S. Bradley, & K. Alverson (Eds.), Tracking Environmental Change Using Lake Sediments:
 614 Terrestrial, Algal, and Siliceous Indicators (pp. 281-293). Dordrecht: Springer Netherlands.
- de Bar, M. W., Stolwijk, D. J., McManus, J. F., Sinninghe Damsté, J. S., & Schouten, S. (2018).
 A Late Quaternary climate record based on long-chain diol proxies from the Chilean margin.
 Climate of the Past, 14(11), 1783-1803. doi:10.5194/cp-14-1783-2018
- De Vleeschouwer, D., Dunlea, A. G., Auer, G., Anderson, C. H., Brumsack, H., de Loach, A., ...
 Jang, K. (2017). Quantifying K, U, and T h contents of marine sediments using shipboard
 natural gamma radiation spectra measured on DV JOIDES R esolution. Geochemistry,
 Geophysics, Geosystems, 18(3), 1053-1064.
- DeMaster, D. J., 1979. The marine budgets of silica and Ph.D. Dissertation, Yale University, 308
 pp.
- Dubois, N., Kienast, M., Kienast, S., Calvert, S. E., François, R., & Anderson, R. F. (2010).
 Sedimentary opal records in the eastern equatorial Pacific: It is not all about leakage. Global
 Biogeochemical Cycles, 24(4), n/a-n/a. doi:10.1029/2010gb003821
- Hayes, C. T., Anderson, R. F., & Fleisher, M. Q. (2011). Opal accumulation rates in the equatorial
 Pacific and mechanisms of deglaciation. Paleoceanography, 26(1).
 doi:10.1029/2010pa002008
- Hebbeln, D., Lamy, F., Mohtadi, M., & Echtler, H. (2007). Tracing the impact of glacialinterglacial climate variability on erosion of the southern Andes. Geology, 35(2).
 doi:10.1130/g23243a.1
- Hebbeln, D., Marchant, M., & Wefer, G. (2002). Paleoproductivity in the southern Peru-Chile
 Current through the last 33 000 yr. Marine Geology, 186(3-4), 487-504. doi:Pii S0025-3227(02)00331-6
- Hebbeln, D., Marchant, M., Freudenthal, T., & Wefer, G. (2000). Surface sediment distribution
 along the Chilean continental slope related to upwelling and productivity. Marine Geology,
 164(3-4), 119-137. doi:10.1016/s0025-3227(99)00129-2
- Henderson, G. M., & Anderson, R. F. (2003). The U-series toolbox for paleoceanography.
 Reviews in mineralogy and geochemistry, 52(1), 493-531.
- Heusser, L., Heusser, C., Mix, A., & McManus, J. (2006). Chilean and Southeast Pacific
 paleoclimate variations during the last glacial cycle: directly correlated pollen and δ180
 records from ODP Site 1234. Quaternary Science Reviews, 25(23-24), 3404-3415.
 doi:10.1016/j.quascirev.2006.03.011

- Jouzel, J., Masson-Delmotte, V., Cattani, O., Dreyfus, G., Falourd, S., Hoffmann, G., . . . Wolff,
 E. W. (2007). Orbital and Millennial Antarctic Climate Variability over the Past 800,000
 Years. Science, 317(5839), 793. doi:10.1126/science.1141038
- Kaiser, J., Lamy, F., Arz, H. W., & Hebbeln, D. (2007). Dynamics of the millennial-scale sea surface temperature and Patagonian Ice Sheet fluctuations in southern Chile during the last 70kyr (ODP Site 1233). Quaternary International, 161(1), 77-89. doi:10.1016/j.quaint.2006.10.024
- Kienast, S. S., Kienast, M., Mix, A. C., Calvert, S. E., & François, R. (2007). Thorium-230
 normalized particle flux and sediment focusing in the Panama Basin region during the last
 30,000 years. Paleoceanography, 22(2). doi:10.1029/2006pa001357
- Kuczynska, P., Jemiola-Rzeminska, M., & Strzalka, K. (2015). Photosynthetic Pigments in
 Diatoms. Marine Drugs, 13(9). doi:10.3390/md13095847
- Lamy, F., Hebbeln, D., & Wefer, G. (1998). Terrigenous sediment supply along the Chilean
 continental margin: modern regional patterns of texture and composition. Geologische
 Rundschau, 87(3), 477-494. doi:10.1007/s005310050223
- Lamy, F., Kaiser, J., Ninnemann, U., Hebbeln, D., Arz, H. W., & Stoner, J. (2004). Antarctic
 timing of surface water changes off Chile and Patagonian ice sheet response. Science,
 304(5679), 1959-1962. doi:10.1126/science.1097863
- Lisiecki, L. E., & Raymo, M. E. (2005). A Pliocene-Pleistocene stack of 57 globally distributed
 benthic δ18O records. Paleoceanography, 20(1), n/a-n/a. doi:10.1029/2004pa001071
- Lopes dos Santos, R. A., Wilkins, D., De Deckker, P., & Schouten, S. (2012). Late Quaternary
 productivity changes from offshore Southeastern Australia: A biomarker approach.
 Palaeogeography, Palaeoclimatology, Palaeoecology, 363-364, 48-56.
 doi:10.1016/j.palaeo.2012.08.013
- López-Otálvaro, G.-E., Flores, J.-A., Sierro, F. J., & Cacho, I. (2008). Variations in coccolithophorid production in the Eastern Equatorial Pacific at ODP Site 1240 over the last seven glacial-interglacial cycles. Marine Micropaleontology, 69(1), 52-69. doi:10.1016/j.marmicro.2007.11.009
- Lougheed, B. C., & Obrochta, S. P. (2019). A Rapid, Deterministic Age-Depth Modeling Routine
 for Geological Sequences With Inherent Depth Uncertainty. Paleoceanography and
 Paleoclimatology, 34(1), 122-133. doi:10.1029/2018pa003457
- Matsumoto, K., Sarmiento, J. L., & Brzezinski, M. A. (2002). Silicic acid leakage from the
 Southern Ocean: A possible explanation for glacial atmosphericpCO2. Global
 Biogeochemical Cycles, 16(3), 5-1-5-23. doi:10.1029/2001gb001442
- McManus, J., Berelson, W. M., Klinkhammer, G. P., Hammond, D. E., & Holm, C. (2005).
 Authigenic uranium: Relationship to oxygen penetration depth and organic carbon rain.
 Geochimica et Cosmochimica Acta, 69(1), 95-108. doi:10.1016/j.gca.2004.06.023
- McManus, J., Berelson, W. M., Severmann, S., Poulson, R. L., Hammond, D. E., Klinkhammer,
 G. P., & Holm, C. (2006). Molybdenum and uranium geochemistry in continental margin
 sediments: Paleoproxy potential. Geochimica et Cosmochimica Acta, 70(18), 4643-4662.
 doi:10.1016/j.gca.2006.06.1564
- Mix, A. C., Rugh, W., Pisias, N. G., & Veirs, S. (1992). Color reflectance spectroscopy: A tool for
 rapid characterization of deep-sea sediments. Paper presented at the Proceedings of the Ocean
 Drilling Program, Part A, Initial report.

