Physical and ecophysiological controls on the relationship between solar-induced chlorophyll fluorescence and gross primary productivity across diurnal and seasonal scales in the boreal forest

Zoe Pierrat¹, Troy Magney², Nicholas Parazoo³, Katja Grossmann⁴, Bruce Johnson⁵, Alan Barr⁵, Jacob Bortnik¹, Alexander Norton⁶, Andrew Maguire⁷, David Bowling⁸, Ulrike Seibt¹, Christian Frankenberg⁷, and Jochen Stutz¹

¹University of California Los Angeles
²University of California Davis
³Jet Propulsion Laboratory (JPL)
⁴Heidelberg University
⁵University of Saskatchewan
⁶Jet Propulsion Laboratory, California Institute of Technology
⁷NASA Jet Propulsion Laboratory
⁸University of Utah

November 22, 2022

Abstract

Solar-Induced Chlorophyll Fluorescence (SIF) is a powerful proxy for gross primary productivity (GPP) in Boreal ecosystems. However, SIF and GPP are fundamentally different quantities that describe distinct, but related, physiological processes. Recent work has highlighted non-linearities between SIF and GPP at finer spatial (leaf- to canopy- level) and temporal (half-hourly) scales. Therefore, questions have arisen about when, where, and why SIF is a good proxy for GPP and what the potential sources for divergence between the two are. The goal of this study is to answer two specific questions: 1) At what temporal scale is SIF a good proxy for GPP and 2) What are the predominant physical and ecophysiological drivers of nonlinearity between SIF and GPP in boreal ecosystems? We collected tower-based measurements of SIF (and other common vegetation indices) with PhotoSpec (a custom spectrometer system) and eddy-covariance GPP data at a 30-minute resolution at the Southern Old Black Spruce Site (SOBS) in Saskatchewan, CA. We applied a combination of statistical and machine learning approaches to disentangle the influence of structural/illumination effects and ecophysiological variations on the SIF signal. Our results show that at a high temporal resolution (half-hourly), SIF and GPP are predominantly dependent on photosynthetically active radiation (PAR). Therefore, the non-linear light response of GPP drives non-linearity between SIF and GPP. Additionally, canopy structure and illumination effects become important to the SIF signal at high temporal resolutions. At the seasonal timescale, SIF and GPP exhibit co-varying responses to PAR, even when accounting for changes in canopy structure. We attribute changes in the light responses of SIF and GPP to sustained photoprotection over winter which co-varies with changes in temperature. Finally, we show that the relationship between SIF and GPP has a seasonal dependence caused by small differences between the light use efficiencies of fluorescence and photosynthesis. Accounting for this seasonally variable relationship will improve the use of SIF as a proxy for GPP.

Physical and ecophysiological controls on the relationship between solarinduced chlorophyll fluorescence and gross primary productivity across diurnal and seasonal scales in the boreal forest

ADVANCING EARTH AND SPACE SCIENCE Zoe Pierrat, Troy Magney, David Bowling, Ulli Seibt, Katja Grossmann, Andrew Maguire, Alex Norton, Jacob Bortnik, Bruce Johnson, Warren Helgason, Alan Barr, Christian Frankenberg, Nicholas Parazoo, Jochen Stutz Dec 2021

SIF is a powerful proxy for GPP, however, smaller scale studies have highlighted nuance to the relationship between SIF and GPP

A SIF emission is one of three potential pathways an absorbed photon can take. We can use this information to relate SIF and GPP

Photon plant interactions over complex canopy structures (*physical*) create significant challenges for interpreting SIF and connecting it to plant productivity (*ecophysiological*)

The goals of this study:

$$GPP = SIF * \frac{LUE_P}{LUE_F * f_{esc}}$$

1. What are the relationships among SIF, VIs, and GPP?

2. How do the dynamics of LUE_P , LUE_F , and f_{esc} impact the relationship between SIF and GPP at varying temporal scales?

*in the boreal forest

We collected data from PhotoSpec in a boreal mixed-species needleleaf forest

Pierrat et al., 2021 Pierrat et al., in revision Grossmann et al., 2018

SIF and vegetation indices as a proxy for GPP

The SIF-GPP relationship becomes **increasingly non-linear** at high temporal resolutions

Light saturation of GPP is the primary driver of the non-linear SIF/GPP relationship at a half-hourly resolution

Co-variation between LUE_F and LUE_P drives the seasonal convergence of SIF and GPP, but there is a seasonal dependence

Pierrat et al. in revision

A seasonally variable SIF-GPP relationship can help account for nuances in the seasonal variability of f_{esc} , LUE_F, and LUE_P

Conclusions:

- 1. What are the relationships among SIF, VIs, and GPP across varying temporal scales?
- Southern Old Black Spruce 2018-2021 Timeseries Half-hourly a) $R^2 = 0.92$ c) Diurnal nonlinearity due to $R^2 = 0.64$ s_ 25 дрр [µmol m⁻² SIF light saturation of GPP/LUE_P [W m⁻² ; 20 Physiologically b) $B^2 = 0.90$ s⁻¹] sensitive metrics [µmol m⁻² дрр 00 (SIF. CCI. PRI) show seasonal Co-variation between LUE_F and correlations with C) s⁻¹] 0.2 0.4 0.6 GPP SIF [W m⁻² sr⁻¹ μ m⁻¹] mol m⁻² дРР LUE_P drives seasonal convergence -0.1 $B^2 = -0.10$ -0.2 d) $R^2 = -0.04$ 0.4 a) 0.4 A seasonally mol m⁻² NIRv GPP Structurally esc variable SIF-GPP sensitive indices (NDVI and NIRv) relationship will 5E-3 e) $B^2 = 0.79$ µmol m⁻²s⁻¹ 4E-3 **b)** show little seasonal βЪΡ help account for Э ЗЕ-3 variation 2E-3 additional 1E-3 C) nuances to the 0.04 Snow needs to be considered! LUEP SIF-GPP relationship zpierrat@g.ucla.edu **Questions?** @zoeapie 11

2. How do the dynamics of LUE_P, LUE_F, and f_{esc}

at varying temporal scales?

impact the relationship between SIF and GPP