Magnetization of carbonaceous asteroids by nebular fields and the origin of CM chondrites

Samuel Weston Courville¹, Joseph O'Rourke¹, Julie Castillo-Rogez², Roger Fu³, Rona Oran⁴, and Benjamin Weiss⁵

¹Arizona State University
²Jet Propulsion Laboratory, California Institute of Technology
³Harvard University
⁴Massachusetts Institute of Technology
⁵MIT

November 23, 2022

Abstract

Within the young solar system, a strong magnetic field permeated the protoplanetary disc. The solar nebular magnetic field is likely the source of magnetization for some meteorites like the CM and CV chondrites, which underwent aqueous alternation on their parent bodies before the solar nebular field dissipated. Since aqueous alteration produced magnetic minerals (e.g. magnetize and pyrrhotite), the meteorites could have acquired a chemical remanent magnetization from the nebular field while part of their respective parent bodies. However, questions about the formation history of the parent bodies that produced magnetized CM and CV chondrites await answers-including whether the parent bodies exhibit a detectable magnetic field today. Here, we use thermal evolution models to show that a parent body of the CM chondrites could record ancient magnetic fields and, perhaps, exhibit strong present-day crustal remanent fields. An undisturbed planetesimal would experience one of three thermal evolution cases with respect to the lifetime of the nebular field. First, if a planetesimal formed too late for 26 Aldriven water ice melting to occur before the solar nebula dissipates, then aqueous alteration would not occur in the presence of the nebular field and result in no magnetization (Fig. panel a). Second, if a planetesimal forms early enough to undergo alteration before the nebula dissipates but not enough to heat beyond the blocking temperature(s) of the magnetic mineral(s), then nearly the entire planetesimal could be magnetized (Fig. panel b). Lastly, if a planetesimal forms early enough to undergo alteration and subsequently heats beyond the blocking temperature, then any magnetization would be erased except for a thin shell near the surface (Fig. panel c). Our thermal model results suggest that planetesimals that formed between ~2.7 and 3.7 Myr after CAIs could acquire large-scale magnetization. Spacecraft missions could detect this magnetization if it is at the strength recorded in CM chondrites and if it is coherent at scales of tens of kilometers. In-situ magnetometer measurements of chondritic asteroids could help link magnetized asteroids to magnetized meteorites. Specifically, a spacecraft detection of remanent magnetization at 2 Pallas would bolster the claim that 2 Pallas is a parent body of CM chondrites.

Samuel W. Courville¹, Joseph G. O'Rourke¹, Julie C. Castillo-Rogez², Roger R. Fu³, Rona Oran⁴, Benjamin P. Weiss⁴ ¹School of Earth and Space Exploration, Arizona State University, Tempe, AZ, USA, ²Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA, USA, ³Department of Earth and Planetary Sciences, Harvard University, Cambridge, MA, USA, ⁴MIT Department of Earth, Atmospheric, and Planetary Sciences, MIT, Cambridge, MA, USA

Magnetization of Carbonaceous Asteroids and the Origin of the CM Chondrites

Does magnetization of CM chondrites fit

Testable prediction: Some C-type asteroids have detectable magnetic fields

4. Connecting meteorites to asteroids

The CM chondrite parent asteroid(s) underwent aqueous alteration while in the nebular field.

The type of aqueous alteration determines the scale and detectability of asteroid remanent magnetization.

Any alteration scenario could produce the magnetized CM chondrites found on Earth.

Ancient fluid flow (3-5 Myr after CAIs)

Remanent magnetic field persistent today

4c. Fumarolic alteration

High temperature water and steam escapes through narrow localized conduits [8].

Result: Small localized regions of coherent magnetization.

Lander

B

1 Ceres

2 Pallas

10 Hygeia

[1] Desch, S. J., et al. 2018. Astrophys. J. Suppl. Ser. 238, 11. [2] Cournede, C. et al. 2015. Earth Planet. Sci. Lett. 410, 62–74. [3] Fu, R. R. et al. 2021. AGU Adv. 2, 1–21. [4] Rubin, A. E. et al. 2007. Geochim. Cosmochim. Acta 71, 2361–2382. [5] Weiss, B. P. et al. 2021. Sci. Adv. 7, eaba5967. [6] Hutchison, R., et al. 2001. Philos. Trans. R. Soc. London. Ser. A Math. Phys. Eng. Sci. 359, 2095–2110. [7] Bland, P. A. & Travis, B. J. 2021. Sci. Adv. 3, e1602514. [8] Ganino, C. & photo credit: Flickr ArtBrom. Philae lander photo credit: Flickr ESA. Small asteroid photo credit: Libourel, G. 2020. Sci. Adv. 6, eabb1166. [9] Image credit: NASA/JPL-Caltech/UCLA/MPS/DLR/IDA [10] Vernazza, P. et al. 2021. Astronomy and Astrophysics, 654 A56.

carried out at the Jet Propulsion Laboratory, California Institute of Technology, under a contract with the National Aeronautics and Space Administration (80NM0018D0004). The information presented here is predecisional and is provided for planning and discussion purposes only. Murchison meteorite