- Mohtadi, M., & Hebbeln, D. (2004). Mechanisms and variations of the paleoproductivity off
 northern Chile (24°S-33°S) during the last 40,000 years. Paleoceanography, 19(2), n/a-n/a.
 doi:10.1029/2004pa001003
- Mohtadi, M., Rossel, P., Lange, C. B., Pantoja, S., Böning, P., Repeta, D. J., . . . Brumsack, H.-J.
 (2008). Deglacial pattern of circulation and marine productivity in the upwelling region off
 central-south Chile. Earth and Planetary Science Letters, 272(1-2), 221-230.
 doi:10.1016/j.epsl.2008.04.043
- Mortlock, R. A., & Froelich, P. N. (1989). A simple method for the rapid determination of biogenic
 opal in pelagic marine sediments. Deep Sea Research Part A. Oceanographic Research
 Papers, 36(9), 1415-1426. doi:https://doi.org/10.1016/0198-0149(89)90092-7
- Nederbragt, A. J., Thurow, J. W., & Merrill, R. B. (2000). Color records from the California
 margin: Proxy indicators for sediment composition and climatic change. Proceedings of the
 Ocean Drilling Program. Scientific results, 167, 319-329.
- Penkrot, M. L., Jaeger, J. M., Cowan, E. A., St-Onge, G., & LeVay, L. (2018). Multivariate
 modeling of glacimarine lithostratigraphy combining scanning XRF, multisensory core
 properties, and CT imagery: IODP Site U1419. Geosphere, 14(4), 1935-1960.
- Peterson, L. C., Haug, G. H., Hughen, K. A., & Röhl, U. (2000). Rapid changes in the hydrologic
 cycle of the tropical Atlantic during the last glacial. Science, 290(5498), 1947-1951.
- Piola, A. R., & Georgi, D. T. (1982). Circumpolar properties of Antarctic intermediate water and
 Subantarctic Mode Water. Deep Sea Research Part A. Oceanographic Research Papers, 29(6),
 687-711. doi:https://doi.org/10.1016/0198-0149(82)90002-4
- Reimer, P. J., Austin, W. E. N., Bard, E., Bayliss, A., Blackwell, P. G., Bronk Ramsey, C., ...
 Talamo, S. (2020). The IntCal20 Northern Hemisphere Radiocarbon Age Calibration Curve
 (0–55 cal kBP). Radiocarbon, 62(4), 725-757. doi:10.1017/rdc.2020.41
- Reuss, N. S., Anderson, N. J., Fritz, S. C., & Simpson, G. L. (2013). Responses of microbial
 phototrophs to late-Holocene environmental forcing of lakes in south-west Greenland.
 Freshwater Biology, 58(4), 690-704. doi:10.1111/fwb.12073
- Reuss, N., Conley, D. J., & Bianchi, T. S. (2005). Preservation conditions and the use of sediment
 pigments as a tool for recent ecological reconstruction in four Northern European estuaries.
 Marine Chemistry, 95(3), 283-302. doi:https://doi.org/10.1016/j.marchem.2004.10.002
- Robinson, R. S., Mix, A., & Martinez, P. (2007). Southern Ocean control on the extent of
 denitrification in the southeast Pacific over the last 70ka. Quaternary Science Reviews, 26(12), 201-212. doi:10.1016/j.quascirev.2006.08.005
- Romero, O. E., Kim, J.-H., & Hebbeln, D. (2017). Paleoproductivity evolution off central Chile
 from the Last Glacial Maximum to the Early Holocene. Quaternary Research, 65(3), 519525. doi:10.1016/j.yqres.2005.07.003
- Romero, O., & Hebbeln, D. (2003). Biogenic silica and diatom thanatocoenosis in surface
 sediments below the Peru–Chile Current: controlling mechanisms and relationship with
 productivity of surface waters. Marine Micropaleontology, 48(1), 71-90.
 doi:https://doi.org/10.1016/S0377-8398(02)00161-5
- Sallée, J.-B., Speer, K., Rintoul, S., & Wijffels, S. (2010). Southern Ocean Thermocline
 Ventilation. Journal of Physical Oceanography, 40(3), 509-529. doi:10.1175/2009JPO4291.1
- Sarmiento, J. L., Gruber, N., Brzezinski, M., & Dunne, J. (2004). High-latitude controls of
 thermocline nutrients and low latitude biological productivity. Nature, 427(6969), 56-60.
- Sigman, D. M., & Boyle, E. A. (2000). Glacial/interglacial variations in atmospheric carbon
 dioxide. Nature, 407(6806), 859-869. doi:Doi 10.1038/35038000

