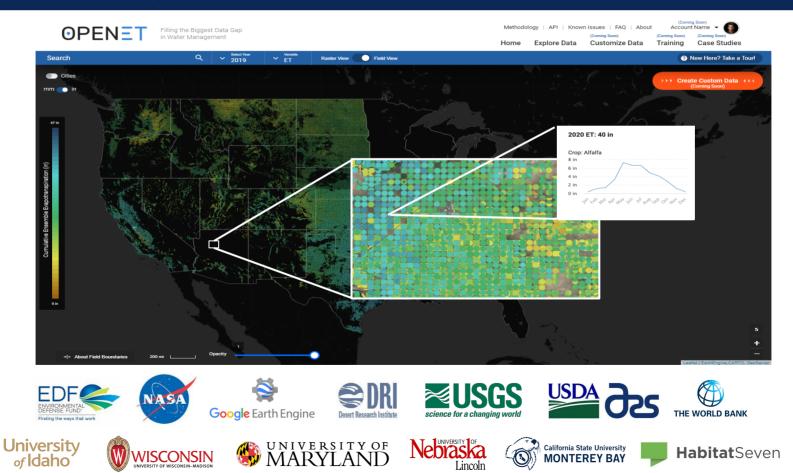
OpenET Satellite-based ET Intercomparisons with Ground-based Measurements: Phase II Results

John Volk¹, Justin Huntington¹, Forrest Melton², Richard Allen³, Martha Anderson⁴, Christian Dunkerly⁵, Joshua Fisher⁶, MacKenzie Friedrichs⁷, Christopher Hain⁸, Gregory Halverson⁹, Lee Johnson¹⁰, Yanghui Kang¹¹, Ayse Kilic¹², Kyle Knipper¹³, Blake Minor¹, Charles Morton¹, Samuel Ortega-Salazar¹⁴, Thomas Ott¹, Christopher Pearson¹, Peter Revelle¹⁴, Anderson Ruhoff¹⁵, Gabriel Senay¹⁶, Tianxin Wang¹⁷, and Yun Yang¹⁸


¹Desert Research Institute ²California State University Monterey Bay ³Univ Idaho ⁴USDA ARS Hydrology and Remote Sensing Laboratory ⁵Desert Research Institute Reno ⁶UCLA ⁷EROS/SGT, Inc ⁸National Integrated Drought Information System ⁹NASA Jet Propulsion Laboratory ¹⁰Univ. Corp. Monterey Bay ¹¹USDA ARS ¹²University of Nebraska-Lincoln ¹³USDA Beltsville Agricultural Research Center ¹⁴University of Nebraska Lincoln ¹⁵IPH / UFRGS ¹⁶U.S. Geological Survey Earth Resources Observation and Science (EROS) Center ¹⁷NASA Ames Research Center ¹⁸U. S. Department of Agriculture, Agricultural Research Service, Hydrology and Remote Sensing Laboratory

November 26, 2022

Abstract

OpenET is a software system that makes satellite-based multi-model estimates of evapotranspiration (ET) accessible at multiple spatial and temporal scales over the U.S. Large-scale ET estimates fill a critical data-gap for irrigation management, water resources management, and hydrological modeling and research. We present the methods and results of the second phase of an intercomparison and accuracy assessment between OpenET satellite-based models (ALEXI/DisALEXI, eeMETRIC, PT-JPL, geeSEBAL, SIMS and SSEBop) and a benchmark ground-based ET dataset with data from nearly 200 eddy covariance towers across the contiguous U.S. Processing steps for the benchmark dataset included gap-filling, energy balance closure correction, calculation of closed and unclosed daily ET, and multiple levels of data QA/QC. The dataset was split into three groups, phase I and II of the intercomparison and a reserve dataset for future studies. To sample satellite-based ET pixels, static flux footprints were generated at each station based on dominant wind speed and direction. Where data allowed, two dimensional flux footprints that are weighted by hourly ETo were developed and used for ET pixel sampling. A wide range of visual and statistical comparisons between satellite and ground-based ET were conducted at each station and against stations grouped by land cover type. Based on key performance metrics including bias, coefficient of determination, and root mean square error, model results show promising agreement at many flux sites considering the inherent uncertainty in station data. Remote sensing models show the highest agreement with closed station ET in irrigated annual cropland settings whereas locations of native vegetation with high aridity and some forested stations show relatively less agreement. The benchmark ET dataset was used to explore different approaches to computing a single ensemble estimate from the six model ensemble, with the goal of reducing the influence of model outliers and selection of weighting and data sampling schemes to reduce the influence of flux stations with sparse or extensive data records. We present the results from the model intercomparison and accuracy assessment and discuss model performance relative to accuracy requirements from the OpenET user community.

