Amphibolization of the Tso Morari UHP eclogites: a record of fluid infiltration at amphibolite-facies during uplift in the subduction channel

Ruiguang PAN ${ }^{1}$, Catherine Macris ${ }^{1}$, and Carrie Menold ${ }^{2}$
${ }^{1}$ Indiana University Purdue University Indianapolis
${ }^{2}$ Albion College

November 23, 2022

Abstract

Ultra-high pressure (UHP) metamorphism of the Tso Morari coesite-eclogite during burial in NW Himalaya has been intensively studied over the past several decades. However, amphibolite-facies metamorphism and accompanying metasomatism occurring at lower-crustal depths in the Tso Morari terrane are less well-constrained. In this study, we characterize the eclogite amphibolization and related metasomatic fluids by systematically sampling and analyzing the eclogites at the core of an eclogite boudin and the amphiblolized eclogite (amphibolite) at the rim. Integrated techniques including modal mineralogy, mineral chemistry, whole-rock geochemistry, Mössbauer spectroscopy, and thermodynamic modelling are used to constrain the fluidinduced eclogite amphibolization and associated fluid behaviors. Petrographic observations show that infiltration of an external fluid caused complete amphibolite-facies overprinting of the eclogites at the boudin rim. This is recorded petrographically as increased modal proportions of amphibole, biotite, epidote, plagioclase, and calcite in the amphibolites. The infiltrating fluid caused increased $\mathrm{K}_{2} \mathrm{O}$ and CO_{2} concentrations and higher bulk-rock $\mathrm{Fe}^{3+} / \Sigma \mathrm{Fe}$ ratio for the amphibolites, as well as increased LILE (e.g., $\mathrm{K}, \mathrm{Rb}, \mathrm{Cs}, \mathrm{Sr}, \mathrm{Ba}$) and ratios of $\mathrm{Ba} / \mathrm{Rb}$ and $\mathrm{Cs} / \mathrm{Rb}$. Phase equilibria modelling using $\mathrm{P}-\mathrm{T}-\mathrm{M}\left(\mathrm{H}_{2} \mathrm{O}\right)$ pseudosections on the amphibolite and the surrounding gneiss indicate that the fluid infiltration occurred at $9.0-12.5 \mathrm{kbar}$ and $\sim 608{ }^{\circ} \mathrm{C}$ with $>2.6-3.1 \mathrm{~mol} \% \mathrm{H}_{2} \mathrm{O}$ infiltration. The abrupt increase of bulk-rock $\mathrm{Fe}^{3+} / \Sigma \mathrm{Fe}$ ratio from 0.192 to 0.395 near the boudin rim indicate that this phase of fluid most likely derived from the mixing of dehydrated host orthogneiss and/or metasediments during uplift at the amphibolite-facies zone in the subduction channel. This study also demonstrates the need for using careful petrographic observations and geochemical analysis in parallel with thermodynamic modelling to achieve realistic results.

Amphibolization of the Tso Morari UHP Eclogites: A Record of Fluid Infiltration at Amphibolite-facies during Uplift in the Subduction Channel

Ruiguang Pan (Presenter)
Catherine Macris and Carrie Menold
Dec. 17, 2021

İJ IUPUI
 Albion College

Eclogite Amphibolization during Exhumation in Subduction Channel

Geologic Setting

Amphibolite Petrography \& Fluid Infiltration in Boudin Rim

Traverse
Garnet
Omphacite
Amphibole
Phengite
Biotite Paragonite
Chlorite
Epidote Plageoclase K-feldspar Carbonates Quartz

Sample	grt	omp	phg	qtz	Ti-oxides	cal	camp	ep
TM-15	28.5	30.5	3	8.5	1	1.5	21	6

Sample	grt	omp	camp	phg	bt	qtz	ep	pl	Ti-oxides	cal
TM-12	0.5	0.5	26.5	1.5	31.0	20.5	11.5	2.0	2.0	5.0

Amphibolite Major \& Trace Elements \& Fluid Infiltration in Boudin Rim

$\mid \bar{n}$
$\mathrm{K}_{2} \mathbf{O}$ increases dramatically in amphibolite samples

LILE (e.g., Rb, Cs, Sr, Ba) enriched in the amphibolite samples

Indicating a strong fluid infiltration in an open system at the boudin rim

Pressure-Temperature Conditions of the Amphibolization

Garnet $=\mathrm{Alm}_{37} \mathrm{Grs}_{58} \mathrm{Sps}_{5} \mathrm{Prp}_{0}$
Phengite Si p.f.u. $=3.33-3.48$
Minerals: grt + kfs + pl + bt + ms + spn + qtz

Last stage of retrograde metamorphism in gneiss: $608 \pm 13^{\circ} \mathrm{C}$ and $11.8 \pm 1.5 \mathrm{kbar}$

Pressure-Temperature Conditions of the Amphibolization

Amphibole, epidote, and biotite modal proportions limit the $P-T$ conditions to <9.5 kbar and $<650^{\circ} \mathrm{C}$

Fluid Content associated with the Amphibolization

Fluid Sources for the Amphibolization -- Gneiss

Dehydration reactions at ${ }^{\sim} 9.5-13.5$ kbar at ${ }^{\sim} 60{ }^{\circ} \mathrm{C}$ and $0.8 \mathrm{~mol} \% \mathrm{H}_{2} \mathrm{O}$ release, which provides one of fluid sources for eclogite amphibolization

Fluid Sources for the Amphibolization -- Metasediments

Conclusions

Acknowledgement

Funding Sources: \quad NSF EAR -1822524 \& Mirsky Fellowship

Main Collaborators: Carrie A. Menold (Albion College)
Esen E. Alp (Argonne National Laboratory)

Thank You!

