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Abstract

Using x-ray tomography in coreflooding experiments allows to characterize the sub-core, mm-scale, multiphase flow properties

such as permeability, porosity, relative permeability and capillary pressure. This has been studied previously for CO2-brine

drainage experiments and a procedure has been developed for sub-core property estimation, showing that their implementation

in numerical models leads to accurate predictions of experimental measurements, such as core saturation distribution. Much less

work has been conducted regarding CO2-brine imbibition modeling. In this work we characterize hysteretic sub-core properties

using experimental data of CO2-brine imbibition coreflooding conducted on two core samples. We adopt the approach of

[1] for sub-core capillary pressure modeling and that of [2] for relative permeability modeling, however, we find that these

are not sufficient for accurate modeling of saturation distribution within the core. We improve the models by considering

a unique turning point and Land trapping coefficient for each mm-scale grid block in our model and also by calculating

new imbibition characteristic relative permeability curves based on a procedure developed in [3]. Results show improvements in

matching experimental data. [1] R. Pini, and S.M. Benson. “Capillary pressure heterogeneity and hysteresis for the supercritical

CO2/water system in a sandstone.” Advances in Water Resources 108 (2017): 277-292. [2] O. Dury, U. Fischer, and R. Schulin.

“A comparison of relative nonwetting-phase permeability models.” Water Resources Research 35.5 (1999): 1481-1493. [3] E.

Anto-Darkwah, S.M. Benson, and A. Rabinovich. “An improved procedure for sub-core property characterization using data

from multiple coreflooding experiments.” International Journal of Greenhouse Gas Control 105 (2021): 103226.
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• `

Summary

Experimental Data

Results
• Drainage and imbibition coreflooding experiments were conducted

on two core samples along with X-ray CT imaging resulting in

detailed sub-core saturation distributions.

• Previous work estimated drainage relative permeability (kr),

capillary pressure (Pc) and 3D permeability distribution (k).

• In this work we characterize hysteretic sub-core kr and Pc in order

to accurately model imbibition coreflooding.

• We first adopt the methods of Pini and Benson (2017) for sub-core

capillary pressure modeling and that of Dury et al. (1999) for

relative permeability modeling, however, we find that these are not

sufficient for accurate modeling of core saturation distribution.

• The models are improved using unique Land trapping coefficients

for each mm-scale grid block in our model and also by calculating

new imbibition characteristic relative permeability curves based on

a procedure developed in Anto-Darkwah et al. (2020).

• Results show improvements in matching experimental data.

• Corefloods were conducted at the Benson Lab in Stanford Univ. 

• For drainage, is obtained by MICP and fitted by:

, ,

• Imbibition is modeled by:
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Permeability estimation
• Permeability distributions                   were previously obtained from 

drainage experiments (Anto-Darkwah et al. 2020)

Sub-core scale imbibition       ,      curves

• We used the previous equations for            ,          however, grid block 

values:      ,         ,             are used as opposed to global values

• Grid block land coefficients were calculated as: 
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Imbibition characteristic           curves
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• Flow simulations are conducted with the new sub-core scale

,              as input,I char

rjk

Bentheimer saturation comparisons

Shezaf saturation comparisons

Relative permeability comparisons

• A, B and C are fitting parameters obtained from simultaneous 

fitting of          ,         curves
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are optimized so core effective rel perm 
matches the experimental measured values

Block by block Pc curves

Block by block  kr curves
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