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Abstract

The Himalayan orogen exposes a range of metamorphosed assemblages, from low-grade Indian shelf sediments of the Tethyan

Formation to eclogite and ultra-high pressure rocks documented near the suture zone between the Indian craton and Asian

subcontinent. Barrovian-grade pelites and mafic protoliths are exposed in the Himalayan core and include the Greater Himalayan

Crystallines and Lesser Himalayan Formations. These units are separated by the Main Central Thrust (MCT). This fault system

accommodated a significant amount of India-Asia convergence and is the focus of several models that explore ideas about the

development of the range and collisional belts in general. These units provide critical information regarding the mechanisms of

heat transfer within collisional belts. Garnets collected across the MCT record their growth history through changes in chemistry.

These chemical changes can be extracted and modeled using a variety of thermodynamic approaches. This paper reviews the

geological framework of the Himalayas with a focus on the protolith of its metamorphosed assemblages. It describes and applies

particular thermobarometric techniques to decipher the metamorphic history of several garnet-bearing rocks collected across

the MCT in central Nepal. Comparisons are made between the results of previously-reported conventional rim P-T conditions

and P-T paths extracted using the Gibb’s method to isopleth thermobarometry and high-resolution P-T path modeling using

the same data and assemblages. Predictions of the paths on garnet zoning are also presented for the high-resolution P-T path

modeling and Gibb’s method using the program TheriaG. Although the approaches yield different absolute conditions and

P-T path shapes, all are consistent with the development of the MCT shear zone due to imbrication of distinct rock packages.

Greater Himalayan Crystalline garnets experienced higher-grade conditions that make extracting its P-T conditions and paths a

challenge. Lesser Himalayan garnets appear to behave as closed systems and are ideally suited for thermodynamic approaches.
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Abstract 20 

The Himalayan orogen exposes a range of metamorphosed assemblages, from low-grade Indian 21 
shelf sediments of the Tethyan Formation to eclogite and ultra-high pressure rocks documented 22 
near the suture zone between the Indian craton and Asian subcontinent. Barrovian-grade pelites 23 

and mafic protoliths are exposed in the Himalayan core and include the Greater Himalayan 24 
Crystallines and Lesser Himalayan Formations. These units are separated by the Main Central 25 
Thrust (MCT). This fault system accommodated a significant amount of India-Asia convergence 26 

and is the focus of several models that explore ideas about the development of the range and 27 
collisional belts in general. These units provide critical information regarding the mechanisms of 28 
heat transfer within collisional belts. Garnets collected across the MCT record their growth 29 
history through changes in chemistry. These chemical changes can be extracted and modeled 30 

using a variety of thermodynamic approaches. This paper reviews the geological framework of 31 
the Himalayas with a focus on the protolith of its metamorphosed assemblages. It describes and 32 
applies particular thermobarometric techniques to decipher the metamorphic history of several 33 

garnet-bearing rocks collected across the MCT in central Nepal. Comparisons are made between 34 
the results of previously-reported conventional rim P-T conditions and P-T paths extracted using 35 
the Gibb’s method to isopleth thermobarometry and high-resolution P-T path modeling using the 36 
same data and assemblages. Predictions of the paths on garnet zoning are also presented for the 37 
high-resolution P-T path modeling and Gibb's method using the program TheriaG. Although the 38 
approaches yield different absolute conditions and P-T path shapes, all are consistent with the 39 
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development of the MCT shear zone due to imbrication of distinct rock packages. Greater 40 
Himalayan Crystalline garnets experienced higher-grade conditions that make extracting its P-T 41 

conditions and paths a challenge. Lesser Himalayan garnets appear to behave as closed systems 42 
and are ideally suited for thermodynamic approaches. 43 

1 Introduction 44 

Nineteenth-century geologists studying the Himalayas perceived an anomalous geologic 45 
relationship that appeared to contradict two commonly accepted principles: the oldest rocks in a 46 

sedimentary succession are found at the base of the pile, and metamorphosed strata are older than 47 
unmetamorphosed. The Main Central Thrust (MCT), located at the base of the Himalayan break 48 
in slope, places lower-grade Lesser Himalayan Formation (LHF) metasediments beneath high-49 
grade gneisses of the Greater Himalayan Crystallines (GHC) (Figure 1 and Figure 2). 50 
Exploration of the Himal Pradesh region in northern India surprised the pioneering geologists 51 

(Medicott, 1864; Oldham, 1883; Middlemiss, 1887) who saw the highest-grade, and thus 52 
supposedly oldest rocks, form the tallest peaks: 53 

"Now the belief which is at present so rapidly gaining ground that metamorphic strata are 54 
presumably older than unmetamorphosed strata makes one at first glance assume the strong 55 

probability in favor of the inner schistose series [Greater Himalayan Crystallines] being of 56 
much greater age than the outer zone of formations [Lesser Himalaya]. But no sooner has this 57 
a priori probability obtained a firm hold of the mind than a rude shock is given to it by the 58 

discovery that at every point round the schistose area the Outer formations appear to dip 59 
towards and under the schistose series at steep angles (50°-60°), whilst the schistose series 60 

itself is disposed apparently…upon the top of the Outer Formations, and culminating in a 61 
capping of gneissose rock on the summit of Kalogarhi mountain, the highest point in the 62 
neighborhood (Middlemiss, 1887)." 63 

The recognition of widespread thrusting within the Himalaya was largely based on the 64 

observations (von Loczy, 1907; Pilgrim & West, 1928; Auden, 1937; Heim and Gansser, 1939) 65 
and the orogen's "inverted metamorphism," an increase in metamorphic intensity towards higher 66 
structural levels, appeared resolved by invoking compressional/contractional tectonics and the 67 

thrusting of the GHC unit on top of the LHF. However, future studies indicated that the kyanite 68 
isograd remained unbroken across the MCT, and its footwall is characterized by an inverted 69 
geotherm (Figure 3) (Ray, 1947; Gansser, 1964; LeFort, 1975; Pêcher, 1989; England et al., 70 

1992). The idea of Himalayan inverted metamorphism reemerged but was relocated to the MCT 71 
footwall.  72 

Inverted metamorphic gradients suggest the presence of wholly overturned strata or heat 73 
sources that counteract the influence of the asthenosphere (e.g., England & Molnar, 1993; 74 
Jamieson et al., 1996; Grasemann & Vannay, 1999; Kidder et al., 2013). The cause of the 75 

phenomenon has implications for establishing mechanisms of heat transfer within collisional 76 
belts and the role of heat sources, such as shear heating in fault zones, heat advection by 77 

magmas, radiogenic heating, and asthenospheric input. Inverted metamorphism has long been 78 
associated with areas of extensive thrust faulting, where heat is thought to flow from a hot upper 79 
plate to a colder lower plate (Ernst, 1973; Graham & England, 1976; Spear et al., 1995). Some 80 
models of Himalayan orogenesis link the apparently anomalous geothermal gradient spatially 81 
and temporally with motion along the MCT, whereas others suggest a juxtaposition of previously 82 
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metamorphosed sequences (Searle & Rex, 1989; Harrison et al., 1999; Hodges, 2000; Dasgupta 83 
et al., 2004; Larson et al., 2015).  84 

The MCT has accommodated a significant amount of Indo-Asian convergence (e.g., 85 
Schelling & Arita, 1991; Yin & Harrison, 2000; Yin, 2006; Tobgay et al., 2012; Roberts et al., 86 
2020), but other large-scale structures, including crustal-scale strike-slip faults to the north, 87 
active thrusts to the south, and the Main Himalayan Thrust (MHT) decollement compete for 88 
strain accommodation (Figure 2). The MCT has long been thought to be presently quiescent (Ye 89 

et al., 1981; Ni & Barazangi, 1984; Schelling & Arita, 1991; England et al., 1992). However, 90 
some earthquakes, like the 2015 Nepal (Gorkha) and 1991 Uttarkashi (Garhwal) events, 91 
challenge the notion, as their epicenters and epicenters of their aftershocks are modeled to zones 92 
within the LHF (Thakur & Kumar, 1994; Jain & Chander, 1995; Kayal, 1996; Gupta et al., 2015; 93 
Bai et al., 2016; Catlos et al., 2020). The MCT has also been linked to the generation of 94 

numerous geologic elements that characterize the Himalayan range, including hanging wall 95 
anatectic granitoids and crustal-scale extension found in association with the GHC (e.g., Burg et 96 

al., 1984; Valdiya, 1988; Burchfiel et al., 1992; Harrison et al., 1997; Kawakami et al., 2019).  97 

Studies of the MCT hanging wall indicate the unit has discontinuities possibly related to 98 

internal structures (e.g., western Nepal, Carosi et al., 2010; Montomoli et al., 2013; Braden et al., 99 
2017; central Nepal, Cottle et al., 2015; Wang et al., 2013; 2016; Rapa et al., 2018; Larson et al., 100 
2015; Sikkim, Chakraborty et al., 2019; NW India, Iaccarino et al., 2020; Benetti et al., 2021; see 101 

discussions in Mukherjee et al., 2012; Larson et al., 2013; Montomoli et al., 2015). The nature of 102 
these cryptic discontinuities is unclear and could be due to unmapped faults or shear zones or 103 

inheritance of pre-existing basement structures (e.g., Cottle et al., 2015). Their presence 104 
enhances the complexity of the Himalayan orogenic system as their activity could have 105 
significantly disrupted geotherms within the GHC core during its exhumation. This is a scenario 106 

that is not accounted for in the channel flow model for the extrusion of the Himalayan core (e.g., 107 

Benetti et al., 2021; Maiti & Mandal, 2021). Understanding when Himalayan fault systems were 108 
active is critical for deciphering the processes involved during convergence.  109 

The metamorphic history of the Himalayas has been the focus of sustained attention for 110 

almost seventy-five years (e.g., Ray, 1947). Garnet-bearing assemblages have long been using to 111 
test hypotheses proposed for the origin of MCT inverted metamorphism, understand the slip 112 
history of the MCT and the dynamics of Himalayan convergence. The focus includes generating 113 

the peak pressure-temperature (P-T) conditions and paths that rocks followed as they were 114 
metamorphosed during Indo-Asia collision (e.g., Brunel and Kienast, 1986; Hodges et al., 1988; 115 
Hodges and Silverberg, 1988; Hubbard, 1989; Inger and Harris, 1992; Hodges et al., 1993; 116 
Metcalfe, 1993; Pognante and Benna, 1993; Kaneko, 1995; Macfarlane, 1995; Coleman, 1996; 117 
Vannay and Hodges, 1996; Vannay and Grasemann, 1998; Manickavasagam et al., 1999; Catlos 118 

et al., 2001; Kohn et al., 2001; Kohn, 2008; Phukon et al., 2019; Waters, 2019; Iaccarino et al., 119 

2020; Catlos et al., 2018; 2020).  120 

As a universal outcome, models for the development of the Himalayas predict the P-T 121 
paths that rocks follow as they track the conditions they experienced during displacement. 122 
Common approaches to generate Himalayan P-T paths have included connecting peak 123 
metamorphic conditions of individual rocks, inferring from mineral assemblages, 124 
pseudosections, or Gibbs method thermodynamic modeling. Some rocks yield problematic P-T 125 
estimates based on (1) a lack of evidence of phases in equilibrium among phases, (2) the 126 
application of barometers to inappropriate (uncalibrated) mineral compositions, and (3) 127 
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calculated conditions that appear at odds to observed mineral assemblages and structural data 128 
(e.g., Kohn & Spear, 2000; Kohn, 2008). P‐T paths and absolute peak P‐T conditions may not be 129 

diagnostic of tectonic processes involved (e.g., Gervais & Brown, 2011). Low‐resolution P‐T 130 
paths can be limited in their ability to test ideas regarding lithospheric response to perturbations, 131 
including motion within fault zones. However, this type of information can be used to 132 
supplement other data, such as the timing of deformation or strain recorded in microstructures 133 
(see Kohn, 2016; Rolfo et al., 2014).  134 

This paper has two goals. The first is to review the geological framework of the 135 
Himalayas with a focus on the protolith of its metamorphosed assemblages. The second is to 136 
describe and apply particular thermobarometric approaches to decipher the metamorphic history 137 
of garnet-bearing rocks collected from the central portion of the range across the MCT using data 138 
published in the literature (Darondi Khola, Figure 3, Figure 4, Figure 5) (Kohn et al., 2001). A 139 

range of approaches are available to obtain P-T and time garnet growth (P-T-t data) (see review 140 
by Waters, 2019). The Darondi Khola case study compares conventional and isopleth 141 

thermobarometry in terms of their outcomes and insights and presents new P-T paths from 142 
metamorphosed garnet-bearing rocks using previously collected data. Garnet-bearing pelitic 143 

assemblages exposed in units across the Himalayas contain information regarding their history 144 
that can be extracted and applied to test models developed to decipher the crustal response 145 
during orogeny. 146 

2 Geological Background 147 

The Himalayan arc extends ~2400 km from Nanga Parbat (8138 m) in the west to 148 

Namche Barwa (7756 m) in the east (e.g., Le Fort, 1996) (Figure 1 and Figure 2). This region 149 
includes the independent kingdoms of Nepal and Bhutan and parts of Pakistan, India, and China. 150 
The orogen forms a sharp transition between the average ~5 km-high, arid Tibetan plateau and 151 

the warmer, wetter Indian lowlands and is comprised of roughly parallel, crustal-scale fault 152 

systems that bound distinctive lithologic units along strike (DiPietro & Pogue, 2004; Yin, 2006). 153 
These units have Indian affinity and experienced variable degrees of metamorphism before their 154 
assembly with Asia.  155 

2.1 Geological framework before collision 156 

The Indian subcontinent initiates rifting from other continents and fragments associated 157 
with Gondwana during the Early Cretaceous (140-130 Ma, e.g., Scotese et al., 1988; Jadoul et 158 

al., 1998; Hu et al., 2010). Evidence for Early Cretaceous rift- and plume-related alkaline and 159 
basaltic volcanism exists within the LHF, which extends the entire length of the Himalayas, and 160 
is the oldest stratigraphically lowest unit (e.g., Sakai et al., 2013; Bhandari et al., 2019). The 161 
LHF is considered the MCT footwall and Main Boundary Thrust (MBT) sheet (Figure 1 and 162 
Figure 2) (Dey et al., 2020). It is mainly comprised of Paleoproterozoic Gondwana-associated 163 

sediments that experienced deposition and granite intrusion centered around 1800 Ma (e.g., 164 
Trivedi et al., 1984; Tripathi & Singh, 1987; Parrish & Hodges, 1996; Miller et al., 2000; 165 

DeCelles et al., 2004; Kohn et al., 2010; Martin et al., 2011; McKenzie et al., 2011; Long et al., 166 
2011; Sakai et al., 2013; Khanal et al., 2014; Mandal et al., 2016). The depositional environment 167 
is a passive-margin, shallow-water coastal, fluvial, volcanoclastic (e.g., Parrish & Hodges, 1996; 168 
Ahmad et al., 1999; Martin et al., 2011; Sakai et al., 2013; Bhandari et al., 2019). However, the 169 
lower section of the LHF may have formed in a continental arc on the northern margin of the 170 
Indian plate (Kohn et al., 2010; Mandal et al., 2016). In some locations, rift-related alkaline 171 
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trachytic lava and pillow-bearing volcanic rocks are interbedded with pebble conglomerates and 172 
black shales, and signatures of significant asthenosphere upwelling are evident using 173 

geochemical proxies (e.g., Ahmad et al., 1999; Larson et al., 2019; Bhandari et al., 2019).  174 