- Sloyan, B. M., & Rintoul, S. R. (2001). The Southern Ocean Limb of the Global Deep Overturning
 Circulation*. Journal of Physical Oceanography, 31(1), 143-173. doi:10.1175/15200485(2001)031<0143:Tsolot>2.0.Co;2
- Stauber, J. L., & Jeffrey, S. W. (1988). PHOTOSYNTHETIC PIGMENTS IN FIFTY-ONE
 SPECIES OF MARINE DIATOMS1. Journal of Phycology, 24(2), 158-172.
 doi:10.1111/j.1529-8817.1988.tb04230.x
- 741 Strub, P. T. (1998). Coastal ocean circulation off Western South America. The Global Coastal
 742 Ocean. Regional Studies and Syntheses, 273-315. Retrieved from
- 743 https://ci.nii.ac.jp/naid/20001225871/en/
- Stuut, J. B. W., Marchant, M., Kaiser, J., Lamy, F., Mohtadi, M., Romero, O., & Hebbeln, D.
 (2006). The late quaternary paleoenvironment of Chile as seen from marine archives. Geogr.
 Helv., 61(2), 135-151. doi:10.5194/gh-61-135-2006
- Talley, L. (2013). Closure of the Global Overturning Circulation Through the Indian, Pacific, and
 Southern Oceans: Schematics and Transports. Oceanography, 26(1), 80-97.
 doi:10.5670/oceanog.2013.07
- Toggweiler, J. R., Russell, J. L., & Carson, S. R. (2006). Midlatitude westerlies, atmospheric CO2,
 and climate change during the ice ages. Paleoceanography, 21(2), n/a-n/a.
 doi:10.1029/2005pa001154

Figure1.