Satellite-based ET Intercomparisons with Ground-based Measurements: Phase II Results

The **OPEN T** Team

Environmental Defense Fund Robyn Grimm, Dana Rollison, Maurice Hall

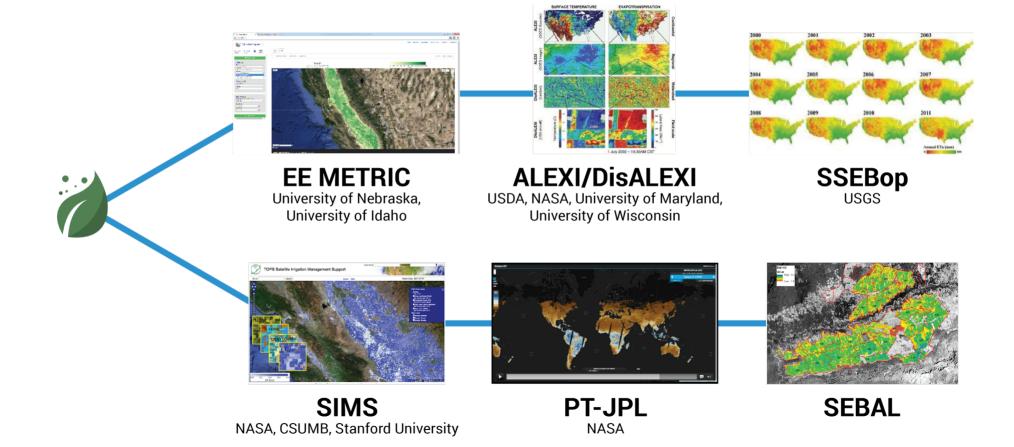
DRI, NASA Ames, Habitat Seven (Multi-model Development, Integration, API, UI) Justin Huntington, Forrest Melton, Jamie Herring, Charles Morton, Britta Daudert, Alberto Guzman, Jody Hansen, Jordan Harding, Matt Bromley, John Volk, Chris Pearson, Christian Dunkerly, Blake Minor, Thomas Ott

USDA, NASA Marshall Space Flight Center, U. Maryland, U. Wisconsin (ALEXI/DisALEXI) Martha Anderson, Yun Yang, Christopher Hain, Mitch Schull, Yanghui Kang

U. of Nebraska, U. of Idaho, DRI (EE METRIC) Ayse Kilic, Rick Allen, Peter Revelle, Samuel Ortega

NASA JPL (PT JPL) Josh Fisher, Gregory Halverson

NASA Ames, CSUMB, Stanford University (SIMS) Forrest Melton, Alberto Guzman, Lee Johnson, Tianxin Wang, Conor Doherty, Will Carrara