The stratigraphic classification of the Proterozoic succession of Lesser Himalaya is yet to 175 
be defined following the Code of Stratigraphic Nomenclature, and orogen-scale correlations 176 
along strike are hindered by uncertainties (Myrow et al., 2006; Long et al., 2011; Mandal et al., 177 
2016; Dey et al., 2020). Sedimentation was long-lasting, but a lack of fossiliferous assemblages 178 

makes correlating specific units problematic (Upreti, 1999; Martin et al., 2011; Long et al., 179 
2011). Detrital zircon geochronology and stable isotopic analysis of suitable assemblages assist 180 
in this regard (e.g., Long et al., 2011; Martin et al., 2011; Sakai et al., 2013). A series of augen 181 
gneisses (the Melung Salleri or Phaplu Augen Gneiss of eastern Nepal and NW India, the Ulleri 182 
of central Nepal, or Chainpurplay in western Nepal) distinguish different levels of the MCT 183 

shear zone and LHF stratigraphy (Figure 3, Figure 4, Figure 5) (Kohn et al., 2010; Dyck et al., 184 
2019; Jharendra & Paudyal, 2019). These gneisses have ages from 2.2 Ga to 900 Ma (e.g., Le 185 

Fort & Rai, 1999; DeCelles et al., 2000; Catlos et al., 2002; Kohn et al., 2010) and define the 186 
base of the MCT shear zone in some interpretations. A Permian-Cambrian unconformity is 187 

recognized in NW India, Nepal, and Bhutan (e.g., Bhargava et al., 2011; Martin et al., 2011; 188 
Long et al., 2011). Some have related its presence and Cambro-Ordovician granites found in 189 
GHC and LHF units to a pre-Tertiary orogeny (Gehrels et al., 2003; 2006; Cawood et al., 2007; 190 

Bhargava et al., 2011).  191 

The GHC protolith is a clastic sedimentary sequence intruded by Cambro-Ordovician 192 

granitoids (e.g., Trivedi et al., 1984; Bhargava & Bassi, 1994; Parrish & Hodges, 1996; Upreti & 193 
Le Fort, 1999; DeCelles et al., 2004; Dyck et al., 2019). The depositional age is bracketed 194 
between the age of the youngest detrital zircons (~800-600 Ma) and granite intrusions (~500-460 195 

Ma) (Ahmad et al., 2000; DeCelles et al., 2000; DeCelles et al., 2004; Martin et al., 2005; Dyck 196 

et al., 2019). Whole-rock Nd isotopes distinguish GHC [εNd(0) -19 to -12, average -16] from 197 
LHF affinities [εNd(0) -20 to -26, average -21.5] (Robinson et al., 2001; Martin et al., 2005). The 198 
GHC detrital zircons may have originated from the East African portion of the Pan-African 199 

orogeny (Arabian-Nubian Shield), uplifted during the Neoproterozoic (DeCelles et al., 2000; 200 
2004), or from the late Mesoproterozoic terranes of Western Australia and East Antarctica 201 

(Circum-East Antarctic Orogen, Upreti & Yoshida, 2005; Yoshida & Upreti, 2006). The GHC 202 

has been modeled as unconformably deposited on the LHF (Parrish & Hodges, 1996) or 203 
tectonically juxtaposed (Upreti & Le Fort, 1999; DeCelles et al., 2000). The similarity in 204 
Cambrian ages between the LHF and GHC suggest they may be part of a shared depositional 205 
environment, with the LHF as proximal and the GHC as distal (Brookfield, 1993; Parish & 206 
Hodges, 1996; Corfield & Searle, 2000; Myrow et al., 2003; Myrow et al., 2006; Long et al., 207 

2011). Alternatively, the GHC may have been a distinct basement unit separating the LHF from 208 

the Tethyan metasediments (Saxena, 1971; Aharon et al., 1987) or an exotic terrane involved in a 209 

pre-Himalayan collision (DeCelles et al., 2000; Gehrels et al., 2003). 210 

Tethyan sedimentary and metasedimentary rocks are bounded to the north by the Indus 211 
Yarlung-Tsangpo suture zone (also Yarlung Zangbo Ophiolite Zone, Liu et al. 2010) (Gansser, 212 
1964; Dewey & Bird, 1970; Burg et al., 1984; Yin et al., 1994; Quidelleur et al., 1997; Zhang et 213 
al., 2004; Yin, 2006; Zyabrev et al., 2008), and to the south by the GHC or South Tibetan 214 
Detachment System (STDS) (Figure 1 and Figure 2) (e.g., Makovsky & Klemperer, 1996; Wu et 215 
al., 1998; Searle, 2010; Long et al., 2017; Montomoli et al., 2017; Hughes et al., 2018; Kellett et 216 
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al., 2018; Long et al., 2019). The Great Counter Thrust (or the Renbu-Zedong Thrust or 217 
Himalayan Backthrust) is mapped south of the zone also works to accommodate crustal 218 

shortening (Yin et al., 1999; Yin, 2006; Aikman et al., 2008). The Tethyan unit has long been 219 
considered as a contiguous stratigraphic cover of the GHC (Bodenhausen et al., 1964; Bordet et 220 
al., 1971; Stöcklin, 1980; Garzanti & Pagni Frette, 1991; Brookfield, 1993; Liu & Einsele, 1994; 221 
Fuchs & Linner, 1995; Vannay & Steck, 1995; Garzanti, 1999; Dyck et al., 2019), and the suture 222 
zone marks the geological boundary separating rocks of Indian and Asian affinity (e.g., Gansser, 223 

1981; Yin & Harrison, 2000). In NW India, the Tethyan Formation may be in thrust contact with 224 
the LHF (Webb et al., 2007). The Tethyan Formation consists of Paleoproterozoic to Eocene 225 
Indian shelf sediments (marine, fossiliferous strata) interbedded with Paleozoic and Mesozoic 226 
volcanic assemblages (Bassoullet et al., 1980; Brookfield, 1993; Yin, 2006; Bhargava & Singh, 227 
2020). The unit has been divided into four sequences: a Proterozoic to Devonian pre-rift, a 228 

Carboniferous–Lower Jurassic rift and post-rift, Jurassic–Cretaceous passive continental margin 229 

sequence, and an uppermost Cretaceous–Eocene syn-collision sequence (Liu & Einsele, 1994; 230 
Garzanti, 1999; Yin, 2006). Tethyan Formation lithostratigraphy changes both along and 231 

perpendicular to the Himalayan orogeny (Brookfield, 1993; Yin, 2006). In some locations, the 232 

unit has undergone pre-Himalaya low-grade to greenschist facies metamorphism (e.g., Crouzet et 233 
al., 2007; Dunkl et al., 2011; Montomoli et al., 2017) and the latest Cretaceous to Paleocene 234 
sequence of the formation records the obduction of ophiolitic material (Allègre et al., 1984; Burg 235 

et al., 1987; Willems et al., 1996; Gnos et al., 1997; Makovsky et al., 1999; Aitchison et al., 236 
2000; Ding et al., 2005).  237 

2.2 Timing of major metamorphic events and fault systems 238 

2.2.1 Collision and metamorphism in the Tethyan Formation 239 

The Indian subcontinent moves over 60° latitude north towards Asia during the mid-240 

Mesozoic to Eocene, closing the ancient Neo-Tethyan Ocean (e.g., Burg, 2011). The Early 241 

Cretaceous (140-130 Ma) is often cited as the time when the Indian subcontinent initiates rifting 242 
from other continents and fragments associated with Gondwana (e.g., Scotese et al., 1988; Jadoul 243 
et al., 1998; Hu et al., 2010). Remnants of Neo-Tethyan ophiolites are present across the 244 

Himalayas and provide information regarding the timing and processes involved during Indo-245 
Asia collision and the nature of Neo-Tethyan ocean crust and upper mantle (e.g., Hébert et al., 246 
2012; Hu et al., 2016; Catlos et al., 2019). Based on data from these ophiolites, a Late 247 

Cretaceous intra-oceanic arc has been suggested to be present within the Neo-Tethyan Ocean 248 
near the paleo-equator (e.g., Reuber, 1986; Abrajevitch et al., 2005; Metcalfe, 2009; Dai et al., 249 
2011; Siddiqui et al., 2012; Siddiqui et al., 2017) or ~30°N (Zhu et al., 2013). The arc is recorded 250 
by the Samail (Oman), Zagros (Iran), Chagai–Raskoh (western Pakistan, southern Iran, eastern 251 
Afghanistan), Kandahar and Kohistan–Ladakh, Dazhuqu, and Zhongba arcs (Brookfield and 252 

Reynolds, 1981; Bhutani et al., 2004; Abrajevitch et al., 2005; Dai et al., 2011; Siddiqui et al., 253 

2012; Baxter et al., 2016). Paleogeographic reconstructions of Lawver et al. (2018) restrict the 254 

location of the intra-oceanic arc to the south of the Lhasa Terrane, although others suggest the 255 
Lhasa Terrane had already accreted onto other Tibetan-related continental fragments by the Late 256 
Jurassic-Early Cretaceous (Rolland, 2002; Kapp et al., 2003, 2007; Guynn et al., 2006; Zhu et 257 
al., 2013). Alternatively, the Lhasa Terrane accreted just before the final collisional event in the 258 
Paleocene (54.9±2.3 Ma and 40.0±3.3 Ma; Yang et al., 2015; 61 Ma and ~53-48 Ma; Yuan et al., 259 
2020). Multiple arcs, besides the Lhasa Terrane, may also have been present (e.g., Zyabrev et al., 260 
2008). The oldest portion of the Neo-Tethyan domain is Late Triassic to Late Cretaceous (Sinha-261 
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Roy, 1982; Şengör and Atayman, 2009; Cao et al., 2018) and is sometimes termed the Ceno-262 
Tethyan Ocean (Metcalfe, 1999; Matsuoka et al., 2002; Wakita and Metcalfe, 2005). The 263 

Yarlung-Tsangpo suture zone itself is mapped as the zone of the closure of the Ceno-Tethyan 264 
Ocean (e.g., Metcalfe, 1999; 2009; 2013).  265 

The timing of initial collision varies along strike of the range but is often cited as during 266 
the Paleocene (Patriat & Achache, 1984; Klootwijk et al., 1992; Rowley, 1996; Yin & Harrison, 267 
2000; Najman et al., 2001, 2002, 2003; Zhu et al., 2005; Ding et al., 2005; Yang et al., 2015; Hu 268 

et al., 2016). Much younger constraints are also suggested (e.g., Eocene/Oligocene boundary, 269 
Aitchison et al., 2007) and a division between a soft (Paleocene) and hard collision (25-20 Ma, 270 
van Hinsbergen et al. 2012; see review in Parsons et al., 2020). In the hard scenario of Indo-Asia 271 
collision, the Tethyan unit represents the northern extension of the Indian subcontinent 272 
(Brookfield, 1993; Yin & Harrison, 2000; Myrow et al., 2003, Hughes et al., 2005; Myrow et al., 273 

2009; Myrow et al., 2015; Hughes, 2016). Others suggest the Tethyan formation may have been 274 
an independent terrane in the Mesozoic (DeCelles et al., 2000; see review in Yuan et al., 2020). 275 

Parsons et al. (2020) note that little progress has been made to resolve the differences between 276 
models of Indo-Asia collision. Gehrels et al. (2003) indicates that ascertaining the relative 277 

contributions of early Paleozoic versus Tertiary tectonism poses a significant challenge in 278 
understanding the Himalayan orogen. To understand which model is relevant requires 279 
understanding the metamorphic and timing history of fault systems that were active during 280 

collision. The Great Counter Thrust, which bounds the upper portion of the Tethyan Formation 281 
along much of its strike (Figure 1), is significantly younger than the Paleocene ages of Indo-Asia 282 

collision. This structure shows activity primarily during the Miocene (20-13 Ma) across the 283 
western and central Himalayas (see review in Yin, 2006).  284 

Compilations regarding the Tethyan Formation’s metamorphic history collected along 285 

strike suggest the Tethyan sequences have experienced multiple (4-5) deformation events, 286 

although the timing of these episodes is poorly constrained (Aikman et al., 2008; Dunkl et al., 287 
2011). Studies focusing on the low-grade history reveal Early Cretaceous pre-collisional 288 
metamorphism (e.g., Crouzet et al., 2007; Dunkl et al., 2011). Eocene greenschist to amphibolite 289 

facies metamorphism is recorded in portions of the unit and record conditions likely related to 290 
the onset of collision (580-600°C, 5-8 kbar) (Dunkl et al., 2011; Catlos et al., 2020). Paleocene 291 

radiometric ages related to collision are found in the Spongtang ophiolite (Figure 1) (64.3±0.8 292 

Ma and 42.4±0.5 Ma, zircon U-Pb ages, Catlos et al., 2019) and in a Tethyan Formation garnet 293 
(50.3±0.6 Ma; Catlos et al., 2020). The collisional event is also recorded by eclogite, high-294 
pressure (HP) and ultra-high pressure (UHP) rocks documented within the Tethyan Formation 295 
near the suture zone (e.g., Guillot et al., 2008; Laskowski et al., 2016). In some locations, HP 296 
assemblages record multiple metamorphic stages (e.g., Chen et al., 2021). Oligo-Miocene anchi- 297 

to epizonal metamorphism and alteration are related to crustal shortening during this time, 298 

whereas rocks at the base of the unit record Miocene STDS motion and gneiss dome exhumation 299 

(e.g., Dunkl et al., 2011). Oligocene- to Miocene-age contact metamorphism marks the onset of 300 
the intrusion of some North Himalayan granitic bodies and gneiss domes (e.g., Guillot et al., 301 
1995, 1999; Liu et al., 2016; Gao et al., 2016; Lihter et al., 2020). The onset of the north-dipping 302 
STDS and its associated imbrications (Figure 1) is often constrained to the Miocene (Carosi et 303 
al., 1998, 1999a, 1999b; Searle, 1999; Sachan et al., 2010; Iaccarino et al., 2017; Long et al., 304 

2017; Montomoli et al., 2017; Kellett et al., 2018; Iaccarino et al., 2020). However, at some 305 
locations, the GHC shows a transitional relationship with limestone of the Tethys sediments and 306 
metamorphic grade remains unchanged across the STDS with stratigraphy and lithology 307 
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excluding a distinct fault boundary (e.g., Bordet et al., 1975; Stöcklin, 1980; Fuchs et al., 1988; 308 
Schneider & Masch, 1993; Vannay & Steck, 1995; Cooper et al., 2012; Long et al., 2017). Long 309 

et al. (2019) suggest that extensional motion associated with the STDS in Bhutan occurs both 310 
within the GHC and Tethyan units. 311 

2.2.2 The GHC Eohimalayan and Neohimalayan events 312 

The GHC is mainly comprised kyanite- to sillimanite- grade gneisses intruded by High 313 
Himalayan leucogranites in structurally higher levels (e.g., Upreti, 1999; Searle et al., 2006; 314 

Sachan et al., 2010; Wu et al., 2020). The GHC is generally divided into different units, although 315 
the assemblages that comprise its sections differ along strike (Le Fort, 1975; Myrow et al., 2003; 316 
Yin, 2006). In central Nepal (Guillot, 1999), the upper Formation III consists of augen 317 
orthogneisses, whereas the middle Formation II are calc-silicate gneisses and marbles, and the 318 
basal Formation I are kyanite- and sillimanite-bearing metapelites, gneisses, and 319 

metagreywackes with abundant quartzite. The division of the package into three units mirrors the 320 
nomenclature ~250 km east (Lombardo et al., 1993; Pognante & Benna, 1993; Carosi et al., 321 