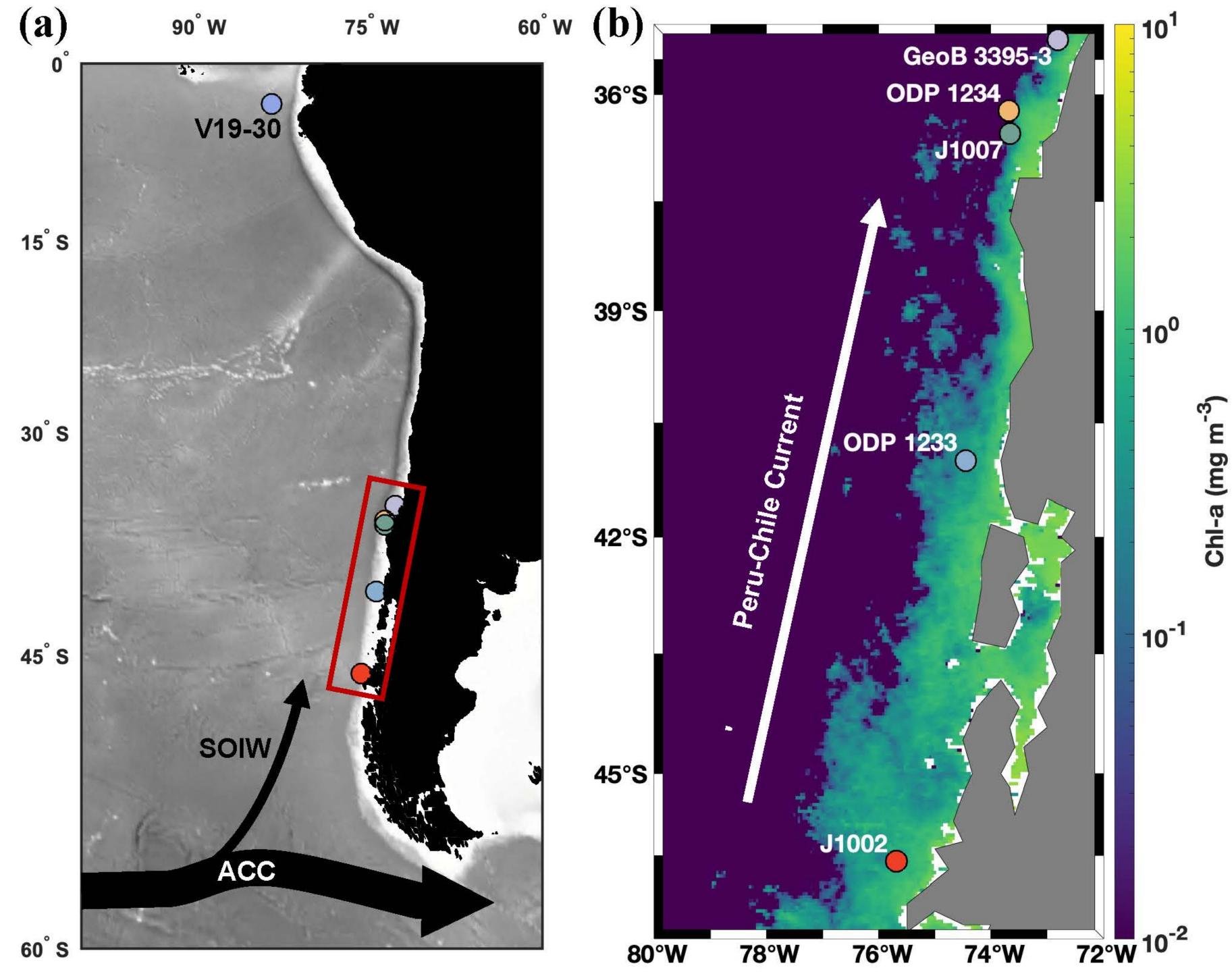


Figure2.

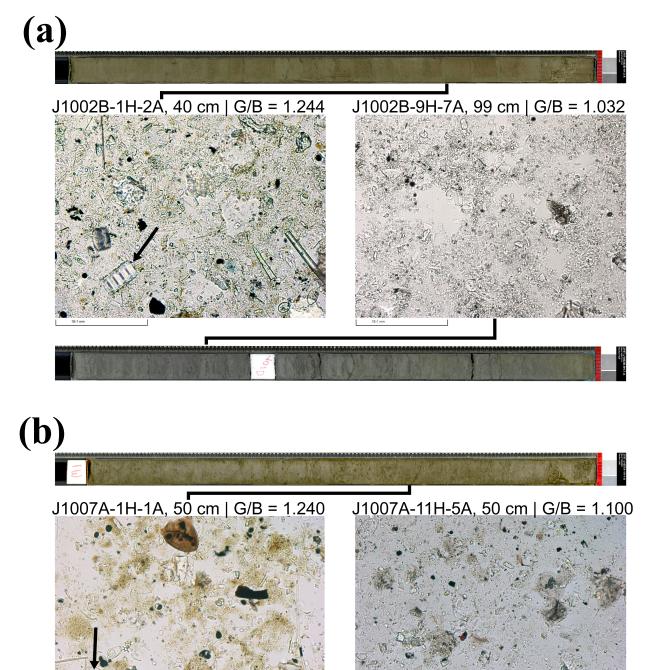


Figure3.

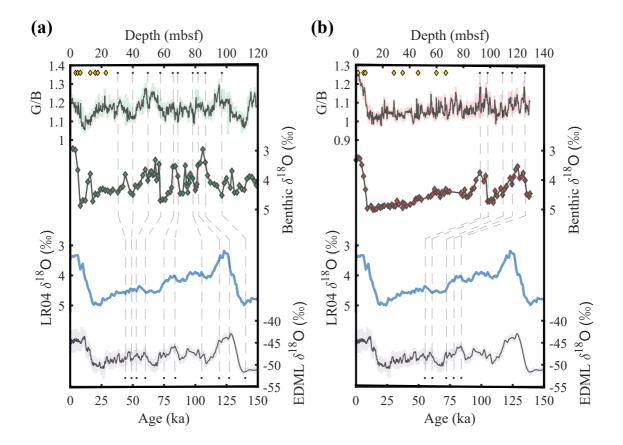


Figure4.

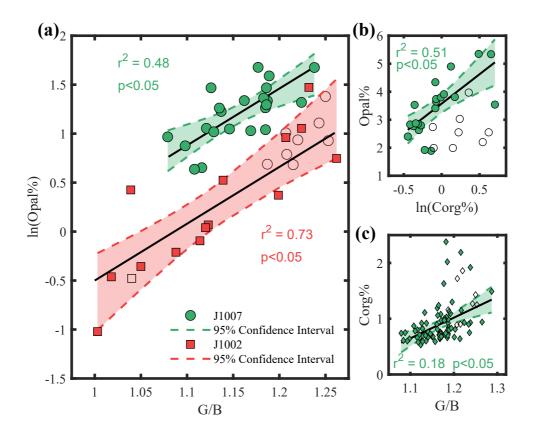


Figure5.

