Using percolation-based effective-medium approximation to determine effective permeability in fractured reservoirs

Behzad Ghanbarian¹

¹Kansas State University

November 23, 2022

Abstract

Fractures play an important role in transport in unconventional formations. Both matrix and fracture network in fractured media contribute to the effective permeability (k_{eff}). In this study, we investigate the interaction between matrix and fracture permeabilities (k_m and k_f) via the percolation-based effective-medium approximation (P-EMA). We theoretically determine the k_{eff} value at different fracture densities and compare our results with two- and three-dimensional numerical simulations. We found that the P-EMA estimated the effective permeability accurately in the matrix-fracture systems studied here. Further investigations are needed to better understand how the parameters of the P-EMA including scaling exponent and critical fracture density might vary from one fractured reservoir to another.

Using percolation-based effectivemedium approximation to determine effective permeability in fractured reservoirs

Behzad Ghanbarian

Porous Media Research Lab, Department of Geology, Kansas State University (ghanbarian@ksu.edu)

Introduction

Bi-wing hydraulic fracture

Schematic of multi-scale fracture system in the shale gas reservoir after hydraulic fracturing operations. Natural fracture, microfracture, and hydraulic fractures coexist (after Chen et al., 2019).

(1) Developing a theoretical model for effective permeability in matrix-fracture systems

(2) Comparing theoretical estimates with 2- and 3-D numerical simulations

Simulations

Matrix-fracture systems

- Chen et al. (2019) Discrete fracture-matrix networks were composed of line (2D) and elliptical (3D) fractures.

Generalized lattice Boltzmann (LB) method to simulate fluid flow.

https://dfnworks.lanl.gov/

Fluid flow is simulated based on the Reynolds equation.

AGU Fall Meeting

Percolation-based EMA

Results

2-D simulations (Chen et al., 2019)

Results

3-D simulations (Chen et al., 2019)

Results

3-D dfnWork simulations

• The proposed P-EMA model estimated the k_{eff} reasonably well.

- We found that the scaling exponent t = 1 resulted in accurate estimations of k_{eff} in two dimensions, while t = 2 led to good agreement between the theory and simulations in three dimensions.
- In contrast to other empirical and semi-empirical models, our proposed P-EMA k_{eff} model has no ad hoc parameters and is predictive once the parameters t, ρ_c, k_m, and k_f are known for a fractured reservoir.

Acknowledgement

Jeffrey D. Hyman Staff Scientist , EES-16 Los Alamos National Lab

Questions?

Simulations

Matrix-fracture systems

- Chen et al. (2019): Two dimensions

Two random numbers were generated based on a uniform distribution to determine the coordinates of two points in the domain.

A fracture with width of one lattice units and permeability of 3.33×10^{-9} m2 (3.33×10^{3} D; based on the cubic law) was created by connecting the two points via a straight line.

- Chen et al. (2019): Three dimensions the fracture network was composed of 855 elliptical fractures.

The radius of fractures followed a truncated powerlaw distribution with lower and upper cutoffs $r_{min} = 0.1$ μ m and $r_{max} = 1 \ \mu$ m and exponent 2.28.

Simulations

Matrix-fracture systems

New 3-D simulations via dfnWorks
planar discs with a constant radii of 5 meters within a
50 m cubic domain.

The orientation of fractures was sampled from a Fisher distribution with intensity parameter of 0.1 that resulted in a uniform covering of the unit sphere and equiprobable random orientations.

https://dfnworks.lanl.gov/

