Coupled mechanism of capillarity and carbonation in the oilwell cement during $ScCO_2$ invasion

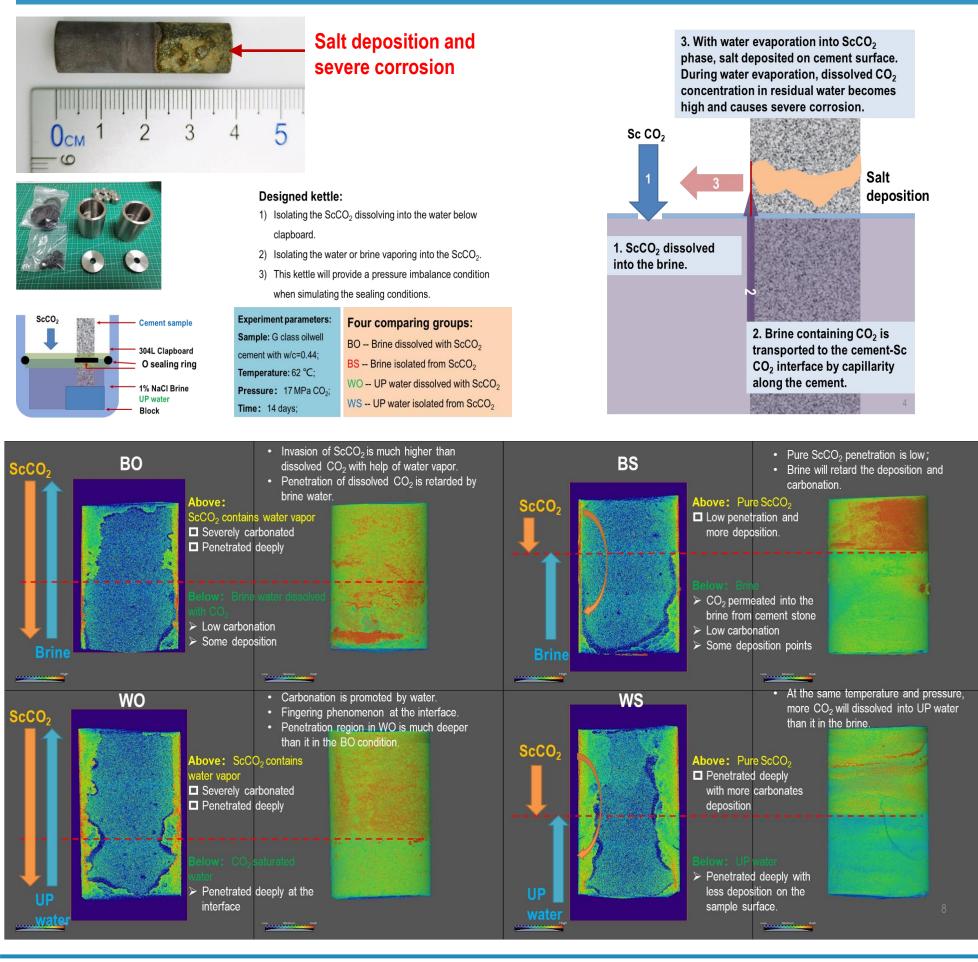
Mei Kaiyuan^{1,1}, Yuna Cai^{1,1}, Quan Xue^{1,1}, Pania Newell^{2,2}, and Liwei Zhang^{1,1}

 $^1 \mathrm{Institute}$ of Rock and Soil Mechanics, Chinese Academy of Sciences $^2 \mathrm{Sandia}$ National Laboratories

November 30, 2022

Abstract

Supercritical CO_2 (ScCO₂) invades oilwell cement under geological CO_2 sequestration conditions. With the penetration of ScCO₂, cement structure prone to damage when the coupled effects of capillarity and carbonation were found. Microstructural evolution of oilwell cement samples was investigated by the CT scanning and the quantitative image-based analysis and show that ScCO₂ with the high humid condition would penetrate much deeper than the dry ScCO₂ because of the capillarity effects. Due to the deep saline condition in the sequestration formation, the penetration of ScCO₂ was retarded by the salt deposition, comparing with the ultrapure water (UP water) conditions. For further assessment of this coupled mechanism, the permeability property and contact angle changes were proposed to analyse the interface region between ScCO₂, saline/UP water and oilwell cement.


Coupled mechanism of capillarity and carbonation in the oilwell cement during ScCO₂ invasion

Kaiyuan Mei, Yuna Cai, Quan Xue, Pania Newell, Liwei Zhang*

Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, Hubei Province, 430071, China; University of Chinese Academy of Sciences, Beijing, 100049, China

Adjunct Faculty, School of Computing, Adjunct Faculty, Department of Civil Engineering, The University of Utah, Utah, USA

Supercritical CO_2 (ScCO₂) invades oilwell cement under geological CO_2 sequestration conditions. With the penetration of ScCO₂, cement structure prone to damage when the coupled effects of capillarity and carbonation were found. Microstructural evolution of oilwell cement samples was investigated by the CT scanning and the quantitative image-based analysis and show that ScCO₂ with the high humid condition would penetrate much deeper than the dry ScCO₂ because of the capillarity effects. Due to the deep saline condition in the sequestration formation, the penetration of ScCO₂ was retarded by the salt deposition, comparing with the ultrapure water (UP water) conditions. For further assessment of this coupled mechanism, the permeability property and contact angle changes were proposed to analyse the interface region between ScCO₂, saline/UP water and oilwell cement

- > Deposition on the surface should be carbonates, salts or mixture of two in the different conditions.
- > The interface region between ScCO₂ and brine/ UP water should involve the contact angle and the wetting properties of two phases.
- > At the imbalance condition, how to figure out the capillarity effects of cement stone.