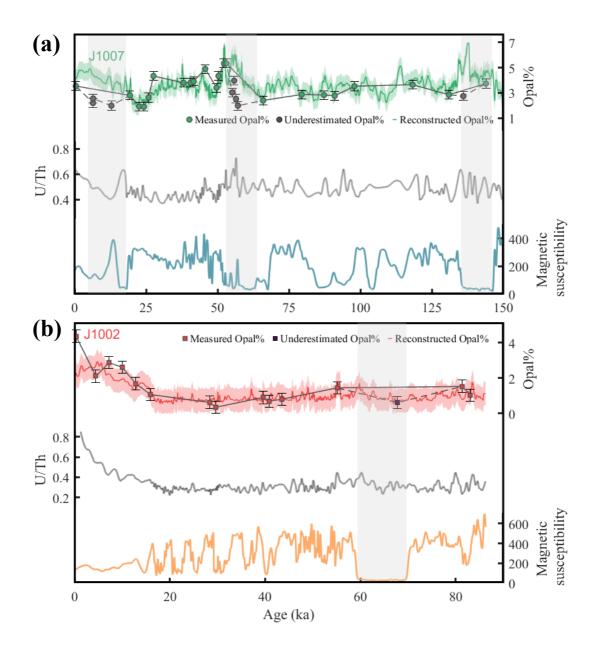
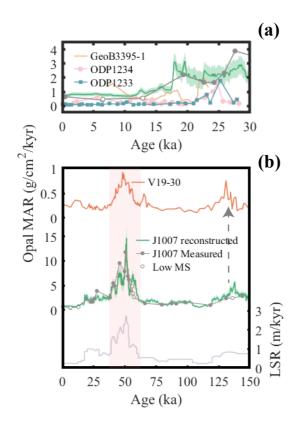



Figure6.

@AGUPUBLICATIONS

[Geochemistry, Geophysics, Geosystems]

Supporting Information for

[The sediment green-blue color ratio as a proxy for biogenic silica productivity along the Chilean Margin.]

[Chen Li^{1,2*}, Vincent J. Clementi^{1*}, Samantha C. Bova^{1,3}, Yair Rosenthal^{1,4}, Laurel B. Childress⁵, James D. Wright⁴, Zhimin Jian², and Expedition 379T Scientists[†]]

¹Department of Marine and Coastal Sciences, Rutgers University, New Brunswick, New Jersey, USA

²State Key Laboratory of Marine Geology, Tongji University, Shanghai, China

³Present address: Department of Geological Sciences, San Diego State University, San Diego, California, USA

⁴Department of Earth and Planetary Sciences, Rutgers University, New Brunswick, New Jersey, USA

⁵International Ocean Discovery Program, Texas A&M University, College Station, Texas, USA

†A list of authors and affiliations appears at the end of the paper]

Contents of this file

Text S1 to S2 Figures S1 to S3 Tables S1 to S4

Additional Supporting Information (Files uploaded separately)

Captions for data set S1 to S2 (upload as separate files)

Introduction

Cores J1002 and J1007 were recovered from the Chilean Margin during the JR100 cruise (D/V JOIDES Resolution Expedition 379T) in 2019. All the experiments conducted in this study were performed at Department of Marine and Coastal Sciences, Rutgers University. This supporting information includes detailed description of biogenic silica measurement, data processing procedure and control points for J1002 and J1007 age models.

Text S1.

Biogenic Silica Measurement

In general, sediment samples were prepared with typical wet-alkaline digestion including "mineral correction" steps modified after Conley et al. (2001). Afterward, dissolved silica was measured by the molybdate blue spectrophotometric method using a modified procedure adapted from Mortlock et al. (1989).

A total of 22 and 41 samples were analyzed for J1002 and J1007, respectively. An addition of three J1001, six J1005 and four J1008 samples were measured. About 250 mg of freeze-dried sediments were homogenized using a mortar and pastel and placed in acid-cleaned 50 mL centrifuge tubes. Sediments were digested using 40 mL of 1 mol/L Na₂CO₃ solution in an 80 °C water bath. The tubes were shaken very quickly every 20 minutes for complete digestion. After 3 hours of digestion, the tubes were dipped in cool water for 5 minutes to stop the chemical reaction and then centrifuged for 2 minutes at 4200 rpm. Subsamples of 1 mL were taken from the upper solvent. Tubes were returned to the 80 °C water bath after vortex and sonication (1 minute). The subsampling procedure was repeated at the 4 and 5 h our marks of digestion time.

The molybdate reagent and the reducing reagent were prepared before the molybdate blue measurement. About 4.0 g of ammonium paramolybdate and 12 mL of concentrated HCl were dissolved in Dl water, with a total volume of 500 mL. This solvent was further diluted with Dl water (2:5/v:v) to the make molybdate reagent (pH ~ 1.2). The reducing reagent was a mixture of metol-sulfite solution (6 g of anhydrous sodium sulfite and 10 g of metol in 500 mL Dl water), saturated oxalic acid solution, 50% sulphuric acid solution and Dl water (5:3:3:4/v:v:v).