1999a), although the assemblages differ from that of central Nepal. In eastern Nepal, the upper 322 
Black Gneiss is comprised of biotite-sillimanite paragneisses with metaconglomerates and 323 

quartzite layers. The middle Namche Migmatite Orthogneiss contains granite-granodiorite 324 
sillimanite-bearing orthogneisses. The Barun Gneiss at the base is a migmatized paragneiss with 325 
minor metabasites, calc-silicate rocks, and marbles. In the Garhwal Himalaya, the Vaikrita 326 

Group is the analog to the GHC (e.g., Ahmad et al., 2000). Early observations, the unit’s 327 
complex metamorphic history, and possibility of out-of-sequence thrusting at higher levels led 328 

Stöcklin (1980) to doubt the assumption of a three-tiered, laterally-continuous, 329 
tectonostratigraphic framework. More recent thermobarometric data and P-T-t paths from garnet-330 
bearing assemblages from the GHC unit indicate the unit itself has discontinuities related to 331 

internal structures that overlap in age with MCT motion (Carosi et al., 2010; Montomoli et al., 332 

2013; Wang et al., 2013; Larson et al., 2015; Montomoli et al., 2015; Carosi et al., 2016; Wang 333 
et al., 2016; Braden et al., 2017; Rapa et al., 2018; Chakraborty et al., 2019; Benetti et al., 2021). 334 

A Tertiary history involving two metamorphic episodes has been proposed for the GHC 335 

(see Pêcher & Le Fort, 1986; Metcalfe, 1993; Pognante & Benna, 1993; Wiesmayr & 336 
Grasemann, 2002; Carosi et al., 1999b; Lombardo & Rolfo, 2000; Hodges, 2000; Wiesmayr & 337 
Grasemann, 2002; Cottle et al., 2009; Kohn, 2014; Robyr & Lanari, 2020). The first stage 338 

(Eocene-Oligocene) of Barrovian-type metamorphism, termed the Eohimalayan event, 339 
corresponds to the nappe’s burial beneath Asia and is best preserved near the base of the unit 340 
(e.g., Pêcher, 1989; Hodges et al., 1994; Wiesmayr & Grasemann, 2002). During this stage, the 341 
base of the unit reached garnet-grade conditions (550-750 C and at least 8-10 kbar, e.g., 342 
Pognante & Benna, 1993; Hodges et al., 1994). Thrusting may have been accommodated by a 343 

fault system considered a proto-STDS that reactivated as a normal fault during the second stage 344 

in the Miocene (e.g., Vannay & Hodges, 1996; Wiesmayr & Grasemann, 2002; DiPietro & 345 

Pogue, 2004). The locations where this scenario has been proposed show mylonitic contractional 346 
fabrics overprinted by extensional structures and include the Himachal Pradesh, NW India 347 
(Vannay & Grasemann, 1998), Zanskar, NW India (Patel et al., 1993), and the Kali Gandaki, 348 
central Nepal (Vannay & Hodges, 1996). Note that even earlier events may have preceded 349 
Himalayan orogenesis and can be challenging to distinguish from Cenozoic tectonics (see 350 
Gehrels et al., 2003). 351 
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The Eohimalayan event occurred between 50-35 Ma coincides with a dramatic decrease 352 

in convergence rate between India and Asia from ∼15 to ∼4 cm/yr (Copley et al., 2010). During 353 

the Miocene Neohimalayan event, the base of the GHC experienced 550-600 C and the top 354 
records lower pressures and/or temperatures (3-7 kbar, 575-850 C) (e.g., Hodges et al., 1994; 355 
Simpson et al., 2000; Daniel et al., 2003). The Neohimalayan event has been associated with 356 
MCT slip and with the development of Miocene-age High Himalayan leucogranites found in 357 
close association with STDS (Pêcher, 1989; Harris et al., 1993; Metcalfe, 1993; Hopkinson et al., 358 

2017; Liu et al., 2018; Yang et al., 2019; Wu et al. 2020).  359 

The duration and onset of MCT movement varies along strike and is often attributed 360 
sometime during the Miocene. To time fault activity, monazite [(Ce, La,Th)PO4] is often 361 
targeted, a mineral that appears in these rocks at garnet grades and is ideal for timing 362 
metamorphism (e.g., Catlos, 2013). In western Bhutan, the duration of MCT displacement is 363 

bracketed by monazite ages between 20.8±1.1 and 15.0±2.4 Ma (Togbay et al., 2012). However, 364 
in eastern Bhutan, prograde metamorphism and deformation is reported to have been underway 365 

along the structure by c. 23 Ma (Daniel et al., 2003). Monazite ages from the lower portions of 366 

the GHC in western Nepal yield younger ages timed to fault motion at 17-13 Ma (Montomoli et 367 
al., 2013). Depth profiling of unpolished monazite indicate that the MCT hanging wall was 368 
deforming in central Nepal between 24-22 Ma (Harrison et al., 1995). The 22 Ma age is also 369 

attributed to MCT activity in central Nepal (Hodges et al., 1996; Coleman & Hodges, 1998) 370 

In NW India (Garhwal region), the MCT shear zone is thought to be active from 20 Ma to 371 

5 Ma (Iaccarino et al., 2020) or even younger to 1 Ma (Catlos et al., 2007; 2020). Mukhopadhyay 372 
et al. (2017) suggest activity on the MCT itself in the Sikkim region occurred in pulses over an 373 
extended period of time from 26 to 11 Ma. Monazite grains from the MCT shear zone in the 374 

Sikkim indicate the structure was active at c. 22 Ma, 14-15 Ma, and 12-10 Ma (Catlos et al., 375 
2007) and from 21-13 Ma (Mottram et al., 2014). Younger ages are attributed to structures south 376 

of the GHC-LHF contact, and are often found at lower structural levels within the shear zone 377 
elsewhere. For example, Figure 5 shows the distribution of in situ secondary ion mass 378 

spectrometry (SIMS) Th-Pb monazite and muscovite 40Ar/39Ar total gas ages along the Darondi 379 
Khola (Catlos et al., 2001). The oldest early Miocene monazite ages are found in upper LHF 380 

units (21.7±1.2 Ma to 21.1±0.8 Ma), but they decrease towards lower structural levels to 7.6±0.2 381 
Ma to 6.9±0.5 Ma. In Arun valley of eastern Nepal Himalayas, Oligocene activity within the 382 

upper portions of the MCT shear zone has been reported (~31 Ma, Groppo et al., 2010). Late 383 
Eocene to Oligocene monazite ages have been found in GHC samples from central Nepal 384 
(37.6±3.8 Ma to 30.4±0.5 Ma, Catlos et al., 2001; see also Gibson et al., 2016 for the same 385 
transect) and NW India (37.9±0.9 Ma to 34.3±0.8 Ma, Catlos et al., 2007). The Oligocene ages 386 
are consistent with the events related to the Eohimalayan time frame of Himalayan orogenesis 387 

and may not be related to activity along the MCT. 388 

Distinguishing between the Eohimalayan and Neohimalayan events is challenging, and 389 

the Eohimalayan event may only be recorded in GHC and Tethyan units in particular locations 390 
(Aikman et al., 2008; Stickroth et al., 2019). North-east verging folds of the Tethys Formation 391 
may have developed during the Eohimalayan event (e.g., Godin et al. 1999a, 1999b), whereas 392 
these and others reported in the GHC (Bhargava & Bassi, 1994; Carosi et al., 1999b) may be the 393 
result of gravity sliding along the STDS (e.g., Burchfiel et al., 1992; Hodges et al., 1996; Vannay 394 
& Hodges, 1996; Searle, 2010). Large‐scale folding that aligns preexisting isograds into an 395 
apparent inverted metamorphic position was attributed as a significant factor in the metamorphic 396 
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history of the GHC (Searle & Rex, 1989). In a petrochronology study of GHC monazite-bearing 397 
assemblages, Gibson et al. (2016) suggest that Eocene-Oligocene monazite ages represent 398 

prograde burial, which was followed by Miocene retrograde metamorphism and Miocene-399 
Pliocene exhumation. Wu et al. (2020) suggest the High Himalayan leucogranites can be 400 
classified as Eohimalayan (46-25 Ma), Neohimalayan (25-14 Ma), and post-Himalayan (<14 401 
Ma) based on their relationship with particular detachment systems, ages, and compositions. 402 
Some North Himalayan granites that intrude Indian shelf sediments are similar in age to their 403 

post-Himalayan stage (Harrison et al., 1997; 1998; Lee et al., 2004; Zhang et al., 2004).  404 

2.2.3. Metamorphism in the LHF 405 

At their base, the GHC is thrust over Middle Proterozoic phyllites, metaquartzites, and 406 
mylonitic augen gneisses of LHF along the broad-scale 8-12 km thick MCT shear zone (Le Fort, 407 
1975; Gansser, 1981; Arita, 1983; Brunel & Kienast, 1986; Pêcher, 1989; Searle & Rex, 1989; 408 

England et al., 1992; Schelling, 1992; Le Fort, 1996; Henry et al., 1997; Harrison et al., 1998; 409 
Kohn et al., 2004; Bollinger et al., 2006; Carosi et al., 2013; Parsons et al., 2016; Martin, 410 

2017a,b; Mukhopadhyay et al., 2017; Yin & Harrison, 2000; Catlos et al., 2001; Catlos et al., 411 
2018; 2020). The onset of MCT activity occurred during the early Miocene (Pêcher, 1991; 412 

Vannay et al., 2004; Yin, 2006), at a time when Indo-Asia convergence slows (>40% between 413 
20-10 Ma, Molnar and Stock, 2009) and had a significant impact on the extrusion of the GHC 414 
orogenic wedge (Maiti et al., 2020). The MCT fault system plays a central role in many models 415 

for the evolution of the Himalayas (e.g., Le Fort, 1975; Searle & Rex, 1989; England et al., 1992; 416 
Henry et al., 1997; Harrison et al., 1998; Bollinger et al., 2006; Kohn, 2008; Carosi et al., 2013; 417 

Beaumont et al., 2001; 2004; Jamieson et al., 2004; 2006; Searle et al., 2006; Long & 418 
McQuarrie, 2010; Wang et al., 2013; Cottle et al., 2015).  419 

Lack of an apparent break in metamorphic grade between the GHC and LHF makes the 420 

placement of the boundaries of the MCT shear zone difficult to discern. Definitions of the 421 

structure center around age, metamorphic history, rheology, and role as separating units of 422 
different depositional environments (see Martin, 2017a). As the GHC and LHF evolved in 423 
different depositional environments, geochemical and geochronological evidence aids in its 424 

placement (e.g., Parrish & Hodges, 1996; Ahmad et al., 2000; Martin, 2017a,b; Khanal et al., 425 
2014). The original Pêcher (1989) MCT definition involved three criteria in identifying the MCT 426 
in the field: (1) the boundary between hanging wall gneisses and upper carbonate-rich formations 427 

of the Lesser Himalaya, (2) where Lesser Himalaya shear fabric (L-S) is replaced by the 428 
flattening fabric of the Greater Himalayan Crystallines, and (3) where the rotational deformation 429 
that increases progressively through the Lesser Himalaya reaches a maximum. In central Nepal, 430 
Arita (1983) places two thrusts (MCT-I and MCT-II) on each side of the MCT shear zone. The 431 
MCT-II corresponds to that described by Pêcher (1989), whereas the MCT-I separates a 432 

mylonitic augen gneiss from other Lesser Himalaya metasedimentary rocks. The MCT-I 433 

correlates to the Ramgarh Thrust, which accommodates the Ramgarh Thrust sheet within the 434 

LHF duplex (DeCelles et al., 2001; Robinson et al., 2003; Pearson & DeCelles, 2005; Robinson 435 
et al., 2006; Matin and Mukul, 2010; Khanal et al., 2014; Mandal et al., 2015). Some researchers 436 
do not recognize the MCT-I anywhere in the Nepal Himalaya (see Upreti, 1999). Along the 437 
Dudh Kosi-Everest transect, the MCT corresponds to the contact between the GHC gneisses and 438 
the upper LHF pelitic schists, whereas the MCT-I separates the mylonitic Phaplu augen gneiss 439 
from low-grade Lesser Himalaya metasedimentary rocks. Along the Bhagirathi River, Garhwal 440 
region, the Vaikrita Thrust (=MCT) and Munsiari Thrust (=MCT-I) bound the MCT shear zone, 441 
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but no equivalent to the Phaplu augen gneiss is exposed (e.g., Valdiya, 1980; Pêcher, 1991; 442 
Metcalfe, 1993; Searle et al., 1993; Ahmad et al., 2000; Singh & Thakur, 2001). 443 

The MCT footwall is characterized and defined by inverted metamorphism, where 444 
metamorphic grade increases toward structurally shallower levels (e.g., Ray, 1947; Pêcher, 1989; 445 
Larson et al., 2015; Chakraborty et al., 2016; Searle et al., 2008; Iaccarino et al., 2020). 446 
Understanding the origin this phenomenon has implications for establishing the role of various 447 
crustal heat sources and mechanisms of heat transfer within collisional belts (e.g., radiogenic, 448 

asthenospheric input, shear heating, addition of melts) (e.g., England et al., 1992) and is 449 
facilitated by obtaining metamorphic P‐T conditions and paths from shear zone garnet‐bearing 450 
assemblages (Stäubli, 1989; Metcalfe, 1993; Kaneko, 1995; Vannay & Hodges, 1996; Vannay & 451 
Grasemann, 1998; Manickavasagam et al., 1999; Kohn et al., 2001; Catlos et al., 2001; Imayama 452 
et al., 2010; Corrie et al., 2010; Larson et al., 2013; Anczkiewicz et al., 2014; Kohn, 2014; 453 

Mottram et al., 2014; Mukhopadhyay et al., 2017; Catlos et al., 2018; Waters, 2019; Catlos et al., 454 
2020).  455 

The MCT has also been considered to be an expression of the Main Himalayan Thrust 456 
(MHT) (Bollinger et al., 2004; Mahajan et al., 2010), a pervasive décollement that separates the 457 

downgoing Indian plate from the Himalayan orogenic wedge (Figure 2) (Bilham et al., 1997; 458 
Nelson et al., 1996; Subedi et al., 2018; Zhao et al., 1993). Other surface expressions of the MHT 459 
include the MBT and Main Frontal Thrust (MFT) (Figure 1 and Figure 2). The STDS may be a 460 

local phenomenon, occurring when the Tethys dissociated from the GHC and slid along N-461 
dipping planes due to gravity following uplift (e.g., Pêcher & Le Fort, 1986; Fuchs, 1987), 462 

although some models for channel flow connect this fault system to the MHT (e.g., Beaumont et 463 
al., 2001; 2004; Jamieson et al., 2004; 2006). The MHT is one of the largest and fastest slipping 464 
continental megathrusts on Earth (e.g., Duputel et al., 2016; Rajendran et al., 2017; Searle et al., 465 

2017). Understanding its geometry, history, and fault systems that splay into the structure has 466 

implications for assessing and predicting the initiation, propagation, and termination of major 467 
event Himalayan earthquakes (e.g., Wang et al., 2017). The topography of the MHT is uncertain 468 
(e.g., Caldwell et al., 2013; Denolle et al., 2015; Elliott et al., 2016; Hazarika et al., 2017; 469 