USGS (SSEBop) Gabriel Senay, MacKenzie Friedrichs, Gabriel Parrish

Universidade Federal do Rio Grande do Sul (SEBAL) Anderson Ruhoff

Google Earth Engine Tyler Erickson

OpenET Uses Well-Established Methods

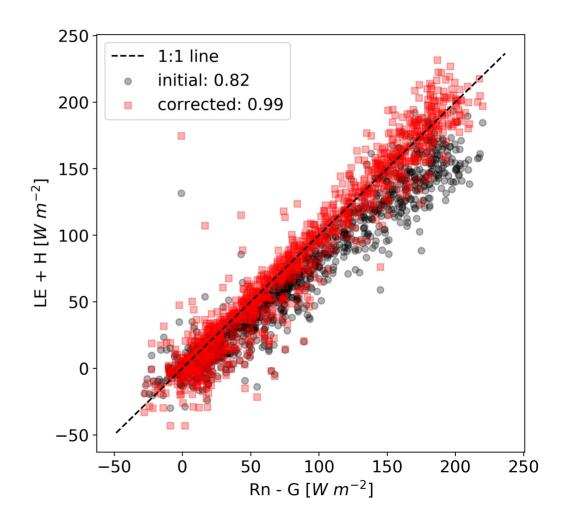
OPENET Developing a Benchmark ET Dataset From Eddy Flux Towers

Site Landcover

- Annual crops
- Evergreen Forests
- Grasslands
- * Mixed Forests
- Orchards
- Riparian
- Shrublands
- Vegetable crops
- Vineyards
- Wetlands
- Filtered Sites

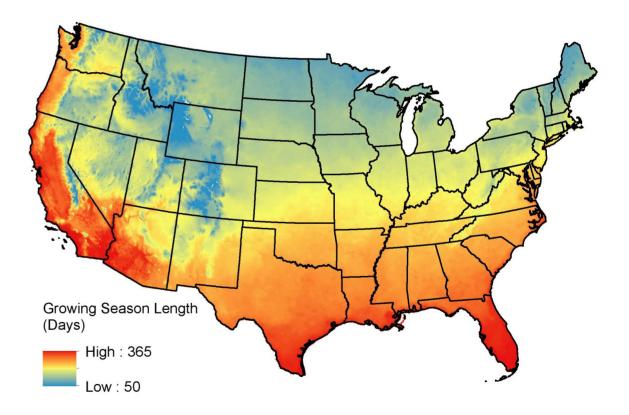
Phase I comparison 70 flux tower sites; 24 ag. sitesPhase II comparison for 142 flux tower sites; 70 ag.33 sites held out for blind model evaluation

Flux Data Processing and Energy Balance Correction

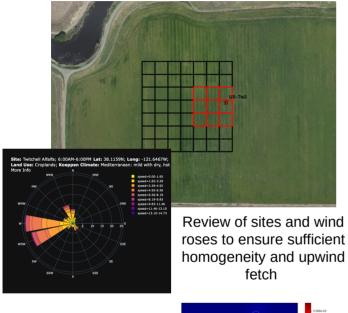

Gap-filling half-hourly energy balance components LE, H, Rn, and G, filling up to 2 hours during the daytime and 4 at night, then take daily average.

Energy balance closure correction that uses the median of daily energy balance ratios (Rn-G)/(LE+H) over sliding windows to correct daily LE using the inverse of the ratio. Based from the FLUXNET2015 method (Pasterello et al., 2020).

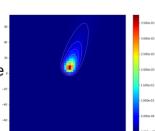
Daily gap-filling ET with interpolated EToF x gridMET ETo (Abatzoglou, 2013)

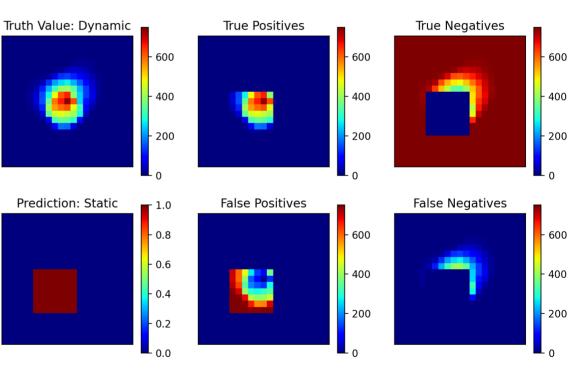

Reproducible methods using the "flux-data-qaqc" Python package (Volk et al., 2021)

