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Abstract

The Lagrangian and Eulerian surface current signatures of a low-mode internal tide propagating through a turbulent balanced

flow are compared in idealized numerical simulations. Lagrangian and Eulerian total (i.e. coherent plus incoherent) tidal

amplitudes are found to be similar. Compared to Eulerian diagnostics, the Lagrangian tidal signal is more incoherent with

comparable or smaller incoherence timescales and larger incoherent amplitudes. The larger level of incoherence in Lagrangian

data is proposed to result from the deformation of Eulerian internal tide signal induced by drifter displacements. Based on the

latter hypothesis, a theoretical model successfully predicts Lagrangian autocovariances by relating Lagrangian and Eulerian

autocovariances and the properties of the internal tides and jet. These results have implications for the separation of balanced

flow and internal tides signals in the sea level data collected by the future Surface Water and Ocean Topography (SWOT)

satellite mission.
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ABSTRACT

The Lagrangian and Eulerian surface current signatures of a low-mode internal tide propa-

gating through a turbulent balanced flow are compared in idealized numerical simulations.

Lagrangian and Eulerian total (i.e. coherent plus incoherent) tidal amplitudes are found to

be similar. Compared to Eulerian diagnostics, the Lagrangian tidal signal is more incoher-

ent with comparable or smaller incoherence timescales and larger incoherent amplitudes.

The larger level of incoherence in Lagrangian data is proposed to result from the defor-

mation of Eulerian internal tide signal induced by drifter displacements. Based on the

latter hypothesis, a theoretical model successfully predicts Lagrangian autocovariances

by relating Lagrangian and Eulerian autocovariances and the properties of the internal

tides and jet. These results have implications for the separation of balanced flow and

internal tides signals in the sea level data collected by the future Surface Water and Ocean

Topography (SWOT) satellite mission.
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1. Introduction24

The disentangling of internal tides and balanced flow is a key issue for incoming wide-25

swath altimetric missions such as the SWOT (Surface and Water and Ocean Topography,26

(Morrow et al. 2019)) and Guanlan (Chen et al. 2019). SWOT will in particular provide27

instantaneous 2D sea level maps, with an expected horizontal resolution of the order of28

15–45 km (Wang et al. 2019). With this resolution, internal tides and mesoscale balanced29

flow will be captured, providing a unique opportunity to study both motions and their30

interactions. While both motions have distinct time scales, they can have similar length31

scales (order of tens to hundreds of kilometers) which makes their separation via spatial32

filtering difficult. The coarse temporal resolution of these instruments (20 day repeat time33

approximately for SWOT) will also prevent separation by temporal filtering. The resulting34

difficult disentanglement of internal tides and balanced flow in wide-swath altimetric35

data is expected to deteriorate the quality of surface velocity estimations via geostrophy36

(Chelton et al. 2019).37

Internal tides (or baroclinic tides) are internal waves generated by the barotropic tide38

when it passes over a topography (Garrett and Kunze 2007). They are initially phase-39

locked with the tidal forcing and would remain so if they were propagating in a quiescent40

environment. Such phase-locked internal tide field is commonly referred to as coherent or41

stationary1. However, as internal tides travel in a background stratification that varies in42

time (Buijsman et al. 2017), or pass through a turbulent jet (Ponte and Klein 2015; Dunphy43

et al. 2017; Savage et al. 2020), they are disturbed and progressively lose their coherence.44

The fraction of the internal tide that is no longer phase-locked with the tidal forcing and/or45

of not constant amplitude is the incoherent internal tide, and the mechanisms and typical46

timescales associated with this loss of coherency remains insufficiently constrained at47

present days.48

1The term "stationary" is probably more commonly used in literature. However, to avoid any confusion with the concept of

stationarity in the context of statistics, we shall use the term "coherent" – and, conversely, "incoherent" – throughout this paper.
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Internal tides can then be scattered (towards different scales or frequency), e.g. by the49

corrugated topography, or dissipated close or far from the generation’s site (Whalen et al.50