Hubbard, 2016; Nábělek et al., 2009; Whipple et al., 2016; Wang et al., 2017; Zhou et al., 2019), 470 
due in part to the lack of recognition that fault systems within the LHF duplex or MCT shear 471 

zone have the potential to accommodate present‐day slip (Catlos et al., 2020). The LHF duplex 472 

has long been known to be a ∼50‐km‐wide seismogenic zone of predominately moderate 473 
earthquakes (Bai et al., 2016; Cattin & Avouac, 2000; Khattri & Tyagi, 1983; Mahajan et al., 474 
2010). Bai et al. (2016) suggest that a thrust system within the LHF is the most seismically active 475 
region in the Himalayas and accommodates most of its elastic strain accumulation. Alternatively, 476 
the shallower events are explained by a segmented MHT that includes a ramp (He et al., 2018; 477 

Hubbard, 2016; Pandey et al., 1995). 478 

2.2.4 The MBT and MFT 479 

South of the MCT, the MBT separates the Lesser Himalaya from Neogene molasse, the 480 
Siwalik Formation (Figure 1) (Valdiya, 1992; Meigs et al., 1995; Mukul, 2000; Thakur et al., 481 
2010; Goswami & Deopa, 2017; Dhamodharan et al., 2020). South of the MBT, the MFT is the 482 
boundary between the Siwalik Formation and the northern Indo-Gangetic Plains (e.g., Mugnier 483 
et al., 1999; Mukul et al., 2007; Burgess et al., 2012; Bollinger et al., 2014). The MBT has few 484 
timing constraints, but is primarily thought to have been initiated during the Late Miocene (13-485 
10 Ma, Meigs et al., 1995; Chirouze et al., 2012; Patra & Saha, 2019), although it may have been 486 
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active since 5 Ma in Nepal (DeCelles et al. 2020). The Siwalik formation overall is a 7-10 km-487 
thick succession of dominantly fluvial sedimentary rocks located along the entire length of the 488 

Himalaya from the Potwar plateau to the Brahmaputra in the east, likely due to the evolution of 489 
the Ganga river system (Bora and Shukla, 2005; Sanyal & Sinha, 2010; Khan et al., 2019; 490 
Dhamodharan et al., 2020). The Siwalik unit itself is divided into several sectors due to 491 
lineaments related to normal faulting in the Indian basement that reactivated as thrust faults 492 
during Himalayan collision (Raiverman et al., 1983; Dubey, 1997; Sanyal & Sinha, 2010). The 493 

Siwalik formation records key information regarding Himalaya erosional history, paleoclimate, 494 
transitions in paleobotany, and exhumation rates (e.g., Quade et al., 1989, 1995; Acharya, 1994; 495 
Najman et al., 2009; Sanyal & Sinha, 2010; Najman et al., 2017; Ghosh et al., 2018; Khan et al., 496 
2019). In some locations, the MBT has nearby active steep faults that show normal or strike-slip 497 
senses of motion as they accommodate a critical taper (Mugnier et al., 1994; Patra & Saha, 498 

2019). The MFT cuts Siwalik strata in places and is often manifested as growing anticlines 499 

(Yeats et al., 1992; Powers et al., 1998; Srivastava et al., 2018). These crustal-scale faults sole 500 
into the MHT (Figure 2) (Zhao et al., 1993; Nelson et al., 1996).  501 

3. Models for the extrusion of the Himalayan core 502 

The MCT fault system has long played a central role in models for the evolution of the 503 
Himalaya. Initial models presume that activity along the MCT only occurred during the Early 504 
Miocene (Figure 6) (Le Fort, 1975; Searle & Rex, 1989; Hubbard, 1996; England et al., 1992; 505 

Hodges et al., 1993; Harris & Massey, 1994). LeFort (1975) conceived that the inverted 506 
metamorphism in the LHF footwall was caused by the transfer of thermal energy due to large-507 

scale underthrusting of the LHF beneath the GHC (the “Hot-Iron model” Figure 6A). In this 508 
scenario, fluids released from the MCT footwall migrate through the hanging wall and flux a 509 
leucogranite belt. The alternative was proposed by Hubbard (1996), in which the inverted 510 

mineral isograds result from ductile shearing a pre-existing zone of right-way-up metamorphism 511 

(Figure 6B). Searle and Rex (1989) delegated a significant role to STDS and suggested that the 512 
present-day distribution of metamorphic facies and leucogranite bodies are caused by 513 
overprinting earlier isograds during MCT-related anatexis and folding (Figure 6C). Fluids 514 

released from the MCT footwall assist with the formation of leucogranite. The STDS has 515 
appeared prominently in almost every model since. Hodges et al. (1993) proposed that the wedge 516 

GHC extruded via synchronous STDS and MCT movement (Figure 6D), and Harris & Massey 517 

(1994) suggested extensional collapse led to rapid GHC exhumation and decompression melting 518 
of kyanite-bearing schists that led to melts emplaced near the STDS (Figure 6E). 519 

As more data became available, more numerical solutions and quantitative models 520 
appeared (Figure 7). Molnar and England (1990) matched P-T conditions obtained by Hubbard 521 
(1996) by solving a one-dimensional time-dependent heat equation for an inclined fault (Figure 522 

7A). The model derived thermal energy from three sources: (1) radioactive nuclides, (2) the 523 

asthenosphere, and (3) frictional heating along the MCT, and suggested that shear stresses >100 524 

MPa can account for peak T< 600°C at the MCT and contributes ~13°C/km to the inverted 525 
geotherm. Huerta et al. (1998) introduced the idea that MCT inverted metamorphism was caused 526 
by accretion and erosion acting on a crust enriched with radiogenic elements (Figure 7B). The 527 
presence of post-Miocene mineral crystallization ages in the LHF and MCT shear zone led 528 
Harrison et al. (1998) to model footwall inverted metamorphism as the accretion of tectonic 529 
slivers of the LHF to the hanging wall (Figure 7, Figure 8A). This model was one of the first to 530 
suggest the concept of critical taper as an important control in developing inverted 531 
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metamorphism and the geometry of the fold-and-thrust belt. In this scenario, anatexis is linked to 532 
shear heating on along the MHT. This model is also the first in a series that suggested the 533 

Himalaya is an outcome of stacked thrust systems within and below the GHC (Figure 8) (e.g., 534 
Kohn, 2008; Corrie & Kohn, 2011; Cottle et al., 2015; Catlos et al., 2020).  535 

Large-scale imaging of the Himalayan and Tibet crust led Nelson et al. (1996) to 536 
advocate that thrusting within the Himalaya results from anatexis (Figure 7D). The Tibetan 537 
middle crust is assumed to be partially molten today, and the region between the MCT and STDS 538 

is earlier extruded equivalent. This model is the foundation of others that suggest the GHC is the 539 
result of gravity-driven lateral mid-crustal flow (Gruijic et al., 1996; Beaumont et al., 2001; 540 
Jamieson et al., 2006; Searle, 2010; Webb et al., 2011; Cottle et al., 2015). Channel flow was 541 
initially conceived as a Neohimalayan event, with the extrusion of the GHC due to synchronous 542 
MCT and STDS activity with focused erosion along the topographic front (e.g., Beaumont et al., 543 

2001; 2004; Jamieson et al., 2004; 2006; Robinson et al., 2006; Searle et al., 2006; Long & 544 
McQuarrie, 2010; Wang et al., 2013; Cottle et al., 2015). This model can be combined with the 545 

scenario where LHF footwall slivers are accreted to the hanging wall as GHC channel flow 546 
progressed (Figure 8B). LHF footwall inverted metamorphism may also be an outcome of 547 

channel flow experienced by the GHC (Daniel et al. 2003; Searle et al., 2008). 548 

Channel flow has also been invoked to model the inverted metamorphic sequence within 549 
the MCT footwall, where discrete fault systems within the LHF and the MCT or other faults 550 

within the GHC are active during the Miocene (Imayama et al., 2010; Goswami‐Banerjee et al., 551 
2014). The alternative to channel flow is the critical taper model, where the GHC is exhumed 552 

through a series of stacked thrust systems within and below the GHC (Figure 8A) (Kohn, 2008; 553 
Corrie & Kohn, 2011). Critical taper has also been applied to explain thrusting with fault systems 554 
associated with the MFT (Mukul et al., 2007; Hirschmiller et al., 2013). In addition, the 555 

recognition that in NW India, the LHF and Tethyan Formation appear in thrust contact suggests 556 

that the GHC may have acted as a tectonic wedge (Figure 8C and D) (Webb et al., 2007; Webb 557 
et al., 2011; Cottle et al., 2015). One outcome of these models has been a wholesale re-558 
distribution and re-defining of the MCT from a fault system that separates the GHC and LHF to 559 

one in which portions of the GHC are involved in large-scale thrust movement (Searle et al., 560 
2008; Carosi et al., 2018). The inverted metamorphic sequence is redelegated from the LHF and 561 

MCT footwall to lower levels of the GHC (Figures 8E and F). Thermal heating along faults 562 

within the GHC may have played a role in accommodating wedge extrusion and developing 563 
inverted metamorphism (e.g., Goscombe et al., 2006; Searle et al., 2008). Figure 8G shows a 564 
scenario in which the MCT shear zone develops due to imbrication and activity is accommodated 565 
by fault systems within the GHC (Carosi et al., 2016). GHC structures include the Kalopani 566 
shear zone (KSZ) at 41-30 Ma (Eohimalayan time frame) and High Himalayan Discontinuity 567 

(HHD) at 26-24 Ma (Neohimalayan). 568 

Although lines of evidence exist that the LHF inverted metamorphism involved multiple 569 

episodes of post-Miocene imbrication and deformation with the MCT shear zone or LHF duplex 570 
(e.g., Figure 5) (Caddick et al., 2007; Catlos et al., 2001; Kohn et al., 2001; Groppo et al., 2009; 571 
2010; Herman et al., 2010; Mosca et al., 2012; Montomoli et al., 2013; Mottram et al., 2014; 572 
Carosi et al., 2016; Braden et al., 2018; Catlos et al., 2018; Montemagni et al., 2018; Catlos et 573 
al., 2020; Montemagni et al., 2020), the idea of tectonic inversion of a coherent rock package 574 
that experienced a single Barrovian Neohimalayan-related metamorphic event remains (Hubbard, 575 
1996; Martin et al., 2010; Gaidies et al., 2015). Multiple episodes of ductile overthrusting of the 576 
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GHC over the LHF are proposed as an explanation (Goscombe & Hand, 2000), as well as post 577 
and tectonic overpressure that changed fundamental rock properties (Thakur et al., 2015; model 578 

of Schmalholz & Podladchikov, 2013). The originally-proposed “hot iron” model in which the 579 
primary heat source for inverted metamorphism is GHC thermal energy transferred as Miocene 580 
MCT emplacement occurred (England & Molnar, 1993) has an alternative end‐member, where 581 
no contribution of dissipative to downward conductive heating from the GHC is required 582 
(Stephenson et al., 2000).  583 

The Himalaya is often framed as a large-hot orogen that may have grown by distributed 584 
extrusion (channel flow) or discrete thrusting (critical taper) (Beaumont et al., 2006; Jamieson & 585 
Beaumont, 2013; Mukherjee, 2013; Iaccarino et al., 2020; review in Wang et al., 2013). In fact, 586 
both scenarios may be relevant to the Himalayan core, depending on the location within the 587 
range and the time frame of metamorphism (Larson et al., 2010; Mukherjee, 2013; Cottle et al., 588 

2015). The Himalaya may indeed represent a scenario in which the two ‘end-member models 589 
apply and are not mutually exclusive (Beaumont & Jamieson, 2010; Larson et al., 2010, 2013; 590 

Corrie et al., 2012; Jamieson & Beaumont 2013; Cottle et al., 2015). Evaluating models for GHC 591 
extrusion requires understanding of the P‐T‐t paths of its rocks as they experienced the transition 592 

from convergence and subduction to their final exhumation (e.g., Catlos et al., 2001; Caddick et 593 
al., 2007; Kohn, 2008; Corrie et al., 2010; Goswami-Banerjee et al., 2014; Catlos et al., 2018, 594 
2020). 595 

Kohn (2008) presents particle paths predicted by end-member critical taper and channel 596 
flow models in the end-member models. Channel flow predicts the GHC experienced isothermal 597 

exhumation, and the LHF experiences isobaric heating. Critical taper predictions imply isobaric 598 
cooling for GHC rocks and “hair-pin” LHF P-T paths (Kohn, 2008). The metamorphic field 599 
gradients predicted by the models also differ. Complicating this scenario is the observation that 600 

P-T conditions from garnet-bearing assemblages collected from the MCT hanging wall indicate 601 

the unit has cryptic discontinuities related to unmapped faults, shear zones, or inheritance of pre-602 
existing basement structures (see discussions in Mukherjee et al., 2012; Larson et al., 2013; 603 
Montomoli et al., 2015; Cottle et al., 2015; Carosi et al., 2016). Understanding when these 604 

possible fault systems, termed High Himalayan discontinuities (HHD), were active is critical for 605 
deciphering the processes involved during convergence. Their age may similar to activity along 606 

the MCT (28-18 Ma; e.g., Carosi et al., 2010; Montomoli et al., 2013, Larson et al., 2015; 607 

Montomoli et al., 2015; Carosi et al., 2016; Carosi et al., 2018; Benetti et al., 2021). This is a 608 
scenario that is not accounted for in the channel flow model (e.g., Benetti et al., 2021; Maiti & 609 
Mandal, 2021). 610 

4 Himalayan Metamorphism and Contractional Tectonics (Darondi Khola, Central Nepal) 611 

As indicated in the previous sections, garnet-bearing assemblages are valuable recorders 612 

of compressional/contractional metamorphism and help constrain models for the Himalaya’s 613 
uplift history. P-T data from garnet-bearing Himalayan assemblages can be generated using 614 

several approaches (see review in Waters, 2019). This section compares conditions generated 615 
using conventional thermobarometers and the Gibb’s method (Kohn et al., 2001) to those 616 
obtained using isochemical phase diagrams, isopleth thermobarometry, and the garnet zoning 617 
method (e.g., de Capitani & Petrakakis, 2010; Moynihan & Pattison, 2013; Catlos et al., 2018; 618 
2020). The approaches were applied to the same samples and data from rocks collected from the 619 
GHC and LHF units along the Darondi Khola in central Nepal (Figure 3, Figure 4, Figure 5). The 620 
TheriaG model of Gaides et al. (2008) is also used to predict garnet zoning based on Gibb’s P-T 621 
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paths for some samples. The reason for any discrepancies in the P-T paths and conditions within 622 
the context of equilibrium thermodynamics is evaluated, and the impact of the results on models 623 

for Himalayan orogenesis is explored. Regardless of calibrations used, the P-T conditions and 624 
paths coupled with previously-reported timing constraints from Darondi Khola assemblages 625 
suggest the MCT shear zone developed during pulses of movement that resulted in progressive 626 
transfer of rock packages as the MCT shear zone developed (Catlos et al., 2001; Kohn et al., 627 
2001). 628 