Visual QA/QC and data filtering



Benchmark ET Dataset Screening Criteria


- 300 deg. C cumulative growing degree day, -2 C killing frost temperatures using ~40 years of data to define growing seasons
- Growing season closure > 75%
- Cold season closure > 60%
- No gap filled daily ET or monthly ET with > 5 gap-filled days

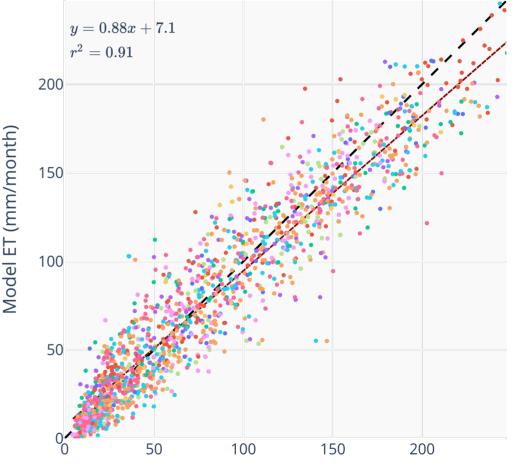

Flux Footprint Generation for Sampling of RSET Pixels

Dynamic half-hourly footprint analysis following Kljun et al. (2015); example for celery field in Soledad, CA

0 x [m] US-GMF 7 x 7 Tower Footprint Confusion Matrix

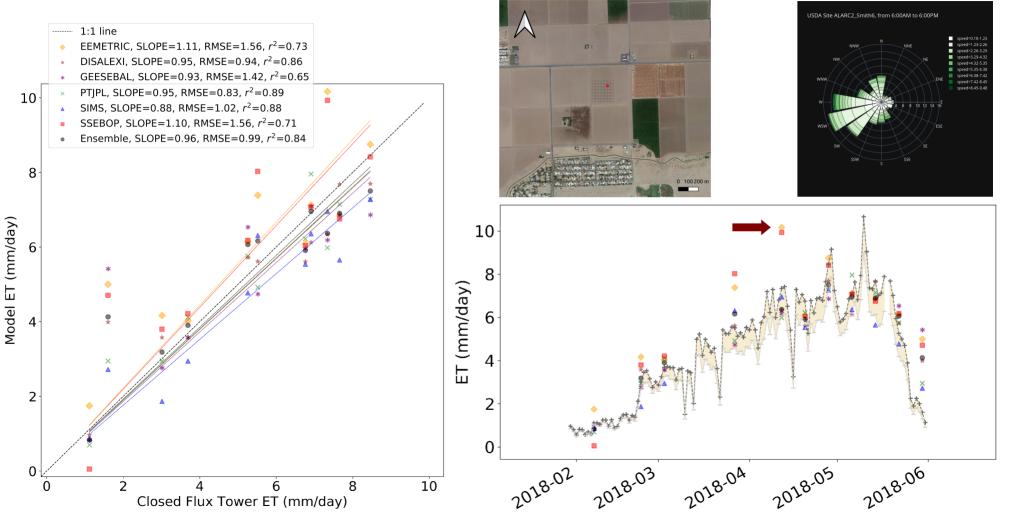
Statistical Methods For Comparing Models to Ground Data OPENET

