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Abstract

Geomorphic heterogeneity is a primary characteristic of real rivers. An important, yet overlooked aspect of geomorphic hetero-

geneity of rivers in intensively managed agricultural landscapes of the midwestern United States is spatial variability in channel

planform. In particular, these otherwise meandering rivers often contain anabranching reaches characterized by multiple chan-

nels separated by stable, vegetated islands. Morphologically, these anabranching reaches appear to differ from anabranching

forms previously reported in the literature in terms of island shape and bifurcation angle (Figure). This research quantitatively

characterizes the morphological characteristics of anabranching reaches within meandering river systems based on number of

channels, island shape and size, bifurcation angles, and cross-sectional geometry across the channel belt. A combination of

high-resolution imagery and LiDAR elevation data is used to construct a three-dimensional classification scheme (planform +

bed profile) to better characterize anabranching river types. Although differences in planform types have been explained as a

function of stream power, which represents the energy of a river to perform geomorphic work, the environmental domain of

anabranching rivers has yet to be defined precisely, especially in relation to other planform types. Plotting of anabranching

and meandering reaches on slope-discharge plots reveals that both types of reaches generally have similar power regimes – a

finding consistent with the notion that the development of anabranching in these systems probably occurs through top-down

(floodplain incision) rather than bottom-up (bar growth into islands) mechanisms. The study is a first attempt at characterizing

juxtaposed anabranching-meandering systems and provides the basis for further process-oriented fieldwork exploring the role of

natural versus human-induced processes on the formation and evolution of mixed planform river characteristics in intensively

managed agricultural landscapes.
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1. Introduction: spatial variablity in channel planform 

• Variability in channel planform indicates differing boundary condi-
tions, evolution trajectories and underlying processes. 

• Plotting the channel slope with bankfull discharge for different 
river types separated meandering and braided rivers, indicating they 
occur in distinct energy regimes (Leopold & Wolman, 1957). Howev-
er, the energy domain of anabranching rivers (Nanson & Knighton, 
1996) is yet to be defined precisely. 

• Quantification of channel planform using reach scale metrics gives 
an indication of the (self-) similarities or differences in underlying 
processes between rivers of different character (Kelly, 2006; Hundey 
& Ashmore, 2009; Meshkova & Carling, 2013).

• The purpose of this paper is to capture the diversity of anabranch-
ing forms in midwestern US, where spatial transitions in planform  
occur without associated changes in valley width. 

2. Regional setting
• This study focuses on anabranching reaches found in Illinois, In-
diana, and Iowa. This region has gone through cycles of glaciation 
and is currently under intensive agriculture. 

• The topography is relatively flat and end moraines are distribut-
ed throughout the landscape - an indication of the region’s glacial 
past. Windblown loess overlies most glacial deposits. 

• An extensive search for anabranching reaches along meandering 
rivers is being conducted using Google Earth Imagery (leaf-off). 
As of now we have identified 16 rivers containing a total of 38 
anabranching reaches. The dataset is growing and more locations 
will be added as we search other midwestern states.  
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• Otherwise meandering rivers (according to plotting position on 
slope discharge plot) containing anabranching reaches were identi-
fied in and around the states of Illinois, Indiana, and Iowa. 

• Channel count (average number of channels per cross section) 
ranged between 2-3.8, agreeing well with theoritical estimates of 
two to four channels (Huang & Nanson, 2007; Eaton et. al., 2010) 
as well as being within the range of recent measurements for large 
anabranching rivers (Meshkova & Carling, 2013).

• Bifurcation angle estimates (91°±33°), however, are larger than 
theoretical calculations of 72°, those for large anabranching rivers 
with bifurcation angle values between 50°-85° (Meshkova & 
Carling, 2013), as well as for deltaic networks (70.4°±2.6°) (Coffey 
& Shaw, 2017). 

• The study is a first attempt at characterizing juxtaposed 
anabranching-meandering systems and provides a basis to explore 
the role of natural versus human induced processes on formation 
and evolution of mixed planform river characteristics in intensively 
managed agricultural landscapes.  

6. Conclusions

7. References
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3. Methods: Planform metrics and slope-discharge plots
• Main channel centerline and 
island polygons were manually 
digitized on Google Earth and 
imported into ArcMap 10.8 for 
further analysis.

• Channel slope was calculated 
using LiDAR elevation data 
and bankfull discharge was esti-
mated at USGS gage stations as 
2 year flood. Channel slope was 
plotted as a function of dis-
charge to quantify energy con-
ditions
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• Exponent of width-length scaling for bars in braided rivers is 
close to unity for major axis length varying over six orders of mag-
nitude, implying a self similar form across scales.

• In anabranching case, the exponent for length scaling is less than 
unity. Area vs perimeter scaling of anabranching islands is consis-
tent with area vs perimeter scaling of bars in braided rivers.
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• Median channel count for all anabranching reaches studied is two. More than 50% 
of anabranching reaches have two channels, when averaged over the number of tran-
sects. 

• Some reaches, however, are highly dissected, for example a reach of the Chippewa 
River, WI where the channel count is 2.4.

• Mean bifurcation angle is 91°±33°), and is not consistent with the theoritical criti-
cal bifurcation angle of 72° calculated for stream networks through hydraulic princi-
ples (Devauchelle et. al., 2012). 

4. Results: Planform metrics

(Top) Anabranching reach in the Chippewa R., Wis-
consin. Channel count calculated as ratio of number 
of times each transect is intersected by a channel 
centerline per unit number of transects.(Bottom) Bi-
furcation and confluence angle calculation procedure. 
The bearings of each line were subtracted to compute 
the inner acute angle. 
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5. Results: Planform scaling relationships

Locations of anabranching reaches in 
and around the states of IN, IA, and 
IL.
Stream lines derived from the Nation-
al Hydrography Dataset (U.S. Geologi-
cal Survey, 2021)
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