4.1 Methods, samples, and assumptions 629 

4.1.1 Samples 630 

Kohn et al. (2001) report rim P-T conditions from eighteen garnet-bearing assemblages 631 
exposed along the Darondi Khola and divides LHF samples into lowermost (n=3), lower to mid 632 
(n=6), and upper MCT zones (n=4) (Figure 4 and Figure 5, Table 1). Five GHC rocks were also 633 

analyzed. We use the definition of the MCT shear zone following this nomenclature, but also 634 
note that based on the placement of the Phaplu and Ulleri augen gneisses, others would allocate 635 

all of these samples squarely in the GHC unit (e.g., Searle et al., 2008).  636 

Mineral assemblages, X-ray element maps, and compositional transects were made across 637 

garnets and are reported in Kohn et al. (2001). Petrographic images of some samples are shown 638 
in Figure 9. All samples contain garnet and prograde quartz, muscovite, biotite, and ilmenite. All 639 
are metamorphosed pelites, except DH38, which is a metabasite and contains hornblende and 640 

plagioclase. All lower LHF rocks contain prograde chlorite and plagioclase, but DH75A and 641 
DH75B also have retrograde chlorite (Figure 9). The upper LHF and GHC rocks do not have 642 

chlorite (DH38, DH60, DH61, DH63, DH66, DH67) or contain only retrograde chlorite (DH57, 643 
DH58, DH71). All samples, except upper LHF rock DH57, contain plagioclase. Most plagioclase 644 
show core-rim zoning with higher-Ca cores and lower-Ca rims, expected if garnet grew in a 645 

closed chemical system (Spear et al., 1990). Samples DH26, DH75A, and DH75B have 646 

plagioclase with relict albite cores overgrown by an oligoclase mantle that is either unzoned or 647 
slightly zoned to lower Ca towards its rim. The mantle was assumed to be metamorphic and 648 
reflects garnet growth and uptake of Ca. Sample DH57 has both staurolite and kyanite, whereas 649 

DH63 has staurolite. Other rocks for this study do not show any of these index minerals. No 650 
chloritoid or carbonate minerals are reported in the samples. All samples appear syntectonic and 651 
the presence of strain shadows are common. As seen in Figure 9, micas and quartz appear 652 

deflected around the garnet porphyroblasts. Some garnets are inclusion free, however, middle 653 
LHF sample DH30 has quartz inclusions in the center of the garnet that appear thinner and 654 
elongated compared to the larger, anhedral grains in its outer-rim region. GHC samples DH61, 655 
DH63, and DH67 have inclusion filled cores and inclusion free outer rims. Inclusions of ilmenite 656 
and quartz in middle LHF samples DH51 and DH75B are aligned in relatively straight tracks 657 

into the rock matrix, consistent with syntectonic growth. 658 

Figure 10 shows garnet compositional transects for LHF samples in which high-659 

resolution P-T paths (DH17, DH19, DH22, DH23, DH26, DH75B) were obtained and Figure 11 660 
shows compositional transects across garnets in two GHC samples (DH61 and DH66). LHF 661 
samples show typical prograde bell-shaped profiles in Mn, with no evidence of retrogression at 662 
the rims. The garnets all show a smooth decrease in grossular and increase in pyrope and 663 
almandine from core to rim. GHC garnets, however, show evidence of retrogression with sharp 664 
increases in Mn contents at the rim. These garnets also show significant fluctuations in grossular, 665 
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pyrope, and almandine from core to rim. GHC samples are not ideal candidates for high-666 
resolution P-T path modeling because their zoning profiles suggests modification of prograde 667 

garnet compositions after growth, open-system behavior, and the potential of major changes in 668 
rock bulk composition after growth. These situations are assumed not to occur when modeling 669 
and developing high-resolution P-T paths.  670 

4.1.2 Conventional thermobarometry and Gibbs method P-T paths 671 

 The garnet-biotite thermometer calibrated by Ferry and Spear (1978) with the Berman 672 

(1990) Ca-in garnet solution model and the garnet-muscovite-biotite-plagioclase barometer of 673 
Hoisch (1990) were applied to the assemblages with pelitic bulk compositions (Kohn et al., 674 
2001). Sample DH38 is a metabasite, so the garnet-hornblende thermometer of Graham and 675 
Powell (1984) and the garnet amphibolite barometer of Kohn & Spear (1990) were used. Results 676 
are summarized in Table 1. The conditions are internally consistent, and Kohn et al. (2001) 677 

emphasize that different calibrations would change estimated P and T by ±25°C and ±0.5–1 kbar 678 
and would not alter overall trends. The conditions were estimated using minimum garnet Mn 679 

contents. Note that these garnet compositions are the same used for the estimating the garnet rim 680 
conditions using isopleth thermobarometry as described in the next section (Table 2; polygons in 681 

Figure 12, Figure 13, Figure 14, Figure 15, Figure 16, Figure 17).  682 

 The Gibb’s method to generate the P-T paths from zoned garnets and their co-existing 683 
matrix mineral assemblages is outlined in Spear & Selverstone (1983), Spear (1986, 1993), Spear 684 

et al. (1984), and Spear & Rumple (1986). P-T paths were only generated from LHF rocks with 685 
pelitic bulk compositions (DH16, DH17, DH22, DH23, DH26, DH75A, and DH75B) that 686 

preserved prograde compositional zoning best. The rocks were modeled with the observed solid 687 
assemblage garnet + biotite + chlorite + muscovite + plagioclase + quartz in the 688 
MnNCKFMASH system. Compositional changes were derived from garnet and plagioclase 689 

compositional zoning produced as the garnet grew. Garnet core and rim conditions were selected 690 

for samples DH17, DH19, DH22, and DH26, whereas an intermediate point was also included 691 
for samples DH23, DH75A, and DH75B. This intermediate garnet composition was used to 692 
better account for nonlinearity in the garnet zoning pattern. In the case of DH23 and DH75B, its 693 

inclusion results in hair-pin P-T paths (Figure 13A, Figure 14C, and Figure 17). A pure H2O 694 
fluid at lithostatic pressure was assumed to have been present. Kohn et al. (2001) emphasize that 695 
activity models would not significantly affect the trends of retrieved P-T paths. 696 

 The P-T results obtained using conventional and Gibb’s method show an inverted 697 
metamorphic signature in the LHF, with P-T conditions increasing up section from near the 698 
garnet isograd at 520±25°C and 5.0±1.0 kbar (DH16) to 640±25°C and 11.5±2 kbar (samples 699 
DH57 and DH58) just below the mapped MCT. GHC rocks were collected near the mapped 700 
MCT (Figure 4 and Figure 5) and record the highest P-T conditions (660-715°C and 7.6-11.5 701 

kbar). Samples DH17, DH19, and DH75A have P-T paths consistent with burial (increasing in 702 
both P and T), whereas those from DH22 and DH26 yield exhumation paths (decreasing P with 703 

increasing T). P-T paths from DH75B and DH23 are “hair-pin” and are interpreted as recording 704 
both burial and exhumation during imbrication of the MCT shear zone. Monazite inclusions in 705 
DH75B garnets range from 11.1±0.7 Ma to 7.6±0.2 Ma (Th-Pb secondary ion mass 706 
spectrometry, SIMS, ±1 ) and were interpreted as constraining Late Miocene reactivation of the 707 
MCT shear zone (Figure 5). These Late Miocene monazite inclusions in garnet are also found in 708 
other samples along the transect as well as young (Pliocene-Late Miocene) 40Ar/39Ar muscovite 709 
total gas ages (Catlos et al., 2001; Kohn et al., 2001).  710 
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4.1.3 Isopleth core thermobarometry  711 

The approach to obtain isopleth P-T conditions and paths is the same as that outlined in 712 

Catlos et al. (2018, 2020) and Etzel et al. (2019). Bulk rock compositions were obtained from 713 
rock chips of the DH samples using inductively coupled plasma spectrometry (ICP) at Activation 714 
Laboratories (Canada) (Table 3 and Table 4). No modifications in these compositions were made 715 
for the approach. Samples DH22 and DH23 were collected nearby, and the same bulk 716 
composition is used for both rocks. Compositions vary from low SiO2 (~45 wt % samples DH17, 717 

DH22, and DH23) to higher SiO2 (69-76 wt% DH26, DH75A). In general, upper LHF and GHC 718 
rocks have mid to high SiO2 contents (56-80 wt%). Their molar values are used as direct input 719 
for the effective bulk composition needed to create the isochemical phase diagrams using the 720 
software package Theriak-Domino (de Capitani and Brown, 1987; de Capitani and Petrakakis, 721 
2010) (Figure 12, Figure 13, Figure 14, Figure 15, Figure 16, Figure 17). The Holland and 722 

Powell (1998 with updates to solution models through 2010) thermodynamic dataset and 723 
appropriate mixing models in the system MnO-Na2O-CaO-K2O-FeO-MgO-Al2O3-SiO2-H2O-724 

TiO2 were used. The specific solid solution models used are the same as in Catlos et al. (2018). 725 
H2O saturation is assumed for these samples (i.e., H2O (100) in Theriak Domino), as is 726 

appropriate for these assemblages. Fe3+ was not estimated but did not significantly affect results.  727 

For samples where compositional data were available from the garnet’s central section, 728 
isopleths of ±0.01-0.02 mole fraction spessartine, almandine, pyrope, grossular, and ±0.01-0.02 729 

Mg-# (Mg/Fe+Mg), are plotted on the phase diagram as grey-shaded bars. Their intersection 730 
corresponds with our closest approximation of garnet core P-T conditions as indicated by a 731 

polygon. Although isopleth intersections occurred over small regions, the uncertainty in the 732 
conditions is likely approaching that of conventional methods (i.e., ±25°C and ±1 kbar). 733 
Overlapping garnet core isopleths are only found for LHF samples DH17, DH19, DH22, DH23, 734 

DH26, DH75A, DH75B, DH58, and GHC sample DH61 (Figures12, Figure 13, Figure 14, 735 

Figure 15, Figure 16). The core was defined as the portion of the garnet with the highest Mn 736 
content and is the best approximation of the chemical system when garnet began growth. In all 737 
cases, the intersections are located in mineral stability fields consistent with their assemblages 738 

(feldspar + garnet + biotite + phengite + ilmenite ± rutile ± chlorite + quartz + H2O) and 739 
anticipated conditions. Core metamorphic conditions increase up section over a north-south 740 

distance of ~5 km from a low of 4-4.5 kbar and 520-540°C in lower LHF samples DH17 and 741 

DH19 to 6.8-7.5 kbar and 540-550°C in middle LHF samples DH75A and DH75B (Table 2). 742 
Upper LHF sample DH58 collected directly beneath the MCT yields overlapping core isopleths 743 
at ~550°C and 6.0 kbar. Core isopleths for GHC sample DH61 overlap at ~7 kbar and 580°C, 744 
similar to those from some LHF rocks (Table 2).  745 

The garnet-in reaction line and garnet growth contours (volume 0.5% increments) are 746 

overlaid on each isochemical phase diagram (Figure 12, Figure 13, Figure 14, Figure 15, Figure 747 

16). The topology of the diagrams and the location of the garnet core suggest that garnet appears 748 

in all samples through chlorite dehydration. Only samples DH75A and DH75B yield core P-T 749 
conditions that overlap the garnet-in reaction line (Figure 14). The other samples yield 750 
overlapping isopleths on or near the 0.5% (DH17, Figure 12A), 1% (DH19, DH61, DH58, Figure 751 
12C, Figure 15A and Figure 15C), and 1.5-2% volume contours (DH22 and DH23, Figures 12E 752 
and Figure 13A). The results suggest that the true core was missed during the analysis of these 753 
garnets. The lack of retrograde zoning in the LHF samples suggests that the effect of diffusional 754 
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homogenization is minimal (Figure 10), although this process likely modified GHC DH61 garnet 755 
compositions (Figure 11B).  756 

4.1.4 High-resolution and Gibb’s P-T path modeling  757 

For samples DH17, DH19, DH22, DH23, DH26, DH75A, and DH75B, the garnet's core 758 
isopleth P-T conditions can be directly compared to those obtained using the Gibb's approach 759 
(Figure 17). Sample DH26 yields the same pressure using both methods (~6.5 kbar), but the 760 
thermal conditions are lower using the Gibb's method by 50°C. Sample DH23 yields the same 761 

thermal conditions using both approaches (~525°C), but the isopleth barometry suggests the 762 
sample experienced lower pressures by ~2 kbar (5.1 kbar compared to 7.0 kbar). In all other 763 
samples, isopleth thermobarometry results in the samples recording lower P (from 0.5 kbar to 1.7 764 
kbar, samples DH75A and DH75B) and higher T (from 10°C to 50°C, samples DH75A and 765 
DH75B) compared to than those generated by the Gibb's method. The discrepancies of 10°C and 766 

0.5 kbar are within the stated uncertainties of both methods (Kohn, 1993), but those approaching 767 
50°C and 1.5 kbar are significant differences that would influence understanding their depth of 768 

exhumation and metamorphic reaction history. For example, in sample DH26, the Gibb's core P-769 
T condition shows similar P, but the low Gibb's T starting conditions lie in a region where 770 

chlorite, not garnet, is stable (Figure 13C). 771 

High-resolution P-T paths (Moynihan and Pattison, 2013) were generated for lower LHF 772 
samples where garnet transect data were available, suggested prograde conditions, and minimal 773 

modification since growth. In generating the high-resolution P-T paths, zoning profiles are 774 
smoothed using a Savitzky-Golay function to minimize the impact of missing analyses due to 775 

inclusions or cracks (Figure 10). The Matlab script starts with the bulk composition and initial 776 
smoothed core garnet composition and calls Theriak-Domino to calculate an isochemical phase 777 
diagram. A Matlab optimization function searches the P-T grid for the smallest misfit between a 778 

modeled garnet composition and the smoothed composition. It then calculates the portion of the 779 

bulk composition sequestered in the first step of garnet growth. Sequestered components are 780 
subtracted from the bulk composition to estimate an effective bulk composition for the next step 781 
of growth. A new diagram is calculated from the effective bulk composition, and the process is 782 

repeated for all steps along the garnet zoning profile from core to rim. Each step yields an 783 
estimate of the P-T conditions of incremental garnet growth, culminating in a P-T path. This data 784 
is available in the repository.  785 

Two independently estimated high-resolution P-T paths can be obtained from a rim-to-786 
rim compositional transect across the garnet using the garnet zoning method. The expectation is 787 
that the P-T paths from the same garnet should record similar trajectories, and was the case for 788 
samples DH17, DH19, and DH23 (Figures 12A and C, Figure 13A). The starting and endpoints 789 
may differ due to the proximity of the initial condition near the garnet core and the extent of 790 

garnet rim preservation. In addition, garnet zoning can be predicted by the high-resolution P-T 791 
path and is indicated as a bolder grey line in Figure 10. The high-resolution P-T paths reproduce 792 

the original garnet zoning to ±0.01 mole fraction in most cases and for most compositions, which 793 
is expected if the garnet behaved in a closed system and had no significant changes in bulk rock 794 
composition as it grew.  795 