Grouped weighted mean statistics

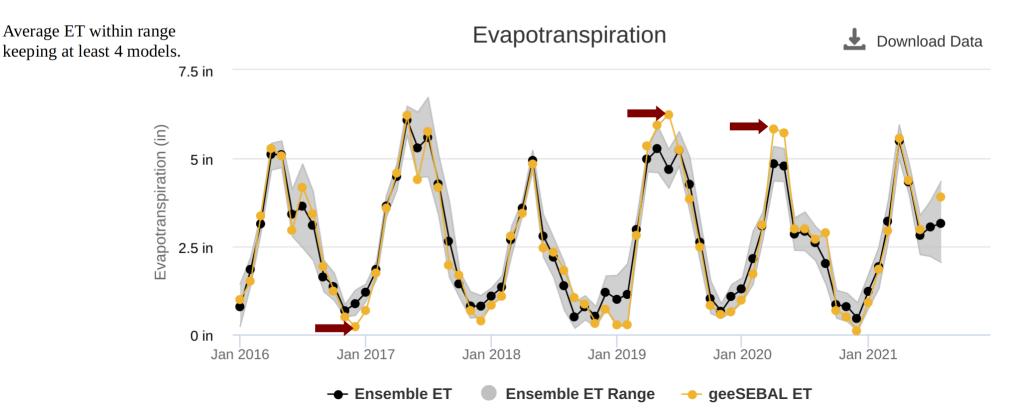

$$STAT_{land} = \frac{\sum \sqrt{n_i} \cdot X_i}{\sum \sqrt{n_i}}$$

Where X_i is the statistic and n_i is the number of paired ET values for the i^{th} site.

<u>Key summary statistics</u> Slope: of linear regression through origin MBE: mean bias error MAE: mean absolute error RMSE: root mean square error r^{2:} coefficient of determination (not weighted)


Minimum of 6 days and 3 months of paired data per site for grouped statistics.

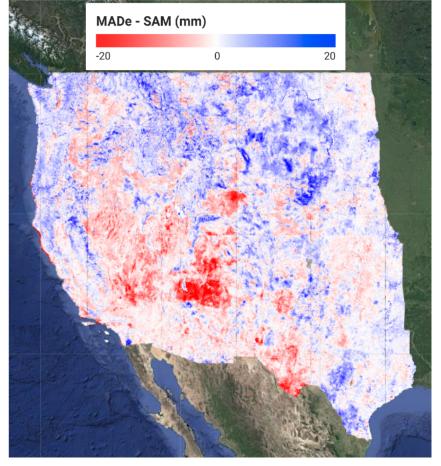
Ensemble, croplands sites


Closed Flux Tower ET (mm/month)

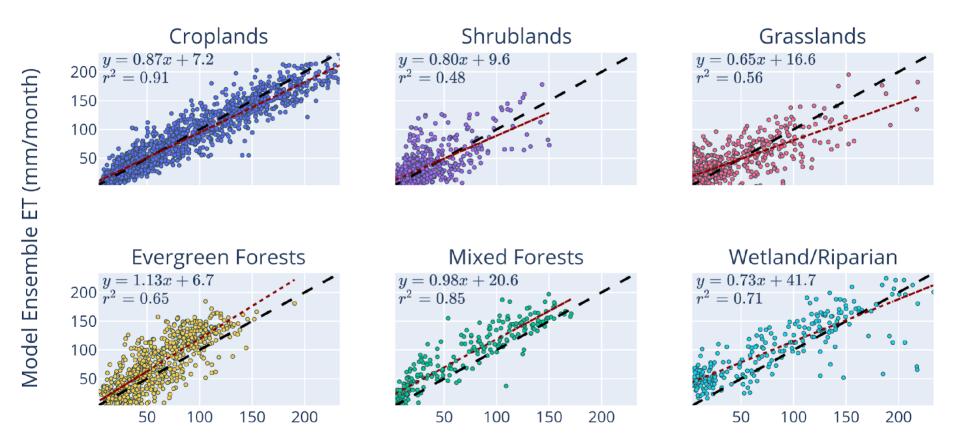
Example Comparison: Arizona Wheat

Model Ensemble: Median Absolute Deviation (MAD) Outlier Detection

 $MAD = 2 \cdot median(|X_i - median(X)|)e$ Ensemble ET range: median(X) + MAD > ET > median(X) - MAD