 $200 \ \mu$ L of the aforementioned subsample was pipetted into a 30 mL acid-cleaned plastic bottle containing 7 mL of molybdate reagent and mixed immediately. After 20 min, 3 mL of reducing reagent were added to the bottle and mixed rapidly. The bottles were capped and left to sit in the laminar flow hood for more than 12 hours for complete reduction.

Finally, the absorbance of the solution was measured in a 1-cm cell with an Algilent Cary 60 UV-Vis spectrophotometer peaked at 812 nm. Two operational blanks that went through digestion and molybdate blue procedures were analyzed for each batch.

Text S2.

Data Processing and Evaluation

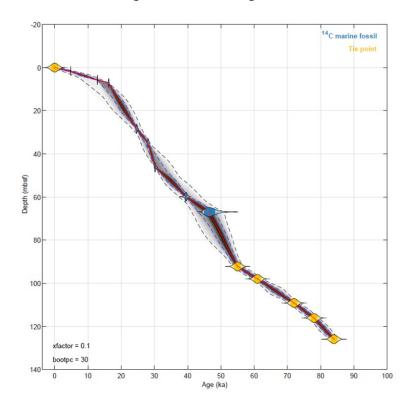
The weight percentage of biogenic silica was calculated as:

SiOpal% = 112.4*F*(As-Ao)/M

where F is the slope resulted from standard calibration (F=2.763194); As and Ao refers to the absorbance of each subsample and operational blank, respectively; M stands for the weight of each sample in mg.

Percent biogenic opal was calculated as:

opal% = 2.4* SiOpal%


The "mineral correction" procedures were introduced to calibrate the contribution of mineral silicates. This continuous measurement requires a level of sophistication because subsampling is time sensitive and may result in possible mineral reprecipitation. During an ideal digestion, diatoms were quickly dissolved within 2 hours, while mineral silicates were slowly digested throughout the whole experiment.

A linear regression ($r^2 > 0.6$) was made for each sample based on the measured opal% of three subsamples versus digestion time, and the extrapolation to the intercept was taken as the corrected opal% for each sample (DeMaster, 1981). Corrected opal% show remarkable correlation ($r^2=0.98$) with 3-hour measured opal% for five Expedition 379T sites along the Chilean Margin (representing both open ocean and slope settings) (Figure S1, Table S1). It can be inferred that the contribution of mineral silicates is consistent for all samples under our digestion settings. Thus, the final opal% could be calculated as 3-hour measured opal% minus 0.3. A total of 14 duplicates was measured for the wet-alkaline digestion, yielding a standard error of 0.35%.

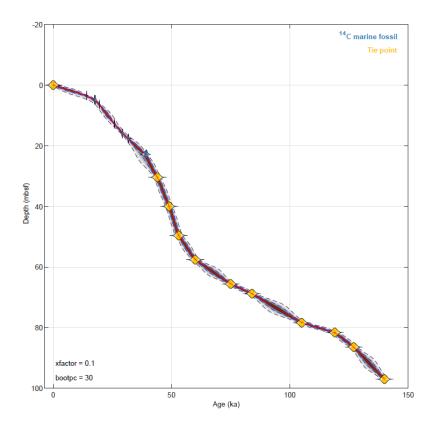

Prominent low values of magnetic susceptibility were found in certain intervals of J1002 and J1007. These intervals were thought to be affected by possible reworking or dissolution. Eight samples from J1007 and one sample from J1002 at these intervals were thought to have underestimated opal contents (Table S2).

Figure S1. Mineral corrected opal% show remarkable correlation (r^2 =0.98) with 3-hour measured opal% at five sites along the Chilean Margin.

Figure S2. Depth-age relationship of Site J1002 from Undatable program (Lougheed et al., 2019). Yellow marks show the tie points of visual correlation between J1002 benthic *Uvigerina* spp. δ^{18} O and LR04 benthic stack (Lisiecki and Raymo, 2005). Blue marks are the ¹⁴C ages derived from planktonic foraminifera (*Globigerina bulloides*).

Figure S3. Depth-age relationship of Site J1007 from Undatable program (Lougheed et al., 2019). Yellow marks show the tie points of visual correlation between J1007 benthic *Uvigerina* spp. δ^{18} O and LR04 benthic stack (Lisiecki and Raymo, 2005). Blue marks are the ¹⁴C ages derived from planktonic foraminifera (*Globigerina bulloides*).

SITE	mineral corrected opal%	opal%_3-hour results		
J1001	0.75	1.3		
J1001	1.98	2.1		
J1001	2.54	3.05		
J1002	0.18	0.6		
J1002	0.47	0.92		
J1002	0.58	1.09		
J1002	0.65	0.82		
J1002	0.69	0.91		
J1002	0.79	0.93		
J1002	0.9	1.11		
J1002	0.91	1.34		
J1002	1.21	1.38		
J1002	1.24	1.42		
J1002	1.43	1.57		
J1002	1.46	1.62		

 Table S1. Mineral corrected opal% vs 3-hour measured opal%.