As with the core conditions, the shapes of the high-resolution P-T paths for samples 796 
DH17, DH19, DH22, DH23, DH75A, and DH75B can be directly compared to those obtained 797 
using the Gibb's approach (Figure 17). The length of the high-resolution and Gibb's P-T paths are 798 
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similar (ranges from 14°C to 52°C) but do not show the same trajectories. For example, instead 799 
of hair-pin trajectories (increase in P followed a P decrease as T increases) predicted by DH23 800 

and DH75B Gibb's P-T paths, their high resolution P-T paths suggest that these rocks only 801 
experience an increase in P as T increased. The Gibb's P-T path in sample DH17 shows an 802 
increase in P, but the high-resolution P-T path from the same rock using the same data decreases 803 
in P as T increases. Minor fluctuations in P in the high-resolution P-T paths (±10-50 bars) in 804 
sample DH19 and near the core of sample DH22 are likely due to small compositional changes 805 

as the program seeks the best fit and should not be interpreted tectonically. DH19 shows an 806 
overall similar P-T path shape as the one reported using the Gibb's approach, but the conditions 807 
are different with the high-resolution P-T path showing much lower P (by ~2 kbar) and higher T 808 
(by ~50°C). The high-resolution P-T paths from samples DH22 and DH23 are similar in that 809 
they show minor increases in P as T increased, but the Gibb's P-T path from sample DH22 810 

suggests decompression, a result not observed with this sample. A P-T path from sample DH26 811 

could not be generated due to a lack of garnet zoning data, but core and rim isopleth conditions 812 
suggest it could have followed the decompression path as T increased. A decrease in P as T 813 

increased is the same trajectory suggested by the Gibb's P-T path but at higher T conditions. 814 

To gauge how well Gibb's P-T paths reproduce garnet zoning, the Gibb's P-T path was 815 
used as input in the program TheriaG (Gaides et al., 2008) using the bulk composition indicated 816 
in Table 3. The time of garnet growth over the P-T path is regularly spaced over durations of 5 817 

m.y., 10 m.y., and 15 m.y. Modeling parameters are available in supplementary files. In each 818 
case, the predicted Gibb's P-T path was identical and would predict garnet zoning inconsistent 819 

with what is observed in the sample (Figure 10). Results may change if different size classes than 820 

those used were selected (10 m successive shells in 2000 m garnet radius), if garnet growth 821 

did not occur over regular space durations, or if the selected exhumation path was different. 822 
Using the chosen parameters, the Gibb's P-T path predictions for samples DH17, DH19, and 823 

DH22 show similar trends with the garnet zoning but significantly different compositions (Figure 824 
10). The Gibb's P-T paths predictions for those samples that produced hair-pin P-T paths 825 

(DH75B and DH23) resulted in significantly different garnet zoning and compositions and did 826 
not replicate observed garnet compositions. 827 

4.1.5 Isopleth rim thermobarometry 828 

Garnet rim isopleth conditions were estimated using the same garnet compositions used 829 
to generate conventional P-T conditions. Rim isopleths also include those from the sample’s 830 
average composition of matrix plagioclase (±0.01 mole fraction Ca), chlorite, and biotite [±0.01 831 
Mg-number, Mg#= Mg/(Mg+Fe)], when available. The last effective bulk composition generated 832 

by the high-resolution P-T paths was used for LHF samples DH17, DH19, DH22, DH23, and 833 
DH75B. For other LHF samples where garnet transect data is not available and for the GHC 834 
rocks, the bulk composition was used (DH26, DH75A, DH58, DH60, DH61, DH63, DH66, 835 

DH67) (Table 3 and Table 4). Only three GHC samples (DH61, DH63, and DH66) yield 836 
overlapping garnet compositional isopleths (Figure 15D, Figure 16A and B), and those from 837 
upper LHF sample DH58 did not overlap.  838 

The extent of overlap of garnet rim with matrix mineral compositions varies for the GHC 839 

and LHF rocks. Garnet rim isopleths for GHC sample DH61 rim overlapped with all matrix 840 
mineral compositions, but DH66 show no overlap of the garnet rim with any of the matrix 841 
mineral compositions. The garnet rim isopleths for GHC sample DH63 overlapped with ±0.01 842 

Mg-number chlorite, but not with the biotite or plagioclase compositions. As seen with some 843 
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footwall samples, the overlaps for the GHC assemblages are located far from the garnet-in 844 
reaction line as seen by the garnet growth contours (>1.5 vol%) (Figure 15 and Figure 16). The 845 

garnet rim isopleths for LHF samples DH17, DH19, DH22, DH23, and DH75B overlap with 846 
Mg# biotite, but not plagioclase. No matrix mineral isopleths overlap with the garnet rim 847 
isopleths for samples DH26 and DH75A within the compositional ranges applied here (±0.01 848 
mole fraction Ca and Mg#). 849 

For samples where garnet and matrix mineral isopleths overlap, conditions are consistent 850 

with their mineral assemblages and are similar to the garnet core assemblages (feldspar + garnet 851 
+ biotite + phengite + ilmenite ± rutile ± chlorite + quartz + H2O). As with the core conditions, 852 
the rim P-T conditions increase up section over a north-south distance of ~5 km from a low of 853 
4.5-4.8 kbar and 550-560°C in lower LHF samples DH17 and DH19 to 5.5-8.8 kbar and 560-854 
590°C in middle LHF samples (Table 2). Although garnet compositional data is not available for 855 

Upper LHF sample DH51, its mineral assemblage of coexisting staurolite and kyanite allows for 856 
an approximation of rock conditions using only its bulk rock composition and observations 857 

conditions where these mineral coexist (Figure 15E), which appears at ~7.0 kbar and ~650°C. 858 
Rim isopleths for GHC samples DH60, DH61, and DH66 yield similar P of ~7 kbar, but T 859 

ranges from 550-600°C. GHC sample DH63 yields the highest P-T isopleth conditions of ~10.5 860 
kbar and 650°C. 861 

Comparisons are made between the conventional rim P-T conditions and isopleth rim 862 

conditions. As seen in Figure 17B, the lower LHF samples yield higher T (by 25-30°C) and 863 
lower P (by 1.4-2.3 kbar). All middle LHF samples (Figure 17D and F) overlap in P conditions 864 

within uncertainty, but the isopleth T for samples DH22 and DH26 is higher than the 865 
conventional results by 5-85°C, depending on how uncertainty is applied. For GHC sample 866 
DH61, the approaches yield similar T conditions, but P differ by 1-2 kbar, depending on 867 

uncertainty (Figure 17F). The opposite observation is seen with GHC sample DH66, where P is 868 

similar, but the isopleth conditions suggest significantly lower T (Figure 17F). Some overlap is 869 
seen with GHC sample DH63, but the conventional results suggest higher P-T than the isopleth 870 
results. 871 

5 Discussion  872 

 Using the same samples and data, Darondi Khola MCT footwall P-T paths using the 873 
Gibb's method and high-resolution garnet modeling do not yield the same conditions or shapes 874 

(Figure 17), even within the estimated uncertainties of the Gibb’s method (e.g., Kohn, 1993). In 875 
addition, the lowest-grade footwall samples record higher T and lower P isopleth rim P-T 876 
conditions than those generated using conventional thermometers and barometers. Conventional 877 
garnet rim P-T conditions and isopleth thermobarometry for GHC samples yield absolute 878 
conditions that differ, although overlap exists within uncertainty (±25°C and ±1kbar). An 879 

important check on the feasibility of the P-T conditions generated using any approach is if the 880 
results seem geologically reasonable and consistent with mineral assemblages (e.g., Moynihan 881 

and Pattison, 2013; Kelly et al., 2015; Catlos et al., 2018; Etzel et al., 2019; Craddock Affinati et 882 
al., 2020). However, this is the case with all conditions reported for the Darondi Khola samples, 883 
regardless of approach. 884 

 Several assumptions underlie many P-T estimates generated using thermodynamic 885 
modeling. For all thermobarometric methods applied here, a critical assumption is that the 886 
minerals in a sample experienced equilibrium, which can never be proven for any rock system 887 
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(e.g., Spear & Peacock, 1989; Lanari & Duesterhoeft, 2019). The samples are also assumed to 888 
have experienced closed system behavior, and the original compositions of the mineral phases 889 

and the bulk rock have not changed significantly since metamorphism (e.g., Lanari and Engi, 890 
2017). LHF assemblages appear to have preserved their original garnet compositions, as shown 891 
by their prograde zoning profiles (Figure 10). Garnets with preserved divalent cation zoning 892 
based on previously reported thermal conditions of generally <600°C (e.g., Carlson, 1989, Spear, 893 
1993; Carlson 2002), consistent with the results shown here. GHC samples show fluctuations in 894 

garnet compositions from core to rim and have evidence of diffusional modification by an 895 
increase of Mn at the rims (Figure 11). 896 

 Multiple sources of error are inherent in conventional P-T conditions and include 897 
uncertainty in the accuracy of end-member reactions, electron microprobe analyses, calibration 898 
errors, variations in activity models, and compositional heterogeneity (e.g., Kohn & Spear, 899 

1991). The precise uncertainty with approaches that involve isochemical phase diagrams is 900 
likewise challenging to determine due to the same factors incorporated into their creation as well 901 

as uncertainty associated with the thermodynamic properties inherent in the choice of internally 902 
consistent database (e.g., molar enthalpy of formation, molar entropy, molar volume, heat 903 

capacity, bulk modulus, Landau parameters, and Margules parameters, e.g., White et al., 2014; 904 
Lanari & Duesterhoeft, 2019). The error suggested by the grid created due to overlapping 905 
mineral compositional isopleths likely underestimates the actual uncertainty in the identified 906 

conditions. Applying a standard values of uncertainty (±25°C and ±1 kbar) to the overlapping 907 
isopleth conditions as those used for conventional results appears appropriate, and is commonly 908 

reported (e.g., Spear & Peacock, 1989; Kohn, 1993; Kohn et al., 2001). 909 

 Ultimately, each approach to generating P-T conditions discussed here transforms the 910 
sample into a model representing the true rock and mineral assemblage but restricts its behavior 911 

as if it was in a closed system that experienced particular boundary conditions. Confidence in 912 

conventional and Gibb's P-T paths increases when conditions agree with minerals assemblages 913 
and if the P-T paths reproduce broad-scale trends in garnet zoning from core to rim. Samples 914 
collected from the same outcrop or nearby should yield similar P-T conditions and paths. 915 

Although Kohn et al. (2001) only report one Gibb's P-T path per sample, the expectation is that 916 
multiple paths collected from the same garnet or multiple garnets in the same rock would agree 917 

in terms of shapes and conditions. The high-resolution P-T path approach and the garnet isopleth 918 

thermobarometry use these same criteria to evaluate the estimated result's appropriateness. 919 
However, they have two additional values in critically evaluating results. First, a user can gauge 920 
the extent of overlapping mineral isopleths in P-T space. Second, a user can identify how well 921 
the high-resolution P-T paths predict the trends and values of garnet compositional zoning 922 
(Figure 10). A significant value of the high-resolution P-T path and isopleth approaches is that a 923 

user can detect when systems stray from the equilibrium and closed system assumptions. 924 

 These samples illustrate that not all garnets are suitable candidates for high-resolution P-925 

T path modeling and isopleth thermobarometry. Garnets with significant changes in composition 926 
over short distances from core to the rim and those affected by diffusion cannot be modeled. 927 
Garnets in samples that experienced significant changes in bulk composition or multiple 928 
deformation episodes resulting in modification of composition are also unable to be modeled. 929 
Not all field areas are ideal candidates, and the GHC samples show that they often fail 930 
assumptions required for isopleth thermobarometry and high-resolution P-T path modeling. For 931 
example, overlapping garnet core isopleths were only found for one GHC sample DH61, and this 932 
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was located far from the garnet-in reaction line (Figure 15C). In fact, the intersections for all 933 
samples, except DH75A and DH75B, are far from the garnet-in reaction line (>1 vol%), although 934 

all overlap mineral stability fields consistent with rock assemblages. The compositional core may 935 
not coincide with the geometric garnet center (e.g., Spear & Daniel, 1998), shown for most 936 
samples. Overlapping garnet compositional rim isopleths were found for three GHC samples 937 
(DH61, DH63, DH66), but only GHC sample DH61 appears ideal as garnet rim isopleths also 938 
intersect those of the matrix minerals (±0.01 mole fraction Ca in anorthite and ±0.01 Mg# 939 

chlorite and biotite). Confidence in isopleth conditions increases when matrix mineral 940 
compositions overlap the garnet rim conditions, as these mineral compositions are independent. 941 

 The high-resolution P-T paths should be considered approximations of how a garnet with 942 
a specific type of compositional zoning would behave in a closed system of a known bulk 943 
composition as it evolves during increasing T. Rocks are open systems, but LHF garnet-bearing 944 

assemblages appear as if they approach an ideal scenario of a closed system. This appearance of 945 
equilibrium is shown by overlapping isopleths of compositions from the garnet core and from 946 

those of the garnet rim with matrix minerals. In addition, predictions of garnet zoning made by 947 
the high-resolution P-T paths closely match the original garnet for these samples (Figure 10). 948 

Multiple paths from the same sample yield similar conditions and shapes. The inability to 949 
reproduce garnet zoning using Gibb's P-T path trajectories using TheriaG modeling suggests 950 
these paths may not be relevant to the samples using the applied parameters. 951 

 Regardless of calibrations used, the P-T conditions and paths along with previously-952 
reported timing constraints, are consistent with an imbrication model that suggest the MCT shear 953 

zone developed as rock packages within the LHF were progressively transferred (Catlos et al., 954 
2001; Kohn et al., 2001). For example, Figure 18 shows P-T path predictions for one such 955 
imbrication model described in Catlos et al. (2018) and (2020). In this model, thermobarometric 956 

histories are calculated using a two‐dimensional finite-difference solution to the diffusion‐957 

advection equation. Samples within the LHF travel along the MCT at a 5 km/Ma speed rate from 958 
25 to 18 Ma (Figure 18A). The hanging wall speed rate is 10 km/Ma, and topography 959 
progressively accumulates until a maximum height of 3.5 km. The increase in topography is 960 

required to accommodate the pressure changes recorded by the garnets while matching their 961 
thermal histories. Once the topography is achieved at 18 Ma, a period of cessation is applied to 962 

the MCT between 18 and 15 Ma, and topography is reduced at a rate of 1.5 km/Ma. The model 963 

returns to activity within the MCT shear zone with the activation of the MCT footwall slivers 964 
from 8 to 2 Ma (Figure 18B). P‐T changes recorded by the footwall garnets are the direct result 965 
of thermal advection combined with alterations in topography. Changes in the timing of fault 966 
motion would affect the model outcomes. However, the model’s current constraints and 967 
boundary conditions appear to match the observed high-resolution P-T paths. For example, the 968 

P-T diagram in Figure 18 C-E are model predictions for samples that experienced imbrication in 969 

the MCT footwall. High-resolution P-T paths are also plotted in these panels from samples 970 

collected from the LHF along the Darondi (Figure 18C) and Marsyangdi (Figure 18D) rivers in 971 
central Nepal and from along the Bhagirathi River in NW India (Figure 18E). For most samples, 972 
the P-T paths match the model predictions remarkably well. P-T paths for sample DH75B (Panel 973 
18C) suggests the possibility of very high exhumation rates (>12mm/year) within the MCT shear 974 
zone since the Pliocene, which is a scenario predicted by this imbrication model. 975 