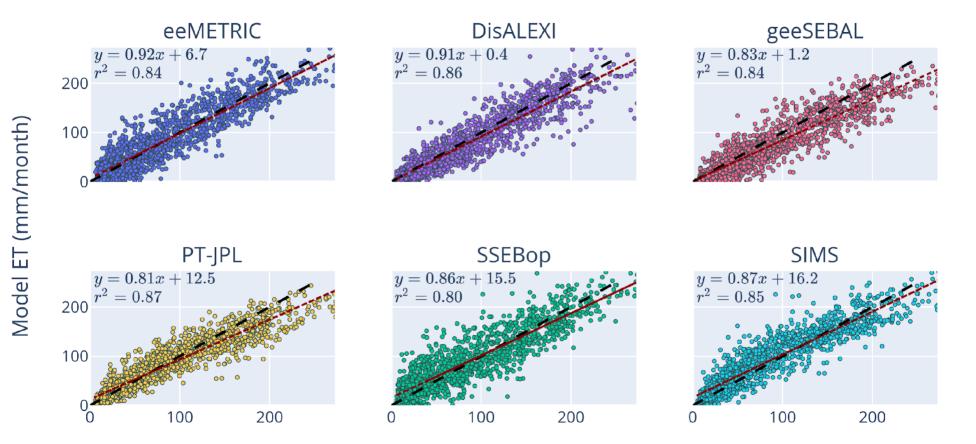


Mapping Ensemble Outliers and Deviation from Simple Mean


Model count in MAD ensemble, July 2020 Legend One Two Three Four Five Six

MAD minus simple mean ensemble

OPENET



Ensemble ET based on Site Land Cover, Monthly ET

Closed Flux Tower ET (mm/month)

Model Comparison Across Cropland Sites, Monthly ET

OPENET

Closed Flux Tower ET (mm/month)

Accuracy Results and Goals from the User Community

Croplands summary statistics for the phase II intercomparison.

Goals for error relative to closed flux ET, RMSE and MAE: 15-25% (daily); 15-20% (monthly); 10-15% (growing season)

Monthly	Statistic	Ensemble	Model Range	
45 sites N = 1682 months Mean closed ET is 93.68 (mm)	Slope	0.95	0.86—1.04	
	MBE (mm)	-3.64 (3.9%)	-13.77—5.16 (-14.7—5.5%)	
	MAE (mm)	15.55 (16.6%)	17.96—22.92 (19.2—24.5%)	
	RMSE (mm)	19.97 (21.3%)	23.43—28.72 (25.0—30.7%)	
	r²	0.91	0.8—0.87	

Daily	Statistic	Ensemble	Model Range	Growing Season	Statistic	Ensemble	Model Range
49 sites N = 4913 days Mean closed ET is 3.64 (mm)	Slope	0.88	0.81—0.94	38 sites N = 151 seasons Mean closed ET is 609 (mm)	Slope	1	0.88—1.13
	MBE (mm)	-0.27 (7.4%)	-0.61—0.04 (-16.8—1.1%)		MBE (mm)	-10.1 (1.7%)	-78.61—47.37 (-12.9—7.8%)
	MAE (mm)	0.83 (22.8%)	0.91—1.14 (25.0—31.3%)		MAE (mm)	80.25 (13.2%)	91.18—111.8 (15.0—18.4%)
	RMSE (mm)	1.08 (29.7%)	1.21—1.46 (33.2—40.1%)		RMSE (mm)	92.72 (15.2%)	108.7—134.31 (17.8—22.1%)
	ľ2	0.81	0.68—0.77		r²	0.88	0.77—0.86

Conclusions

- Comparisons were made between ET estimates from about ~142 eddy covariance flux towers and OpenET remote sensing models
- Flux tower ET underwent thorough and reproducible QA/QC and energy balance closure corrections
- Grouped statistics show good model performance in agricultural settings from all models but there is room for improvement; the intercomparison has already led to model improvements
- Model agreement with ground measurements was poorest in arid regions of native shrublands and grasslands
- Future model evaluations will aim to increase ground-based data coverage

Contact: john.volk@dri.edu