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Abstract

Multiphysics urban flood models are commonly used for urban infrastructure development planning and evaluating risk due

to climate change and sea level rise. However, these integrated flood models rely on several parameters that are hard to

measure directly, and the resulting uncertainty in model prediction needs to be quantified, often without observable data. As a

part of the Urban Flooding Open Knowledge Network (UFOKN) project, in this study we quantify parametric uncertainty in

urban flood models. UFOKN incorporates flood model predictions in combination with machine learning, data and computer

science, epidemiology, socioeconomics, and transportation and electrical engineering to minimize economic and human losses

from future urban flooding in the United States. As a case study, we choose the Interconnected Channel and Pond Routing

(ICPR) numerical model to simulate flooding in the city of Minneapolis in response to the design storms (e.g., 100-year rainfall).

Through a sensitivity study, we reduce the number of uncertain model parameters to the Manning’s roughness coefficient and

vertical hydraulic conductivity of soil, and construct the distributions of these parameters using open databases. We employ

the multilevel Monte Carlo (MLMC) method that combines a small number of high-resolution ICPR simulations with a larger

number of low-resolution simulations to reduce the computational cost of computing the key statistics of the quantities of

interest describing the urban flooding. Our results show that the uncertainty in the flood predictions (as described by the

coefficient of variation of the flood water depth) is distributed highly non-uniformly in the urban area with the coefficient of

variation exceeding 0.5 limited to a relatively few computational elements in the ICPR model. Our results demonstrate that

urban flood models such as ICPR can provide reliable flood predictions and can be used for a targeted data acquisition to

further reduce the parametric uncertainty.
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• Urbanization and population growth: developed areas replacing natural environment

• Climate change: more intense and frequent rainfall events, rise of  sea level

Excessive runoff  in populated urban areas leads to urban flooding that impacts almost everything in cities.

A series of  failures propagating through urban infrastructure.

Flooding in Texas caused by Hurricane Harvey in 2017 (Source: Wikipedia)

Flooded power grid

Introduction

Flooded road
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• Complex real-world problems

• Imperfect models

• Imprecise input data

• Lack of  knowledge

• Model simplifications

Output values are subject to uncertainty.

- Structural uncertainty: doubt on if  the model structurally correct

- Parametric uncertainty: correct values of  parameters are not certain

Introduction

UQ goals: quantitative characterization and reduction of  uncertainties

different parameter values different simulated behavior different predictions

Flood models can provide predictions of  different hypothetical scenarios, 

but they also deal with different types of  uncertainty.
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UF-OKN Project
Urban Flooding Open Knowledge Network

• Cities are highly complex systems and include multiple layers of  infrastructures 

including transportation network, power grid, and water systems.

• Considering cascading failures through interconnected urban infrastructure

• Customizing the search result of  “flood near me” for different users

How flooding impacts cities?

How certain are flood predictions?

What locations are more important?

How to reduce uncertainty in key areas?

UF-OKN aims to link real-world urban infrastructure to dynamic flood predictions.
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golf  course

railroad

park

residential pond

river

(All images from Google Maps)

Approach:

• Reduce number of  uncertain parameters and produce 

their distributions

• Study statistics of  quantities of  interest over many 

realizations of  flood simulations

• Track variation of  ensemble mean and standard 

deviation for convergence

Case Study
City of  Minneapolis
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• Input: land use, soil zones, surface elevation (data from NRCS)

• Output: statistics of  quantities of  interest such as flood depth and flowrate in pipes

• 100-year rainfall event for a 24-hour period and 72-hour simulation (data from NOAA)

Computational mesh Surface elevation

Land use map

Case Study
City of  Minneapolis

Uncertain parameters: Manning’s roughness coefficients & vertical hydraulic conductivity
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ICPR Model
Interconnected Channel and Pond Routing  

• Hydrologic & hydraulic urban flood model

• Predicting surface water inundation due to rainfall

• Interconnected and interdependent hydraulic systems

• Physically-based distributed model

• Based on link-node modeling concept

• Supercomputing capability

2D overland flow model (finite volume approach)

2D groundwater flow (finite element approach)

Different layers of  unstructured mesh: triangle, honeycomb, diamond 

𝑑𝑧 =
𝑄𝑖𝑛 − 𝑄𝑜𝑢𝑡
𝐴𝑠𝑢𝑟𝑓𝑎𝑐𝑒

𝑑𝑡

𝜕𝑄

𝜕𝑡
+
𝜕 𝑄2/𝐴

𝜕𝑥
+ 𝑔𝐴

𝜕𝑍

𝜕𝑥
+ 𝑔𝐴𝑆𝑓 = 0

𝑞 = 𝐾𝑣𝐼
𝐼 = (𝐻 + 𝑍𝑓 + ℎ𝑐)/𝑍𝑓
𝐾(𝜃)

𝐾𝑠
=

𝜃 − 𝜃𝑟
𝜙 − 𝜃𝑟

𝑛
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Four types of  land use:

1. Water zone

2. Developed zone

3. Forest zone

4. Agriculture zone

Experimental Manning’s coefficient of  different types of  land from various studies:

Chow (1959), French (1985), Barnes (1967), and Arcement, et al (1989)

shallow deep

Water 0.045 0.035

Developed 0.015 0.011

Forest 0.198 0.184

Agriculture 0.2 0.1

Manning’s roughness coefficients

𝑛 = 𝑛𝑠ℎ 𝑒𝑥𝑝 𝑘 × 𝑑

𝑘 = ൗ𝑙𝑛(
𝑛𝑑
𝑛𝑠ℎ

) 𝑑𝑚𝑎𝑥

Surface Roughness

𝑛𝑠ℎ : shallow Manning’s roughness coefficient

𝑛𝑑 : deep Manning’s roughness coefficient
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Spatial distribution

• Coefficient of  variation to measure degree of  uncertainty

• Variation of  statistics over realizations

• Heatmap of  quantities of  interest

• Mean, standard deviations, and coefficient of  variation

CV =
𝑠𝑡𝑑. 𝑑𝑒𝑣𝑖𝑎𝑡𝑖𝑜𝑛

𝑚𝑒𝑎𝑛

Variation of  extreme values over 100 realizations of  simulations:
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R =
𝑛𝑜. 𝑜𝑓 𝑓𝑙𝑜𝑜𝑑𝑒𝑑 𝑟𝑒𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑠

𝑡𝑜𝑡𝑎𝑙 𝑛𝑜. 𝑜𝑓 𝑟𝑒𝑎𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛𝑠

R < 0.25 mostly not flooded

0.25 < R < 0.75 more uncertain

R > 0.75 mostly flooded

Probability of flood depth exceeding certain threshold (0.5 feet)
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Distribution of  flooding from 100 realizations satellite view

Total number of  nodes 10022 %

Always flooded 635 6.34

Sometimes flooded 140 1.40

More uncertain 59 0.59



𝐾𝑣𝑜 = the original database value

𝐾𝑣𝑚𝑖𝑛 = 0.5𝐾𝑣𝑜, 𝐾𝑣𝑚𝑎𝑥 = 2𝐾𝑣𝑜
follows truncated log-normal distribution

• 29 different soil zones (data from NRCS)

• Three-layer soil column in vadose zone

• Availability of  data on vertical hydraulic conductivity

• Using truncated log-normal distribution for vertical hydraulic conductivity 𝐾𝑣
• Controlling the mean, min, max of  distributions

𝐾𝑣𝑜 = 0.8505 f/s

𝐾𝑣𝑚𝑖𝑛 = 0.4253 f/s
𝐾𝑣𝑚𝑎𝑥 = 1.7010 f/s

Example:

Soil label 1146302 / Zone 1

Label 1146302 / Zone 1

Layer 𝐾𝑣 Saturated

1 0.8505

2 0.425

3 0.2125

12

Hydraulic Conductivity
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Variation of  extreme values over 100 realizations of  simulations:
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Hydraulic conductivity studySurface roughness study

Total number of  nodes 10022 %

Always flooded 537 5.36

Sometimes flooded 329 3.28

More uncertain 111 1.11

Total number of  nodes 10022 %

Always flooded 635 6.34

Sometimes flooded 140 1.40

More uncertain 59 0.59

Comparison of parametric uncertainties

Uncertain locations are entirely 

different even though the mean of  

input parameters were similar.
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Low-resolution model (10,022 nodes) High-resolution model (44,412 nodes)

Model Resolution

Increasing:

Number of  nodes

Simulation time

Data storage

Reducing:

Uncertainty 

Level of  parametric uncertainty is reduced by using higher resolution of  mesh. 
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• Combining results from low-resolution 

and high-resolution mesh simulations

• Estimating mean and standard deviation

Multilevel Monte Carlo approach ത𝑌(𝑥) = 𝑌𝐻(𝑥) − 𝑌𝐿(𝑥)

𝐸 𝑌𝐻(𝑥) ≈ 𝜇𝑀𝐿𝑀𝐶 =
1

𝑁𝐿
෍

𝑛=1

𝑁𝐿

𝑌𝐿
𝑛 𝑥 +

1

𝑁𝐻
෍

𝑛=1

𝑁𝐻

ത𝑌𝑛 (𝑥)

𝑁𝐿 = 100, 𝑁𝐻 = 100 Max Flow in Pipe (cfs)

Mean of Lo-Res 1381.4

Mean of  Hi-Res 1411.5

Est. mean of  Hi-Res (𝑁𝐻 = 20) 1413.2

Hydraulic conductivity study

𝑁𝐿 = 100, 𝑁𝐻 = 100 Max Flow in Pipe (cfs)

Std dev of  Lo-Res 35.03

Std dev of  Hi-Res 27.24

Est. std dev of  Hi-Res (𝑁𝐻 = 20) 32.17

from low-resolution from high-resolution 

difference between resolutions 

Estimation of  mean Estimation of  standard deviation

Model Resolution
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Conclusions

• Urban flood models such as ICPR can provide reliable flood predictions and can be used for a targeted

data acquisition to further reduce the parametric uncertainty.

• Parametric uncertainty of both input parameters is highly localized.

• Parametric uncertainty of surface roughness and hydraulic conductivity occurs in quite different locations

while the distribution of ensemble mean of flood depth remains similar.

• Increasing the mesh resolution of the model reduces uncertainty of flood depth in both parametric

uncertainty studies while input parameters are not changing.

• Using multilevel Monte Carlo approach with few high-resolution simulations enabled us to obtain the same

level of accuracy and degree of uncertainty, as in high-resolution model, with less computational costs.
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