6 Conclusions 976 
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      This paper reviews the geological framework of the Himalayas and describes and applies 977 
particular thermobarometric approaches to decipher the metamorphic history of garnet-bearing 978 

rocks collected across the MCT along the Darondi Khola in central Nepal using previously 979 
reported data (Kohn et al., 2001). A comparison is made between the results of conventional and 980 
isopleth thermobarometry for all samples and high-resolution and Gibb’s P-T paths for MCT 981 
footwall rocks only. A significant value of the high-resolution P-T path and isopleth approaches 982 
is that a user can detect when systems stray from the equilibrium assumption. Confidence in 983 

conditions exists when minerals assemblages predicted by thermodynamic modeling appear 984 
consistent with the actual rock and when the P-T paths reproduce broad-scale trends in garnet 985 
zoning from core to rim. The expectation is that multiple paths collected from the same garnet or 986 
multiple garnets in the same rock would agree in terms of shapes and conditions and that samples 987 
collected from the same outcrop or nearby should record similar P-T conditions and paths. Using 988 

isopleth thermobarometry, a user can gauge the extent of overlapping mineral compositions and 989 

where the overlap occurs with respect to the garnet-in reaction line and garnet volume % growth 990 
contours. MCT footwall garnet compositions predicted by Gibb’s P-T paths using the software 991 

package TheriaG fail to reproduce the original garnet zoning. However, high-resolution P-T 992 

paths reproduce the original garnet zoning to ±0.01 mole fraction in most cases and for most 993 
compositions, expected if the garnet behaved in a closed system and had no significant changes 994 
in bulk rock composition as it grew. Although the assumption of equilibrium has long been 995 

known can never be proven for any rock system (e.g., Spear & Peacock, 1989), isopleth 996 
thermobarometry and high-resolution P-T path modeling applied to garnet-grade Himalayan 997 

MCT footwall assemblages show they appear to behave as if they evolved in a closed system that 998 
experienced particular P-T path trajectories. Ultimately, the P-T conditions and paths generated 999 
for rocks across the MCT along the Darondi Khola, regardless of calibrations used, are consistent 1000 

with the imbrication model that suggest the MCT shear zone developed as rock packages within 1001 

the LHF were progressively transferred (Catlos et al., 2001; Kohn et al., 2001).  1002 

Figure Captions 1003 

Figure 1. Geological map of the Himalayas after Yin (2006). See Figure 2 for a cross-section 1004 

through central Nepal and Figure 3, Figure 4, and Figure 5 for the sample transect taken across 1005 
the MCT shear zone along the Darondi Khola.  1006 

Figure 2. Generalized cross-section through the Himalayas in central Nepal after DeCelles 1007 

(2015) and Robinson et al. (2006). See additional cross-sections in the range in DeCelles et al. 1008 
(2020). 1009 

Figure 3. Generalized geological map of the Annapurna-Manaslu-Ganesh region of central 1010 
Nepal after Colchen et al. (1980). Isograds are dashed and labeled: bt= biotite, grt= garnet; ky= 1011 
kyanite; sta= staurolite; sil= sillimanite; pyx= pyroxene, carbonate lithologies. STDS? = the 1012 

presence of the South Tibetan Detachment is debated; MCT= Main Central Thrust; MCT-I?= the 1013 
presence of Arita's (1983) thrust at the base of the MCT shear zone is debated. 1014 

Figure 4. Sample location map from rocks collected along the Darondi Khola. The contour 1015 
interval is 500 ft. See Figure 3 for the location of this transect on the geological map of the 1016 
Himalayas. Samples are indicated by "DH#" in the text. Isograds are dashed and labeled (grt= 1017 
garnet; stau= staurolite). See Figure 5 for a cross-section along A-A'. 1018 

Figure 5. Cross-section across the Darondi Khola section showing available muscovite 40Ar/39Ar 1019 
and Th-Pb ages after Catlos et al. (2001). See Figure 4 for line of section. 1020 
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Figure 6. Cross-sections of early models of Himalayan inverted metamorphism and leucogranite 1021 
formation. (A) The “hot-iron” model of LeFort 1975. (B) Juxtaposing right-way-up metamorphic 1022 

isograds after Hubbard (1996). (C) A combination of models in panels (A) and (B) after Searle 1023 
and Rex (1989).  Wedge extrusion models after (D) Hodges et al. (1993) and (E) Harris & 1024 
Massey (1994). 1025 

Figure 7. Cross-sections of early kinematic models of Himalayan inverted metamorphism and 1026 
leucogranite formation. (A) After Molnar and England (1990). (B) After Huerta et al. (1998). (C) 1027 

After Harrison et al. (1989). (D) After Nelson et al. (1996). 1028 

Figure 8. (A) An illustration of the critical taper model. (B) Schematic of channel flow and 1029 
wedge extrusion. (C) A combination of critical taper and tectonic wedging of the GHC. A “*” 1030 
indicates an incipient fault. (D) Illustration of GHC tectonic wedging after Webb et al. (2011). 1031 
Panels (E) and (F) show the final geometry of the range, which has affected the position and 1032 

definition of the MCT. Panels (A), (B), (C), and (E) are after Cottle et al. (2015), and panel (F) is 1033 
after Searle et al. (2008). 1034 

Figure 9. Selected petrographic (plane polarized light) images of samples along the Darondi 1035 
Khola showing the relationship of the garnet porphyroblasts and rock textures. Garnets are 1036 

outlined using bold lines. Pressure shadows and inclusion trails are indicates by lighter and 1037 
dashed lines, respectively. Mineral abbreviations after Whitney and Evans (2010). Panels are 1038 
labeled with sample number. The scale bar for each image is 200 m. See Figure 4 and 5 for 1039 

sample locations. 1040 

Figure 10. Compositional transects across garnets in lower LHF samples (A) DH17 and (B) 1041 

DH19, and middle LHF samples (C) DH22, (D) DH23, and (E) DH75B. Distance is in analytical 1042 
points, and the spacing between the points is ~20 m. The larger black squares are the raw 1043 
electron microprobe data, whereas the smaller black squares near the EPMA data points are the 1044 

smoothed data used for input into the model to generate the high-resolution P-T paths. The high-1045 

resolution P-T paths predict garnet zoning, which is shown by the bold gray lines. TheriaG was 1046 
used to predict the garnet zoning for the Gibb’s P-T paths, and these are also indicated. 1047 

Figure 11. Compositional transects across garnets in GHC samples DH66 (two transects) in (A) 1048 

spessartine, (C) grossular, (E) pyrope, and (G) almandine. Panels (B), (D), (F), and (H) are 1049 
compositional transects in spessartine, grossular, pyrope, and almandine, respectively, across a 1050 
garnet in sample DH61. Distance from the garnet core is in analytical points, and the spacing 1051 

between the points is ~20 m.  1052 

Figure 12. Isochemical phase diagrams from lower LHF samples DH17 (A) garnet core and (B) 1053 
garnet rim, DH19 (C) core and D (rim), and mid-LHF sample DH22 (E) core and (F) rim. See 1054 
Figures 4 and 5 for sample locations. Garnet-in reaction line (+Grt) and garnet growth contours 1055 

(volume 0.5% increments) are overlaid on each diagram. Each core diagram was created using 1056 
the rock bulk compositions reported in Table 3 and the software program Theriak-Domino. Some 1057 
mineral stability fields are labeled using abbreviations after de Capitani and Petrakakis (2010) 1058 

and include quartz and H2O. For the core diagrams, isopleths of ±0.01-0.02 mole fraction 1059 
spessartine (XMn), grossular (XCa), pyrope (XMg), almandine (XFe), and ±0.01-0.02 Mg-1060 
number (Mg/Fe+Mg, Mg#) of the compositional data point selected from the garnet’s highest 1061 
Mn content are overlain (Kohn et al., 2001). They intersect as indicated by the polygon and 1062 
labeled as “T-D core.” High-resolution P-T paths (DH17, n=2; DH19, n=2; DH22, n=1) were 1063 
generated from garnet core-to-rim transects after the approach of Moynihan & Pattison (2013). 1064 
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These are compared to the P-T paths obtained using the Gibb’s method for the samples using the 1065 
same data by Kohn et al. (2001). The starting point of the Gibb’s P-T paths is labeled with 1066 

“Gibb’s core.” Isochemical phase diagrams for the garnet rim were created using the final 1067 
effective bulk composition generated by Theriak-Domino. In this case, isopleths for the garnet 1068 
compositions reported for garnet rims are overlain on the diagram, as well as matrix mineral 1069 
compositions isopleths for An-content for plagioclase, Mg-number for biotite and chlorite, 1070 
(Mg/Fe+Mg, Mg#-bt and Mg#-chl) (Kohn et al. 2001), when available. They intersect as 1071 

indicated by the polygon and labeled as “T-D rim.” These are compared to the rim P-T 1072 
conditions (GB-GBMP conditions) for the samples using the same data and conventional 1073 
thermobarometric approaches by Kohn et al. (2001).  1074 

Figure 13. Isochemical phase diagrams from middle LHF samples DH23 (A) garnet core and 1075 
(B) rim and DH26 (C) core and (D) rim. See Figures 4 and 5 for sample locations. Detailed 1076 

caption is the same as in Figure 12. High-resolution P-T paths for sample DH23 were generated 1077 
from two garnet core-to-rim transects after the approach of Moynihan & Pattison (2013). These 1078 

are compared to the P-T paths obtained using the Gibb’s method for the samples using the same 1079 
data by Kohn et al. (2001). No data was available for the garnet transect for sample DH26, so a 1080 

high-resolution P-T path was not created. In this case, the rock bulk composition (Table 3) was 1081 
used for both core and rim panels.  1082 

Figure 14. Isochemical phase diagrams from middle LHF samples DH75A (A) garnet core and 1083 

(B) rim and DH75B (C) core and (D) rim. See Figures 4 and 5 for sample locations. Detailed 1084 
caption is the same as in Figure 12. High-resolution P-T paths for sample DH75B were generated 1085 

from garnet core-to-rim transects after the approach of Moynihan & Pattison (2013). These are 1086 
compared to the P-T paths obtained using the Gibb’s method for the samples using the same data 1087 
by Kohn et al. (2001). The Gibb’s path was also reported for sample DH75A. The starting point 1088 

of the Gibb’s P-T paths is labeled with “Gibb’s core.” The isochemical phase diagram for the 1089 

garnet rim in sample DH75B was created using the final effective bulk composition generated by 1090 
Theriak-Domino. In this case, isopleths for the garnet compositions reported for garnet rims are 1091 
overlain on the diagram, as well as matrix mineral compositions isopleths for ±0.01 An-content 1092 

for plagioclase (Kohn et al. 2001). Intersecting isopleths are indicated by the polygon and labeled 1093 
as “T-D rim.” No data was available for the garnet transect for sample DH75A, so a high-1094 

resolution P-T path was not created, and the rock bulk composition (Table 3) was used for both 1095 

core and rim panels. In the rim panels, data are compared to the conventional P-T conditions for 1096 
the samples (grey polygon) using the same data reported by Kohn et al. (2001). 1097 

Figure 15. Isochemical phase diagrams from upper LHF samples DH58 (A) garnet core and (B) 1098 
rim and (E) DH51 showing the mineral reactions only. The figure also includes isochemical 1099 
phase diagrams from GHC sample DH61 (C) core and (D) rim, and DH60 (F) garnet rim data 1100 

only. See Figures 4 and 5 for sample locations. Garnet-in reaction line (+Grt) and garnet growth 1101 

contours (volume 0.5% increments) are overlaid on each diagram. Each diagram was created 1102 

using the rock bulk compositions reported in Table 3 and the software program Theriak-Domino. 1103 
Detailed caption is the same as in Figure 12. All labeled stability fields include quartz and H2O, 1104 
except in panel (B), where the quartz-out reaction line is noted. The isopleths did not intersect in 1105 
panels (B) and (F) but did in panel (D), as indicated by the polygon labeled as “T-D rim.” In the 1106 
rim panels, data are compared to the rim P-T conditions for the samples (labeled polygon) using 1107 
the same data and conventional thermobarometric approaches by Kohn et al. (2001). No mineral 1108 
data is available for sample DH51, so the isochemical phase diagram in panel (E) shows only 1109 
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reaction lines with staurolite, sillimanite, garnet, and kyanite reaction lines in bold. This sample 1110 
has co-existing kyanite and staurolite, so the shaded area indicates the field where both of these 1111 

minerals are stable. 1112 

Figure 16. Isochemical phase diagrams from GHC samples (A) DH63, (B) DH66, and (C) 1113 
DH67. See Figures 4 and 5 for sample locations. Garnet-in reaction line (+Grt) and garnet 1114 
growth contours (volume 0.5% increments) are overlaid on each diagram. Each diagram was 1115 
created using the rock bulk compositions reported in Table 3 and the software program Theriak-1116 

Domino. Some mineral stability fields are labeled using abbreviations after de Capitani and 1117 
Petrakakis (2010). All labeled stability fields include quartz and H2O. For each diagram, 1118 
isopleths of ±0.01-0.02 mole fraction spessartine (XMn), grossular (XCa), pyrope (XMg), 1119 
almandine (XFe), and ±0.01-0.02 Mg-number (Mg/Fe+Mg, Mg#) of the compositional data 1120 
point selected from the garnet’s rim are overlain (Kohn et al., 2001). Isopleths of An-content for 1121 

matrix plagioclase (A) and Mg# for matrix chlorite are also overlaid on the diagrams in panels 1122 
(A) and (C), respectively. Mineral isopleths intersect in panels (A) and (B) as indicated by the 1123 

polygon and labeled as “T-D rim.” These isopleths did not intersect in panel (C). In each panel, 1124 
data are compared to the rim P-T conditions for the samples (grey polygon) using the same data 1125 

and conventional thermobarometric approaches by Kohn et al. (2001).  1126 

Figure 17. Summary of the P-T conditions and paths reported in Figures 12-16. In panels (A), 1127 
(C), and (E), Gibb’s P-T paths are shown as bold arrows and high-resolution P-T paths are 1128 

labeled with core and rim points. In panels (B), (D), and (F), rim data generated using isopleth 1129 
(white polygons) and conventional thermobarometry (grey polygons) are compared. Uncertainty 1130 

scales in T (±25°C) and P (±1 kbar) are shown as insets in each panel. 1131 

Figure 18. (A) Thermal-kinematic model cross-section after Catlos et al. (2018) showing the 1132 
MCT (dark line) and MBT (white line) from 25 to 8 Ma. The MCT and MBT sole into the MHT 1133 

at depth. Isothermal sections in degree increments are indicated by the scale bar. The isotherms 1134 

show the thermal situation at 18 Ma after MCT slip. Example sample trajectories on the diagram 1135 
are represented by arrows with dots at the initial and heads at the final position. The MCT is 1136 
active from 25 to 18 Ma, whereas slip transfers to the MBT from 15 to 8 Ma. (B) The model 1137 

cross-section of the reactivation of the MCT shear zone from 8 to 2 Ma. Both the MCT and 1138 
MCT-I sole into the MHT at depth. This panel represents the thermal situation at 6 Ma right 1139 
before the development of MCT shear zone inverted metamorphism. Example sample 1140 

trajectories are shown. (C) P-T diagram showing the trajectories of the model predictions for 1141 
samples panels A and B and high-resolution P-T paths for the Darondi Khola samples. Sample 1142 
DH75B is identified. Panels (D) and (E) show the same model predictions but high-resolution P-1143 
T paths from the Marsyangdi River (Catlos et al., 2018) and Bhagirathi River transects (Catlos et 1144 
al., 2020).   1145 
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Table 1. Conventional P-T data from samples collected along the Darondi Khola.  2378 

Samplea Gibbs 

Core P 

(±1kbar) 

Gibbs 

Core T 

(±25°C) 

Gibbs 

Rim P  

(± 1kbar) 

Gibbs 

Rim T 

(±25°C) 

Conv. 

Rim P 

(kbar, ±1) 

Conv. 