		1		
J1002	1.71	1.83		
J1002	1.94	1.99		
J1002	2.19	2.41		
J1005	2.25	2.34		
J1007	1.36	1.93		
J1007	1.82	2.22		
J1007	1.91	2.19		
J1007	2.1	2.45		
J1007	2.25	2.48		
J1007	2.34	2.76		
J1007	2.42	2.78		
J1007	2.43	2.94		
J1007	2.72	2.96		
J1007	2.82	2.92		
J1007	2.84	2.93		
J1007	2.91	3.1		
J1007	3.01	3.17		
J1007	3.07	3.37		
J1007	3.2	3.56		
J1007	3.21	3.49		
J1007	3.55	3.98		
J1007	3.91	4.32		
J1007	4.03	4.64		
J1007	5.54	5.64		
J1008	4.03	4.54		

 Table S2. Measured opal% for Site J1002 and J007.

Site	Depth	Age	GB	OPAL	notes
J1002	0.105	0.30	1.232	4.36	
J1002	1.605	4.48	1.262	2.11	
J1002	2.905	7.24	1.224	2.87	
J1002	4.305	9.98	1.207	2.61	
J1002	5.705	12.84	1.139	1.69	
J1002	7.105	15.98	1.123	1.07	
J1002	36.192	28.35	1.018	0.63	
J1002	43.194	29.69	1.003	0.36	
J1002	59.883	39.60	1.114	0.91	
J1002	61.303	40.92	1.05	0.7	
J1002	64.113	43.55	1.088	0.81	
J1002	92.216	55.12	1.199	1.45	
J1002	121.76	81.39	1.039	1.53	
	2				

J1002	124.48	83.04	1.12	1.04	
	2				
J1007	0.11	0.44	1.185	3.54	
J1007	6.409	19.37	1.169	2.8	
J1007	9.609	22.64	1.116	1.92	
J1007	11.209	24.25	1.108	1.89	
J1007	12.803	25.89	1.079	2.63	
J1007	14.393	27.61	1.126	4.34	
J1007	22.375	38.11	1.187	3.8	
J1007	25.606	40.64	1.162	3.81	
J1007	27.236	41.65	1.183	3.91	
J1007	33.599	45.72	1.189	4.9	
J1007	41.606	49.70	1.137	3.41	
J1007	43.206	50.38	1.186	4.34	
J1007	48.001	52.29	1.238	5.34	
J1007	49.605	53.11	1.177	5.35	
J1007	60.801	66.01	1.098	2.4	
J1007	67.197	79.48	1.121	2.87	
J1007	70.298	87.32	1.185	2.83	
J1007	72.003	91.02	1.129	2.77	
J1007	75.203	97.94	1.135	3.53	
J1007	81.596	118.31	1.186	3.65	
J1007	89.602	130.97	1.146	2.85	
J1007	99.979	143.95	1.224	3.74	
J1002	104.96	67.80	1.04	0.62	Data points with underestimated opal
	5				contents.
J1007	1.605	6.44	1.208	2.2	Data points with underestimated opal
					contents.
J1007	1.615	6.48	1.22	2.55	Data points with underestimated opal
					contents.
J1007	3.205	12.87	1.187	1.99	Data points with underestimated opal
					contents.
J1007	52.005	55.16	1.243	3.03	Data points with underestimated opal
					contents.
J1007	52.805	55.84	1.25	3.97	Data points with underestimated opal
					contents.
J1007	53.605	56.49	1.253	2.53	Data points with underestimated opal
14.007	E 4 105		1.015	4.00	contents.
J1007	54.405	57.15	1.215	1.98	Data points with underestimated opal
14.007	00.000	400.04	4 007	074	contents.
J1007	93.838	136.04	1.207	2.74	Data points with underestimated opal
					contents.

Site	Depth	Uncrorrected	Age error	Date type	Calibration
	(mbsf)	Age (yr)	(yr)		
J1002	0	0		core-top	None
J1002	1.605	4245	25	14C_age	IntCal20
J1002	5.705	10925	40	14C_age	IntCal20
J1002	7.105	13475	45	14C_age	IntCal20
J1002	28.305	20490	90	14C_age	IntCal20
J1002	34.792	23950	110	14C_age	IntCal20
J1002	46.284	26000	160	14C_age	IntCal20
J1002	59.883	34310	370	14C_age	IntCal20
J1002	66.918	44000	1600	14C_age	IntCal20
J1002	92.22	55000		tie point	None
J1002	97.99	61000		tie point	None
J1002	109.16	72000		tie point	None
J1002	116.12	78000		tie point	None
J1002	125.96	84000		tie point	None
J1007	0	0		core-top	None
J1007	3.41	12230	35	14C_age	IntCal20
J1007	4.797	14430	140	14C_age	IntCal20
J1007	6.409	16150	70	14C_age	IntCal20
J1007	12.79	21570	130	14C_age	IntCal20
J1007	15.99	24970	170	14C_age	IntCal20
J1007	17.583	27820	190	14C_age	IntCal20
J1007	22.765	34080	480	14C_age	IntCal20
J1007	30.408	44000		tie point	None
J1007	40.006	49000		tie point	None
J1007	49.605	53000		tie point	None
J1007	57.601	60000		tie point	None
J1007	65.602	75000		tie point	None
J1007	68.797	84000		tie point	None
J1007	78.399	105000		tie point	None
J1007	81.596	119000		tie point	None
J1007	86.4	127000		tie point	None
J1007	97.008	140000		tie point	None

Table S3. Age control points for J1002 and J1007.