2020; Savva and Vanneste 2018; Savage et al. 2020). A fraction of the internal tides51

energy (mainly high modes) dissipates close to their generation’s location (Whalen et al.52

2020) but a significant part travels in the open ocean over potentially great distances – up53

to thousands of kilometers – with a low-mode vertical structure (Zhao et al. 2016).54

Several works used altimeter observations to study baroclinic tide including its inco-55

herent component. Because of their limited temporal sampling compared to internal56

tides periods, satellite altimetric observations enables the identification of the internal57

tide signature that remains coherent over a couple of years (Ray and Zaron 2016; Zaron58

2019). More recently, averaged amplitudes of non-coherent sea level signatures were also59

obtained (Zaron 2017; Nelson et al. 2019).60

To overcome limitations of altimeter data, the use of the global drifter program (GDP)61

dataset has recently been considered (Zaron 2017, 2019). GDP drifter tracks are resolved62

temporally down to an hour with a horizontal positioning sufficiently accurate in order63

to capture the signatures of near-inertial waves (Elipot et al. 2010; Sykulski et al. 2016)64

and tidal motions (Elipot et al. 2016; Yu et al. 2019; Zaron and Elipot 2020). Assuming65

specific stochastic models for low-frequency and near-inertial motions, Sykulski et al.66

(2016) designed for example efficient statistical methods in order to fit models parameters67

to drifter velocity time series.68

One of the challenges associated with the analysis and interpretation of Lagrangian data69

is the advection of a drifter by the flow. The data collected by a drifter as it is displaced70

by the flow may entangle Eulerian spatial and temporal variability and give a distorted71

perspective of variability as described in the Eulerian frame of reference. LaCasce (2008)72

reviewed conceptual frameworks that have been developed in order to tackle this issue73

(Lumpkin et al. 2002; Middleton 1985; Davis 1983, 1985). Two regimes are typically74
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identified: fixed float and frozen turbulence. The prevalence of one regime over the other75

is determined by the parameter α = TE/Ta, where TE is the Eulerian evolution timescale76

of the flow and Ta is the time required for a drifter to travel the Eulerian characteristic77

spatial scale of the observed fluctuation. Ta is given by L/U, with U the typical advection78

velocity and L the spatial scale of fluctuations. If α� 1, the time required for the drifter79

to travel the length L is greater than the timescale of the fluctuation, TE . In this case, one80

can expect an agreement between the Lagrangian and Eulerian timescales. Conversely, if81

α� 1, it takes a drifter a time smaller than TE to travel a distance L, causing a more rapid82

fluctuation in the Lagrangian perspective. We apply in these paper these ideas to the case83

of internal tides interacting with a balanced flow.84

Zaron and Elipot (2020) found a spectral broadening of barotropic tidal peaks in La-85

grangian data compared to Eulerian ones, due to flow and/or tides spatial inhomogeneity.86

Such broadening is expected to complicate the extraction of internal tides properties87

(e.g. overall amplitudes, coherence/non-coherent fractions, incoherent timescales) from88

lagrangian drifter data, depending on the regions of the ocean and the associated dynamical89

regime.90

In order to improve our understanding of this issue, we quantify and compare in this91

study the internal tide amplitudes and incoherence timescales diagnosed in Eulerian and92

Lagrangian frames of reference in an idealized configuration. We first present the numer-93

ical set-up used in this study as well as the statistical models and methods used to estimate94

internal tide amplitudes and decorrelation timescales. The results are shown in the second95

part for one simulation at first, and then for several simulations with varying balanced flow96

intensities. Lastly, we develop a theoretical model to predict Lagrangian autocovariance97

from Eulerian one and qualitatively validate it against our numerical simulations. The98

