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Abstract

Substantial progress on machine learning (ML) models and graphical processing units (GPUs) has stimulated emerging research

in applications of ML to earth science. As snow is a vital component of the global hydroclimate system, precise snowpack

prediction is of considerable value for science and society. In this work, we have trained three different ML models (LSTM,

CNN and Attention) to predict daily snow water equivalent (SWE) with both dynamic and static features in the Western

Contiguous United States from Snow Telemetry (SNOTEL) observations. Dynamic features include precipitation, minimum

and maximum temperature, minimum and maximum relative humidity, specific humidity, solar radiation and wind velocity.

Static features are latitude, longitude, elevation, diurnal anisotropic heating (DAH) index and topographic radiative aspect

(TRASP) index. This choice of features allows us to produce high-resolution maps of regional SWE for a given set of input

meteorological conditions. The importance and the sensitivity of input variables will be tested by several explainable AI methods

including feature permutation and integrated gradient. The ML-based dataset is further up-sampled and compared with the

4km gridded SWE dataset from the National Snow & Ice Data Center (NSIDC), which is from a physical-based model. Future

SWE estimates are also produced under climate conditions projected by CMIP class models, along with associated uncertainty

estimates based on our sensitivity analysis. The ML models are demonstrated to be a fast and accurate method of producing

high-resolution SWE estimates with minimal computing power.

1



A Comprehensive Investigation of Machine 
Learning Models for Estimating Daily Snow 

Water Equivalent over the Western U.S.

Shiheng Duan, Paul Ullrich

University of California, Davis

2021 AGU Fall Meeting



Previous work on SWE estimation 

• From reanalysis dataset: ANN model or 
random forest;

• From precipitation: cGAN; 

• From precipitation and snow-related 
variables: LSTM. 

• Not all models can be applied to 
projections.   

• Idea: Use machine learning (deep learning) 
models for the SWE prediction and 
projection.

• The models should be able to handle time 
dependency. 

• The models should mainly use atmospheric 
forcings for the projection purpose. 
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The task can be expressed as:
SWE𝑡 = 𝑓(𝑃𝑡 , 𝑃𝑡−1, 𝑃𝑡−2, … , 𝑃𝑡−𝑁+1, 𝑇𝑡 , 𝑇𝑡−1, 𝑇𝑡−2… , 𝑇𝑡−𝑁+1)



General Architecture
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• Dynamic input variables: precipitation, temperature 
(min and max), solar radiation, specific humidity (min 
and max), relative humidity, vapor deficit and wind 
speed; 

• Static input variables: latitude, longitude, elevation, 
diurnal anisotropic heat index (DAH) and solar 
radiation aspect index (TRASP). 

• Output variable: SWE
• Input window size: 180 days. 
• Models: Long-Short Term Memory (LSTM), Temporal 

Convolution Neural Network (TCNN), and Self-
Attention model (Attention). 

Figure: flow chart of 
our models. 



Deep Learning Models for Time Series
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Figure: LSTM, TCNN and Attention model architecture. 



Training, Testing and Validation
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• 581 SNOTEL stations are used to train 
the model. The variables are 
normalized with the mean and 
standard deviation from all the 
stations. 

• Hyperparameters are determined with 
the validation data. 

• Train each model 10 times and get the 
ensemble mean prediction. 

• The training time for LSTM is 5 hours, 
10 hours for TCNN and 26 hours for 
Attention with 1 RTX2080Ti GPU. 

Experiment Settings

Loss function Mean squared error

Training 1980-10-01 to 1999-09-30

Validation 1999-10-01 to 2008-09-30 

Testing 2008-10-01 to 2018-09-30 



SNOTEL Prediction Results
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• Quantify the performance by 
Nash-Sutcliffe mode efficiency 
coefficient (NSE) or R square 
score. 

• The median NSE values for LSTM, 
TCNN and Attention are 0.909, 
0.878 and 0.874, respectively. 

• We also compared with the 
NSIDC-UA dataset, which has a 
median NSE value as 0.861. 

Figure: Prediction result from deep learning models 
and NSIDC UA dataset. 



Prediction Results
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• The LSTM is the best with the highest 
median NSE value and more 
concentrated distributions over high 
NSE value regimes. 

• TCNN and Attention are similar, while 
Attention is better at high NSE value 
ranges. 

• NSIDC-UA dataset has more stations in 
low NSE regions compared with deep 
learning models. 

• There is a strong correlation among 
NSE values from different deep 
learning models. Pearson correlation is 
0.945 between LSTM and TCNN and 
0.818 between LSTM and Attention. 

Figure: Probability 
distribution of NSE 
values (top) and 
correlation between 
NSE values 
(bottom). 



Extrapolation
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• Use the model trained on 
SNOTEL observations to 
generate a gridded SWE 
estimation. 

• The statistic features of both 
input and output variables will 
be different. Models are in 
extrapolation regime. 

• To deal with extrapolation, we 
focus on the seasonality of 
SWE instead of the actual SWE 
amount. 

Figure: Rocky Mountain Domain (left) 
and elevation (right). 



Extrapolation
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• The seasonality itself will 
improve the generalization. 

• By training another set of 
models, the generalization 
performance is much 
better. 

• We lose the information of 
the actual SWE but gain the 
information in wider spatial 
domain. No free lunch. 

Figure: Extrapolation results. 



Projection
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• Continue with the SWE percentage and analyze the response of SWE to climate 
change. 

• Use LOCA dataset as forcings. Select CESM-CAM5, CNRM-CM5, EC-EARTH, GFDL-
ESM2M, HadGEM2-ES, and MIROC5. 

• From the SWE seasonality, we used following metrics to assess the snowpack 
change. 

Metric Units Assessment thresholds

Snowpack accumulation start date (SAD) Days since Oct 1st Day when SWE > 10% of maximum SWE

Snowpack peak accumulation date (SPD) Days since Oct 1st Day of maximum SWE

Complete melt date (CMD) Days since Oct 1st Day when SWE < 10% of maximum SWE

The length of snow season Number of days Sum of days from SAD to CMD



Projection Results

11Figure: Historical (left) and RCP8.5 (right) projections of snow season length. 



Projection Results

12Figure: Snow season length changes in the future (left) and the height dependency (right). 



Future Work
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• Couple with physical-based models to deal with extrapolation problems; 
• Data assimilation from satellite-based products for low-elevation area; 
• Explainable AI method to analyze the physical impactors; 
• Generalize to a wider area; 
• Projections with CMIP6 models when LOCA data is available. 



Thanks

14

• We would like to acknowledge the helpful discussion with Chaopeng
Shen, Wen-Ping Tsai from Pennsylvania State University, David John 
Gagne from NCAR, Mark Risser, Alan Rhoades and Chris Paciorek from 
Lawrence Berkeley National Laboratory. 

• The computational platform is Tempest GPU cluster at UC Davis. We also 
thank the Computational and Information System Lab for access to the 
Casper cluster through the Advanced Study Program at NCAR. 

• Any further questions or suggestions, please contact at 
shiduan@ucdavis.edu


