
P
os
te
d
on

21
N
ov

20
22

—
C
C
-B

Y
-N

C
4
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
10
02
/e
ss
oa
r.
10
50
97
22
.1

—
T
h
is

a
p
re
p
ri
n
t
an

d
h
as

n
ot

b
ee
n
p
ee
r
re
v
ie
w
ed
.
D
at
a
m
ay

b
e
p
re
li
m
in
ar
y.

General Server for Rapid Publishing of OGC-Compliant Earth

Science Data Products

Mattheus Ueckermann1 and Jerry Bieszczad1

1Creare LLC

November 21, 2022

Abstract

To make timely decisions for weather -and climate-related disasters and vulnerabilities, decision makers need current information

that can be readily shared and communicated to stakeholders. To date, geospatial data is distributed using monolithic storage

architectures and formats best suited for traditional research applications. Thus, everyday decision-makers face significant

“barriers to entry” when trying to access, explore, and modify vast historical archives and real time data feeds. To address this

need, we are developing a server architecture for rapidly creating and publishing data products. Privileged users can rapidly

create or change products by operating on another product or combining multiple disparate data sources together. Users can

then consume these new products using OGC-compliant WMS/WCS clients such as ArcGIS, QGIS, or Leaflet. This enables

decision makers to effectively communicate with stakeholders using customized maps. Moreover, this capability enables products

to be rapidly updated in cases where timely information is important. Our server architecture is containerized, making it easy

to deploy on various architectures including serverless cloud resources. It is implemented in Python, leverages the plug-and-play

data wrangling capabilities of the PODPAC library, and uses a custom library for serving OGC-compliant data. The result

is an easy-to-use architecture for rapidly publishing custom geospatial products that exploit vast earth science data resources.

We will demonstrate our server capabilities by showing how privileged users can build a set of products that are computed

on-demand starting from a fresh server. Using Jupyter Lab notebooks, we will create products that modify single data sources

as well as products that combine multiple disparate sources. We will then show how users can consume these products using

OGC-compliant clients. Next, we will detail our cloud-based, serverless deployment of this technology using Amazon Web

Services. Finally, we will discuss the advantages of our approach along with any caveats. Enabling everyday decision makers

to rapidly create and share geospatial data will revolutionize their productivity and effectiveness for assessing and remediating

weather- and climate-related vulnerabilities and disasters.

1

Initialize publisher class

Style and create a pipeline

Publish
Could also be plain JSON

(used by web-based UI)

IN45C-0469 Creare LLC
J. Bieszczad

M. Ueckermann

• Decision makers need current data to make timely

decisions for weather and climate-related

vulnerabilities

• Geospatial information needs to be easily shared and

communicated to stakeholders

• To date, geospatial data is distributed using

monolithic storage architectures and formats best-

suited for traditional research applications

• Everyday decision-makers face significant barriers

when trying to access, explore, and modify vast

historical archives and real-time data feeds

• Develop server architecture for rapidly creating and

publishing geospatial data products

• Privileged users can publish new or update existing

geospatial products by combining multiple disparate

data sources together, post-processing, and styling

results

• Users can consume these products using OGC-

compliant WMS/WCS clients such as ArcGIS, QGIS,

or Leaflet

• Server architecture is containerized, making it easy to

deploy on various architectures including local

networks or serverless cloud architectures

• Server architecture is fully functional and containerized

• Development of web-based interface of product

creation is in progress

• The code has not yet been published

• Our server is built using PODPAC, which is open-

source software available at https://podpac.org

• This research is supported by the US Army ERDC

under SBIR Phase II Contract No. W9132V19C0002

• Jupyterlab to build interactive, customizable UIs

• Leaflet + custom web development for UI that requires

no software installation to create data products

• Open-source scientific Python stack

ipyleaflet

Traitlets
Rasterio

• Our server leverages the open-source PODPAC

Python library’s automated data wrangling and “Node”

serialization features

• PODPAC describes geospatial processing pipelines

using a light-weight JSON format

• This JSON description is sent to the server using an

HTTP POST request by a privileged user and this

definition is saved along with a product name

• Users can then request products using the same

name, and the server will recreate the data product

from its definition, serving the results to the user

Creating a node using our custom web interface

Product name
WMS styling

Product type specification

Attributes specific

to product type

Publishes new product to server

P
re

v
ie

w

E
d
it

D
e
le

te

Creating a node using SoilMAP and PODPAC (Python)

QGIS used as a WMS/WCS client

• Our server automatically creates an

OGC-compliant endpoint that is updated

dynamically as new data products are

created

• Users point their OGC client to the server

endpoint and available products are

automatically discovered

• Users select desired data product to

browse it (WMS endpoint), or further

modify the results (WCS endpoint) and

our server fetches and processes data

on-the fly with optional server-side

caching

Geospatial CRS and

Projections

Data Structures

Gridded dataData along

a path

Data at points

Disparate Data

Sources

Data Processing

Algorithms

(e.g., convolution,

statistics, point-wise

arithmetic, custom, …)

Automatic Data

Wrangling

Styling WMS Outputs

Capabilities available when creating new products

publish = Publish(
source="https://example-server.com/api", # Server API endpoint
secret_key="<user-secret-token>", # Privileged user’s credentials
name="<my-node-name>", # OGS “Layer” name
expiration_date=None, # Optional expiration date

)

style = podpac.style.Style(
colormap="terrain", clim=(800**2, 1000**2))

dem_data = podpac.datalib.TerrainTiles (zoom=3)
Limit DEM between 800 and 1000 m, and compute the square
node = podpac.algorithm.Arithmetic(

eqn="(dem > 800) * (dem < 1000) * dem**2",
dem=dem_data,
style=style,

)

publish(node)

https://podpac.org/