Discussion of the results and Conclusion complete the paper.99
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2. Numerical simulations and Lagrangian data100

a. Numerical simulations101

We performed idealized numerical simulations of an internal tide crossing a balanced102

flow. The numerical model is the Coastal and Regional Ocean COmunity model (CROCO103

and CROCOTOOLS are available at https://www.croco-ocean.org ) solving the hydrostatic104

primitive equations. Its configuration follows Ponte et al. (2017) with a zonally periodic105

rectangular numerical domain (1024 km x 3072 km). The Coriolis frequency follows the106

beta-plane approximation and is representative of mid-latitudes. A turbulent zonal bal-107

anced flow crosses the domain at its center along the meridional direction. Numerical108

simulations are initialized with a baroclinically unstable balanced flow. Relaxation of zon-109

ally averaged fields towards initial conditions(velocities, temperature, sea level) maintains110

the turbulence generated by the balanced flow destabilization. Simulations with different111

balanced flow strength are obtained by modulating the strength of the initial balanced flow112

or equivalently the latitudinal thermal gradient. After 500 days, relaxation of the zonal113

mean fields toward the initial balanced flow is ceased. The balanced flow has a mean114

velocity amplitude maximum around 1450km in the center of the balanced flow (Fig.1a,115

red line). The balanced flow amplitude decays over the observed period of time with a116

maximum around 0.6 m/s at the beginning and around 0.4 m/s at the end. The balanced117

flow velocity is computed by averaging each velocity component (u and v) over 2 days.118

The balanced flow is surfaced intensified (Fig. 1c) and its vertical structure essentially119

consists of the barotropic and first baroclinic modes. In the center area, the low-passed120

velocity indicates ∼60% and ∼40% of the kinetic energy are found in the barotropic and121

first baroclinic mode respectively.122

Amode-1 internal tide is generated at y = 400 km with a semi-diurnal frequency (2 cpd).123

Its signature at the surface dominates the total velocity amplitude in the northern and124

southern areas (Fig.1a, green line compared to red line). The mode-1 wavelength is125
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approximately between 165 and 185 km. It is worth mentioning that the first baroclinic126

mode accounts for 98% of the the internal tide’s vertically-integrated kinetic energy south127

and north of the balanced flow and around 90% in the balanced flow. The generation128

of internal tide higher modes after interaction with the balanced flow is thus negligible129

in our simulations. Sponge layers at the top and the bottom of the domain (y < 300 km130

and y > 2700 km) prevent reflections against top and bottom boundaries. Finally, about131

8000 simulated near-surface drifters (referred to as drifters in the rest of this study) are132

also initialized at day 500 on a regular grid extending from 600 km to 2400 km and are133

advected online (Fig.1b).134

Dunphy et al. (2017) reports, for the same numerical setup, on the nature of interactions135

between balanced flow and internal tide and, in particular, on the role played by the respec-136

tive vertical structures of both processes. This works instead focuses on the distortions of137

the internal tide signal induced by displacements of surface drifters which explains why138

most of the attention is paid next on surface flow properties. Further discussion on the139

relative spatial structures of both processes for this more specific issue are found in section140

5a.141

b. Lagrangian outputs overview142

In the central part of the domain, the balanced flow dominates drifter net motions with143

averaged displacements of about 300 km in the x-direction and 160 km in the y-direction144

over a 40 day timewindow (Fig. 2c). For comparison purposes the internal tide wavelength145

is of about 175km.146

Away from the balanced flow (Fig.2a and e), the net distance traveled in the y-direction147

by the selected drifters is of about 20–30 km – which is a fraction of an internal tide148

wavelength. Internal tides, on the other hand, generate smaller oscillatory displacements,149

of the order of 2–3 km.150
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Eulerian and Lagrangian meridional velocity time series exhibit significant differences,151

visually, in the balanced flow at both low and internal tide frequency (amplitude and152

phase) over a 40 day temporal window (Fig. 2d). Meridional velocity time series outside153

the balanced flow (Fig. 2b and f) exhibit smaller differences between both frames of154

reference. Modulations of internal tide fluctuations are faster in the north compared to the155

south in both Eulerian and Lagrangian time series. This discrepancy reflects the loss of156

coherence of the internal tide as it propagates northward and interacts with the balanced157

flow.158

c. Methods : Estimation of Eulerian and Lagrangian amplitudes and timescales159

To quantify the loss of coherence of internal tides and the differences and similari-160

ties between Eulerian and Lagrangian diagnostics, we estimate amplitude and decorre-161

lation/incoherence time scales associated with the balanced flow and internal tides and162

compare the results in different parts of the domain.163

1) Autocorrelation models164

For both the Eulerian and Lagrangian signals, we assume that a time dependent velocity165

component v may be written as the sum of an internal tide part, ṽ, and a balanced (or jet)166

part, v:167

v = ṽ+ v (1)

where actual spatial and temporal dependencies have been omitted. Note that an alter-168

native would be to use a complex velocity, w = u+ iv instead of individual components169