Depth_CCSF_m	G/B	Corg%	
0.1	1.182	2.38	
0.11	1.185	2.02	
4.797	1.141	0.67	

6.409	1.169	0.76	
8.009	1.088	0.75	
9.609	1.116	0.8	
11.209	1.108	0.87	
12.803	1.079	0.74	
14.393	1.126	0.92	
16.003	1.133	1.11	
17.61	1.17	1.08	
19.21	1.163	1.06	
20.83	1.187	0.92	
22.375	1.187	0.99	
24.006	1.171	0.97	
25.606	1.162	1.19	
27.236	1.183	1.03	
28.808	1.161	0.9	
30.408	1.179	1	
32.008	1.192	1.09	
33.599	1.189	1.13	
35.199	1.166	0.71	
36.799	1.172	0.71	
38.399	1.141	0.76	
40.006	1.128	0.82	
41.606	1.120	0.82	
44.801	1.178	1	
46.401	1.165	1.24	
48.001	1.238	1.92	
49.605	1.177	1.63	
50.405	1.196	1.3	
51.205		2.19	
55.205	1.216 1.203	0.81	
56.001	1.203	0.75	
	1.168	0.75	
56.806			
57.601	1.172	0.73	
59.201	1.126	0.6	
60.801	1.098	0.64	
62.402	1.162	0.81	
64.002	1.187	0.73	
64.802	1.169	0.73	
65.602	1.151	0.67	
67.197	1.121	0.71	
68.797	1.093	0.6	
70.298	1.185	0.66	

72.003	1.129	0.69	
73.603	1.129	0.09	
73.003	1.168	0.7	
74.803	1.108	0.66	
75.203	1.135	0.7	
75.703	1.152	0.68	
76.204	1.172	0.68	
76.799	1.18	0.71	
78.399	1.147	0.71	
79.996	1.188	0.84	
80.501	1.265	0.94	
81.001	1.238	0.93	
81.596	1.186	0.8	
83.2	1.189	0.8	
84.8	1.186	0.7	
86.4	1.126	0.58	
87.86	1.171	0.68	
89.602	1.146	0.73	
92.202	1.178	0.97	
95.408	1.287	1.49	
97.008	1.214	0.64	
98.609	1.201	0.67	
99.979	1.224	0.93	
102.419	1.111	0.78	
103.413	1.136	0.6	
105.013	1.157	0.59	
106.613	1.124	0.53	
108.213	1.118	0.58	
111.454	1.084	0.61	
113.019	1.128	0.59	
114.615	1.217	1.15	
116.215	1.194	0.83	
117.815	1.234	0.9	
119.005	1.181	0.74	
1.605	1.208	1.72	Data points with underestimated opal
			contents.
1.615	1.22	1.86	Data points with underestimated opal
			contents.
3.205	1.187	1.16	Data points with underestimated opal
			contents.
52.005	1.243	1.27	Data points with underestimated opal
			contents.

52.805	1.25	1.43	Data points with underestimated opal
			contents.
53.605	1.253	1.25	Data points with underestimated opal
			contents.
54.405	1.215	0.9	Data points with underestimated opal
			contents.
93.838	1.207	0.89	Data points with underestimated opal
			contents.

Data Set S1. Site J1007 G/B, reconstructed opal%, linear sedimentation rate and opal mass accumulation rate data.

Data Set S2. Site J1002 G/B, reconstructed opal% data.

References

- Conley, D. J., & Schelske, C. L. (2001). Biogenic Silica. In J. P. Smol, H. J. B. Birks, W. M. Last, R. S. Bradley, & K. Alverson (Eds.), Tracking Environmental Change Using Lake Sediments: Terrestrial, Algal, and Siliceous Indicators (pp. 281-293). Dordrecht: Springer Netherlands.
- DeMaster, D. J., 1979. The marine budgets of silica and Ph.D. Dissertation, Yale University, 308 pp.
- Lisiecki, L. E., & Raymo, M. E. (2005). A Pliocene-Pleistocene stack of 57 globally distributed benthic δ18O records. Paleoceanography, 20(1), n/a-n/a. doi:10.1029/2004pa001071
- Lougheed, B. C., & Obrochta, S. P. (2019). A Rapid, Deterministic Age-Depth Modeling Routine for Geological Sequences With Inherent Depth Uncertainty. Paleoceanography and Paleoclimatology, 34(1), 122-133. doi:10.1029/2018pa003457
- Mortlock, R. A., & Froelich, P. N. (1989). A simple method for the rapid determination of biogenic opal in pelagic marine sediments. Deep Sea Research Part A. Oceanographic Research Papers, 36(9), 1415-1426. doi:https://doi.org/10.1016/0198-0149(89)90092-7