Rim T 

(°C, ±1) 

Lower LHF 

DH16 -b - - - 5.0±1.0 520±25 

DH17 6.0 510 7.0 525 6.8±1.0 525±15 

DH19 5.5 475 6.0 525 6.2±0.5 527±12 

Middle LHF 

DH22 6.0 498 5.0 525 5.2±1.0 520±25 

DH23 7.0 525 7.3 575 7.2±2.0 540±35 

DH26 6.5 500 5.5 520 5.5±1.0 524±25 

DH30 - - - - 8.5±2.0 570±20 

DH75A 8.5 530 9.0 560 8.5±2.0 570±20 

DH75B 8.0 500 8.0 560 8.5±2.0 570±20 

Upper LHF 

DH38 - - - - 8.2±1.0  578±20 

DH57 - - - - 11.5±2.0 640±25 

DH58 - - - - 11.5±2.0 640±25 

DH71 - - - - 11.5±1.0 640±20 

GHC 

DH60 - - - - 10.5±1.0 652±10 

DH61 - - - - 9.1±2.0 625±12 

DH63 - - - - 11.5±1.5 705±25 

DH66 - - - - 7.6±1.0 660±12 

DH67 - - - - 10.2±2.0 715±5 
a See Figure 3 for samples location. Conditions estimated from Kohn et al. (2001). 2379 
b “-“ not reported. 2380 
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Table 2. P-T data generated from samples collected along the Darondi Khola using garnet 2399 
isopleth thermobarometry. 2400 

Samplea Isopleth Core P 

(±1kbar) 

Isopleth Core T 

(±25°C) 

Isopleth Rim P 

(±1kbar) 

Isopleth Rim T 

(±25°C) 

Lower LHF 

DH17 4.5 540 4.5 560 

DH19 4.0 520 4.8 550 

Middle LHF 

DH22 4.8 540 6.0 580 

DH23 5.1 525 6.0 580 

DH26 6.5 550 5.5 560 

DH75A 6.8 540 6.5 580 

DH75B 7.5 550 8.8 590 

Upper LHF 

DH51 - b - 7.0 650 

DH58 6.0 550 - - 

GHC 

DH60 - - 7.5 570 

DH61 7.0 580 7.5 600 

DH63 - - 10.5 650 

DH66   7.5 550 
a See Figure 3 for sample locations. 2401 
b “-“ not reported. 2402 
 2403 
Table 3. Bulk rock compositions (wt%) from lower and middle LHF samples. 2404 

Analyte/Sample a DH17 DH19 DH22/23 DH26 DH30 DH75A DH75B 

SiO2 45.39 66.04 45.22 76.04 50.89 70.24 68.75 

Al2O3 27.31 16.36 28.09 11.79 27.80 12.79 8.16 

Fe2O3(T) 9.18 7.12 6.37 3.52 6.11 4.98 3.78 

MnO 0.10 0.17 0.20 0.05 0.02 0.02 0.02 

MgO 2.81 1.88 1.50 1.24 2.03 1.78 1.52 

CaO 0.30 0.44 0.51 0.58 0.20 0.39 0.46 

Na2O 1.07 0.45 1.57 3.54 1.44 1.14 1.51 

K2O 7.72 5.14 7.26 1.22 6.12 2.97 1.99 

TiO2 0.86 0.52 0.86 0.40 0.79 0.49 0.35 

P2O5 0.11 0.16 0.13 0.11 0.14 0.09 0.07 

LOI n.m. 2.15 n.m. 2.26 5.21 4.89 n.m. 

Total 94.8 100.4 91.7 100.7 100.7 99.8 86.6 
a See Figure 3 for sample locations.  2405 
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Table 4. Bulk rock compositions (wt%) from upper LHF and GHC samples. 2412 

Analyte/Sample a DH51 DH58B DH60 DH61  DH63 DH66 DH67 

 LHF samples  GHC samples 

SiO2 66.13 55.66 71.51 55.47  69.01 68.35 79.92 

Al2O3 15.14 23.82 12.62 19.54  13.88 10.47 9.01 

Fe2O3(T) 5.29 4.48 5.80 7.76  6.69 5.44 3.57 

MnO 0.03 0.19 0.04 0.14  0.10 0.07 0.02 

MgO 2.31 1.66 2.41 4.71  1.99 2.00 1.65 

CaO 0.21 3.38 1.02 2.59  1.15 1.07 1.37 

Na2O 0.58 6.46 2.55 4.23  2.46 1.52 2.18 

K2O 3.78 2.08 2.68 3.84  2.32 2.53 1.22 

TiO2 0.52 0.67 0.65 0.99  0.68 0.54 0.62 

P2O5 0.12 0.01 0.15 0.03  0.15 0.09 0.05 

LOI 5.89 n.m. n.m. n.m.  n.m. n.m. 1.28 

Total 100 98.4 99.4 99.3  98.4 92.1 100.9 
a See Figure 3 for sample locations.  2413 



 

Figure 1. Geological map of the Himalayas after Yin (2006). Geological map of the Himalayas 

after Yin (2006). See Figure 2 for a cross-section through central Nepal and Figures 3-5 for the 

sample transect taken across the MCT shear zone along the Darondi Khola. See supplementary 

files for this figure in color. 
 



 

 
Figure 2. Generalized cross-section through the Himalayas in central Nepal after DeCelles 

(2015) and Robinson et al. (2006). See additional cross-sections in the range in DeCelles et al. 

(2020). 
 



 

 

Figure 3. Generalized geological map of the Annapurna-Manaslu-Ganesh region of central 

Nepal after Colchen et al. (1980). Isograds are dashed and labeled: bt= biotite, grt= garnet; ky= 

kyanite; sta= staurolite; sil= sillimanite; pyx= pyroxene, carbonate lithologies. STDS? = the 

presence of the South Tibetan Detachment is debated; MCT= Main Central Thrust; MCT-I?= the 

presence of Arita's (1983) thrust at the base of the MCT shear zone is debated. 

 



 
Figure 4. Sample location map from rocks collected along the Darondi Khola. The contour 

interval is 500 ft. See Figure 3 for the location of this transect on the geological map of the 

Himalayas. Samples are indicated by "DH#" in the text. Isograds are dashed and labeled (grt= 

garnet; stau= staurolite). See figure 5 for a cross-section along A-A'. 



 
 

 

Figure 5. Cross-section across the Darondi Khola section showing available muscovite 40Ar/39Ar 

and Th-Pb ages after Catlos et al. (2001). See Figure 4 for line of section. 

 



 

Figure 6. Cross-sections of early models of Himalayan inverted metamorphism and leucogranite 

formation. (A) The “hot-iron” model of LeFort 1975. (B) Juxtaposing right-way-up metamorphic 

isograds after Hubbard (1996). (C) A combination of models in panels (A) and (B) after Searle 

and Rex (1989).  Wedge extrusion models after (D) Hodges et al. (1993) and (E) Harris & 

Massey (1994). 

 



 

 

Figure 7. Cross-sections of early kinematic models of Himalayan inverted metamorphism and 

leucogranite formation. (A) After Molnar and England (1990). (B) After Huerta et al. (1998). (C) 

After Harrison et al. (1989). (D) After Nelson et al. (1996). 

 



 

Figure 8. (A) An illustration of the critical taper model. (B) Schematic of channel flow and 

wedge extrusion. (C) A combination of critical taper and tectonic wedging of the GHC. A “*” 

indicates an incipient fault. (D) Illustration of GHC tectonic wedging after Webb et al. (2011). 

Panels (E) and (F) show the final geometry of the range, which has affected the position and 

definition of the MCT. Panel (G) showing the development of the MCT shear zone as rocks 

shown as squares within the footwall accrete to the hanging wall of the MCT. Faults within the 

GHC include the Kalopani shear zone (KSZ) and High Himalayan discontinuity (HHD). Panels 

(A), (B), (C), and (E) are after Cottle et al. (2015), panel (F) is after Searle et al. (2008), and 

panel (G) after Carosi et al. (2006). 



 
Figure 9. Selected petrographic (plane-polarized light) images of samples along the Darondi 

Khola showing the relationship of the garnet porphyroblasts and rock textures. Garnets are 

outlined using bold lines. Pressure shadows and inclusion trails are indicated by lighter and 

dashed lines, respectively. Mineral abbreviations after Whitney and Evans (2010). Panels are 

labeled with the sample numbers. The scale bar for each image is 200 um. See Figures 4 and 5 

for sample locations. See supplementary files for this figure in color. 
 



 
Figure 10. Compositional transects across garnets in lower LHF samples (A) DH17 and (B) 

DH19, and middle LHF samples (C) DH22, (D) DH23, and (E) DH75B. Distance is in 

analytical points, and the spacing between the points is ~20m. The larger black squares are 

the raw electron microprobe data, whereas the smaller black squares near the EPMA data 

points are the smoothed data used for input into the model to generate the high-resolution P-T 

paths. The high-resolution P-T paths predict garnet zoning, which is shown by the bold gray 

lines. TheriaG was used to predict the garnet zoning for the Gibb’s P-T paths, and these are 

also indicated. 
 



 
Figure 11. Compositional transects across garnets in GHC samples DH66 (two transects) in 

(A) spessartine, (C) grossular, (E) pyrope, and (G) almandine. Panels (B), (D), (F), and (H) are 

compositional transects in spessartine, grossular, pyrope, and almandine, respectively, across a 

garnet in sample DH61. Distance from the garnet core is in analytical points, and the spacing 

between the points is ~20m.  

 



 
Figure 12. Isochemical phase diagrams from lower LHF samples DH17 (A) garnet core and 

(B) garnet rim, DH19 (C) core and D (rim), and mid-LHF sample DH22 (E) core and (F) rim. 

See text for entire figure caption. 
 



 
Figure 13. Isochemical phase diagrams from middle LHF samples DH23 (A) garnet core and 

(B) rim and DH26 (C) core and (D) rim. See Figures 4 and 5 for sample locations. Detailed 

caption is the same as in Figure 12. High-resolution P-T paths for sample DH23 were 

generated from two garnet core-to-rim transects after the approach of Moynihan & Pattison 

(2013). These are compared to the P-T paths obtained using the Gibb’s method for the samples 

using the same data by Kohn et al. (2001). No data was available for the garnet transect for 

sample DH26, so a high-resolution P-T path was not created. In this case, the rock bulk 

composition (Table 3) was used for both core and rim panels. 
 



 
Figure 14. Isochemical phase diagrams from middle LHF samples DH75A (A) garnet core 

and (B) rim and DH75B (C) core and (D) rim. See Figures 4 and 5 for sample locations. 

Detailed caption is the same as in Figure 12. High-resolution P-T paths for sample DH75B 

were generated from garnet core-to-rim transects after the approach of Moynihan & Pattison 

(2013). These are compared to the P-T paths obtained using the Gibb’s method for the samples 

using the same data by Kohn et al. (2001). The Gibb’s path was also reported for sample 

DH75A. The starting point of the Gibb’s P-T paths is labeled with “Gibb’s core.” The 

isochemical phase diagram for the garnet rim in sample DH75B was created using the final 

effective bulk composition generated by Theriak-Domino. In this case, isopleths for the garnet 

compositions reported for garnet rims are overlain on the diagram, as well as matrix mineral 

compositions isopleths for ±0.01 An-content for plagioclase (Kohn et al. 2001). Intersecting 

isopleths are indicated by the polygon and labeled as “T-D rim.” No data was available for the 

garnet transect for sample DH75A, so a high-resolution P-T path was not created, and the rock 

bulk composition (Table 3) was used for both core and rim panels. In the rim panels, data are 

compared to the conventional P-T conditions for the samples (grey polygon) using the same 

data reported by Kohn et al. (2001). 
 



 
Figure 15. Isochemical phase diagrams from upper LHF samples DH58 (A) garnet core and 

(B) rim and (E) DH51 showing the mineral reactions only. The figure also includes 

isochemical phase diagrams from GHC sample DH61 (C) core and (D) rim, and DH60 (F) 

garnet rim data only. See text for detailed caption. 
 



 
Figure 16. Isochemical phase diagrams from GHC samples (A) DH63, (B) DH66, and (C) 

DH67. See Figures 4 and 5 for sample locations. See manuscript text for detailed caption. 
 



 
Figure 17. Summary of the P-T conditions and paths reported in Figures 12-16. In panels (A), 

(C), and (E), Gibb’s P-T paths are shown as bold arrows and high-resolution P-T paths are 

labeled with core and rim points. In panels (B), (D), and (F), rim data generated using isopleth 

(white polygons) and conventional thermobarometry (grey polygons) are compared. 

Uncertainty scales in T (±25°C) and P (±1 kbar) are shown as insets in each panel. 
 

 



 
Figure 18. (A) Thermal-kinematic model cross-section after Catlos et al. (2018) showing the MCT 

(dark line) and MBT (white line) from 25 to 8 Ma. The MCT and MBT sole into the MHT at depth. 

Isothermal sections in degree increments are indicated by the scale bar. The isotherms show the thermal 

situation at 18 Ma after MCT slip. Example sample trajectories on the diagram are represented by 

arrows with dots at the initial and heads at the final position. The MCT is active from 25 to 18 Ma, 

whereas slip transfers to the MBT from 15 to 8 Ma. (B) The model cross-section of the reactivation of 

the MCT shear zone from 8 to 2 Ma. Both the MCT and MCT-I sole into the MHT at depth. This panel 

represents the thermal situation at 6 Ma right before the development of MCT shear zone inverted 

metamorphism. Example sample trajectories are shown. (C) P-T diagram showing the trajectories of 

the model predictions for samples panels A and B and high-resolution P-T paths for the Darondi Khola 

samples. Sample DH75B is identified. Panels (D) and (E) show the same model predictions but high-

resolution P-T paths from the Marsyangdi River (Catlos et al., 2018) and Bhagirathi River transects 

(Catlos et al., 2020). See supplementary files for this figure in color. 

 



 

Figure S1. Geological map of the Himalayas after Yin (2006). Geological map of the Himalayas 

after Yin (2006). See Figure 2 for a cross-section through central Nepal and Figures 3-5 for the 

sample transect taken across the MCT shear zone along the Darondi Khola.  
 

 

 

 

 

 

 

 

 

 

 

 

 



 
Figure S9. Selected petrographic (plane polarized light) images of samples along the Darondi 

Khola showing the relationship of the garnet porphyroblasts and rock textures. Garnets are 

outlined using bold lines. Pressure shadows and inclusion trails are indicates by lighter and 

dashed lines, respectively. Mineral abbreviations after Whitney and Evans (2010). Panels are 

labeled with sample number. The scale bar for each image is 200 m. See Figures 4 and 5 for 

sample locations. 
 



 

Figure S1. Geological map of the Himalayas after Yin (2006). Geological map of the Himalayas 

after Yin (2006). See Figure 2 for a cross-section through central Nepal and Figures 3-5 for the 

sample transect taken across the MCT shear zone along the Darondi Khola.  
 

 

 

 

 

 

 

 

 

 

 

 

 



 
Figure S9. Selected petrographic (plane polarized light) images of samples along the Darondi 

Khola showing the relationship of the garnet porphyroblasts and rock textures. Garnets are 

outlined using bold lines. Pressure shadows and inclusion trails are indicates by lighter and 

dashed lines, respectively. Mineral abbreviations after Whitney and Evans (2010). Panels are 

labeled with sample number. The scale bar for each image is 200 m. See Figures 4 and 5 for 

sample locations. 
 