(zonal or meridional) (Sykulski et al. 2016). This choice is justified when dealing with170

polarized motions such as near-inertial waves but is less relevant for internal tides. We171

considered that this is not needed in our case and would be more suited for more realistic172
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configurations including inertial waves (Sykulski et al. 2016).173

174

We assume the internal tide velocity time series is described by :175

ṽ(t) =<
[̃
ve(t)eiωt

]
with< the real part (2)

where ṽe is the complex-valued amplitude of the tidal oscillations of the tides and depends176

slowly on time, thus capturing the incoherence of the tide, and, whereω/2π is the frequency177

of the internal tide.178

The internal tide signal can be decomposed into coherent and incoherent contributions.179

The coherent part is defined with a coherent temporal averaging operator, 〈·〉c (i.e. a180

temporal average with fixed phased with respect to ω frequency oscillations) :181

ṽcoh = 〈̃v〉c, (3)

=<
[
〈̃ve〉eiωt

]
(4)

where 〈·〉 is a time averaging operator.182

Hence the incoherent part, defined as the total velocity minus the coherent part :183

ṽinc = ṽ− 〈̃v〉, (5)

=<
[
(̃ve − 〈̃ve〉c)eiωt

]
(6)

Assuming internal tide velocities and jet velocities are uncorrelated, the total autocovari-184

ance, C, equals to the sum of the autocovariances of ṽ and v :185

C(τ) = 〈v(t)v(t + τ)〉 = C̃(τ)+C(τ), (7)

There is no report in the literature nor clear physical expectations for the shape of186

incoherent signal complex amplitudes. A heuristic choice is thus made here by assuming187

the envelope of the internal tide autocovariance is an exponentially decaying function of188

time lag, with a decay timescale, T̃ , which will be referred to as the incoherence timescale.189

The tide autocovariance is expressed as:190
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C̃(τ) = Ṽ2
[
α+ (1−α)e−τ/T̃

]
× cos(ωτ) (8)

where Ṽ and α are constants corresponding to the total tidal amplitude and the coherence191

level respectively. The variance of the coherent and incoherent signal are given by αṼ2
192

and (1−α)Ṽ2 respectively. This model bears some resemblance with the autocorrelation193

derived by Sykulski et al. (2016). We stress however that the resemblance is fortuitous194

as the derivation of Sykulski et al. (2016) is not expected to hold for internal tides whose195

generation mechanisms and dynamics differ substantially from that of near-inertial waves196

which would not justify the use of the same model a priori.197

The balanced velocity autocovariance is assumed to have the simple form :198

C(τ) = V
2
e−τ/T (9)

where T is the decorrelation timescale. An alternative model was proposed by Veneziani199

et al. (2004), introducing a term of balanced flow oscillation, cos(Ωτ), which accounts for200

eddies and meanders. The model does improve the visual agreement between meridional201

autocorrelations and their fit in the center of the domain but does not affect estimates of202

internal tide properties which are the focus of this study. We thus opted for the simpler203

form Eq.9.204

The total autocovariance is finally given by:205

C(τ) = C̃(τ)+C(τ) = Ṽ2 [α+ (1−α)e−τ/T̃ ]
× cos(ωτ)+V

2
e−τ/T (10)

2) Autocorrelations and parameters estimation206

For each drifter’s trajectory the velocity time series is split into segments of length207

Tw, overlapping each other by 50%. A time window of 40 day is chosen. This value208

is the result of the following compromise: time windows used for the computation of209

