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Abstract

Regional-scale, continuously-operating Global Navigation Satellite System (GNSS) networks are a powerful tool to monitor plate

motion and surface deformation. Since their inception, their size, density, and length of observation record have steadily increased

throughout the world. Simultaneously, researchers have had to write accompanying software to enable the analysis (especially

the decomposition) of the ever-increasing amount of available timeseries in an efficient way. These codes and respective studies

have individually set standards for different subsets of the following desirable qualities: portability (between locations), speed

(code runtime), automation (avoiding or simplifying manual inspection of each station), use of spatial correlation (exploiting

the fact that stations experience common signals), availability (open source), and documentation (of the usage and underlying

methods). In this study, we present the DISSTANS Python package, which aims to combine the aforementioned achievements

in a single software by offering generic (therefore portable), parallelizable (fast) methods that can exploit the spatial structure

of the observation records in a user-assisted, semi-automated framework, including uncertainty propagation. The code is open

source, includes an application interface documentation as well as usage tutorials, is easily extendable, and is based on the

previously published and validated method of Riel et al. (2014). We also present two case studies to validate our code, one

using a synthetic dataset and one using real GNSS network timeseries.
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I. DISSTANS At A Glance

Spatial L0 regularization

II. Validation: Synthetic GNSS Networks

Variable-amplitude vertical seasonal signal

Transient signal extraction performance as a
function of network size and noise level

Benefits of using spatial L0 regularization in a synthetic network affected by multiple signals
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Fig. 4: Modeled horizontal transient displacements of selected stations inside the Long Valley Caldera during the period between
2012 and 2015. The curves track the location of a station relative to its initial position, with their colors corresponding to time.
Outward horizontal motion during the period of rapid extension is clearly visible (compare Ji et al., 2013; Montgomery‐Brown et
al., 2015). Background satellite imagery by Earthstar Geographics & Esri.

Fig. 1: Visualization of the implementation of the sparsity-promoting regularization schemes in DISSTANS.
The L1 solution is computed using CVXPY (Agrawal et al., 2018; Diamond & Boyd, 2016). By reweighting
the parameter-specific penalties and iterating, the L1 solution converges to the (local) L0 solution (Candès
et al., 2008). Combining the reweighted penalties across the network then yields the spatial L0 solution
(Riel et al., 2014).

•Decompose timeseries into parameterized, function-defined models (from simple
polynomials to magnitude-varying sinusoids and dictionaries of transient splines)

•Designed for Global Navigation Satellite Systems (GNSS) networks of position
timeseries, but easily adaptable for other timeseries

•Solve for parameters with least squares and L2, L1 and L0 regularization norms
• Include spatial awareness in the estimate of model parameters using spatial L0-
regularization (Riel et al., 2014)

•Take advantage of CPU-based parallelization (with GPU capabilities planned)
•Create maps and visualizations with simple commands
•Open-source code, full online documentation
•Create synthetic timeseries, manage RINEX databases, incorporate maintenance
and seismic catalogs, detect data jumps, and much more
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•DISSTANS better recovers the true direction and amplitude of motion when going from local to spatial L0 regularization.
• Improvements are present in both high and low signal-to-noise-ratio timeseries (also see Fig. 2).

We choose data from the Long Valley Caldera (LVC) region to validate our code because:
• It is affected by multiple significant processes, e.g., episodic, aseismic transient motion, and
significant, time-varying seasonal hydrological loading.

•The long displacement timeseries from the local GNSS network has been extensively studied by
others (e.g., Ji et al., 2013; Montgomery‐Brown et al., 2015; Silverii et al., 2020).

•Transient motion is modeled with an overcomplete dictionary of
integrated cardinal B-splines of varying periods (tens to hundreds of
days) and center times (thousands of elements in total).

• Sparsity is promoted in space and time with spatial L0 regularization.
•No assumption about a steady-state velocity is made.

The seasonal signal for each frequency and data component is modeled as
as , where:
• a and b are constant and unregularized, forming the nominal term

acos(ωt)+bsin(ωt) .
• a(t) and b(t) are modeled by a full basis of B-splines, forming the L1-
regularized deviation term a (t)cos(ωt)+b(t)sin(ωt. Every spline (one
per year) has approximately the same scale and support (three years)

Horizontal and vertical components have separate regularization
penalties due to different observation uncertainties.

Raw GNSS timeseries for the Long Valley Caldera and surrounding regions were downloaded
from the University of Nevada at Reno's Nevada Geodetic Laboratory (Blewitt et al., 2018).

The timeseries for all synthetic networks
were created using tools included in DISSTANS.

Using a large number of different network geometries and
relative noise levels, we find that DISSTANS is able to:
•Decrease the average error (misfit between model and truth)
over the stations in the network.

•Decrease the error variance of the fit between sampled
networks.

These reductions highlight DISSTANS' potential to identify
processes with low signal-to-noise ratio.

Fig. 3: Map view of the extracted transient motion of a synthetic network analyzed with local and spatial L0 regularization. The colored curves track the location of
a station relative to its initial position, with the colors corresponding to time. The true transient is shown by the black outlines. The network is also affected by secular,
annual, biannual, coseismic and postseismic motion, as well as Gaussian noise.

Fig. 6: Seasonal model constituents for station KNOL (see Fig. 4 for location) in the vertical
component. The upper two panels show the nominal and deviation terms, respectively, and
the bottom panel shows their sum. In each panel, the blue and orange lines correspond to the
annual and biannual frequencies, respectively, and the black line is their sum. The overall
model is able to adapt well to yearly variations (compare Silverii et al., 2020).

Fig. 5 (left): Modeled horizontal transient displacement (colored lines) of selected stations
(names on the left) from Fig. 4, projected along the direction of maximum displacement
during the period between 2012 and 2015. The directions (in grey to the right) are measured
counterclockwise from east. CA99's direction is used for CASA. Black dots are the joint
model's residuals, centered on the transient model. The transient motions clearly exhibit
spatiotemporally coherent periods of expansion (compare Silverii et al., 2020).

Fig. 2 (right): Average errors of synthetic networks of varying sizes and geometries
for different relative noise levels σ (colored lines). Every station is affected by the
same transient displacement signal. The sample mean over all simulated networks
of the average error within each network is on the vertical axis, and the number of
stations used is on the horizontal axis. Errorbars are the sample standard deviation
over all simulated networks of the average error. The dashed line is the theoretical
error if the regularization would prevent any signal to be fitted. The dotted line is
a reference line proportional to the inverse square root of the number of stations.

III. Validation: Long Valley Caldera, California, USA
Study location

Horizontal transient motion

References

•Sparsity is important for
geophysical inverse problems
that focus on the detection
of signals.

• L1 and L0 norms penalize the
magnitude and existence of
parameters, respectively, for
a single timeseries (i.e.,
locally).

•Spatial L0 extends the
regularization to promote
signals that are coherently
present in space, while
penalizing parameters that
are only seen at isolated
locations (Riel et al., 2014).
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DISSTANS
Check out the GitHub repository for the

code and documentation!
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