Lagrangian individual autocovariances has to be short enough for the result to be typical210
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of a specific area, while being long enough to capture potentially long decorrelation211

timescales. Eulerian mean velocities, averaged in time and zonal direction is interpolated212

on drifters trajectories and removed. No significant impacts of this removal were observed213

on the results for the tidal signal. Individual autocovariances are then computed over214

each segment and averaged within 50 km wide meridional bins. Each autocovariance215

segment is attributed to a bin depending on the mean position over the period T. We216

did not find a significant sensitivity of our results to the length of the window. The217

Eulerian individual autocovariance is computed at each grid point using the same time218

windows and bin-averaged meridionally as for the Lagrangian autocovariance. Averaged219

autocovariances are then divided by the averaged autocovariance at time lag zero to obtain220

the averaged autocorrelation.221

222

The heuristic model, developed in section2c1, is fitted to averaged autocovariances223

which provides estimates for parameters T̃ , Ṽ2,α, T and V
2 to find the best fit. The fit is224

done using a non linear least square regression (Jones et al. 2001–). Lower bounds are225

fixed to zero for amplitudes and one and two days for T̃ and T respectively. Confidence226

intervals are computed using a bootstrapmethod (Efron 1981). Within each bin, individual227

autocovariances are randomly resampled one hundred times (with replacement). Each228

resampled dataset leads to an averaged autocovariance and amplitudes and timescales229

parameters estimates using the fit described previously. 95% confidence intervals are230

derived from the distribution of the parameter estimates.231
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3. Signatures of internal tides and balanced flow in Eulerian and Lagrangian per-232

spective233

a. Velocity autocorrelations234

Lagrangian and Eulerian velocity autocorrelations (resp. Fig. 3 a and b; function of time235

lag and y) highlight three regimes that coincides with the southern (y <1000km), central236

(1000km< y <1800km), and, northern (y >1800km) parts of the numerical domain and237

correspond to typical drifter trajectories shown in Fig. 2a, c and e.238

Autocorrelation at these latitudes of interest are further shown in Fig. 4.239

In the northern and southern parts of the numerical domain, semi-diurnal oscillations240

associated with internal tides, stand out on both Eulerian and Lagrangian autocorrelations.241

In these areas, the signal seems to be dominated by internal tides with no signature of the242

balanced flow visually. No decay of oscillations amplitudes with time lag are visible in243

the south —especially in the Eulerian perspective (see Fig. 4f)— indicating that internal244

tides are nearly coherent there. A mild decay of these oscillations is observed in the north,245

on the other hand, and indicates internal tides are partially incoherent there. There are246

no significant visual differences between Lagrangian and Eulerian autocorrelations in the247

northern and southern areas.248

Conversely, the central area exhibits a decay – especially in the Lagrangian perspective249

– of the tidal oscillations combined to a slower general decay associated with the slower250

balancedmotion. As observed in drifters trajectories and velocity time series (Fig. 2, panels251

c and d), this is the area where drifters are most significantly displaced by the balanced252

flow and where Lagrangian and Eulerian time series differ substantially. Semi-diurnal253

oscillations of the Lagrangian autocorrelation are not visible after lags of about 5 days254

(Fig. 3a and Fig. 4c) while they are observed after 20 days on the Eulerian autocorrelation255

(Fig. 3b and Fig. 4d). The decorrelation of the balancedmotion is also faster in Lagrangian256
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autocorrelation compared to Eulerian one, and exhibits a negative lobe around τ ∼ 4 days257

which we attribute to the meridionally oscillating trajectories of drifters caught in the258

balanced flow.259

The faster decay of the low-frequency signature on Lagrangian autocorrelations is at-260

tributed to the projection of spatial variability into temporal one along drifter trajectories261

(Lumpkin et al. 2002; LaCasce 2008).262

b. Estimates of velocity amplitudes and decorrelation timescales263

Eulerian meridional profiles of incoherence timescales and coherent and incoherent tide264

amplitudes (blue lines Fig.5a, c and d) obtained after fitting averaged autocovariances onto265

Eq.10 translate a loss of the coherence of internal tides during the crossing of the balanced266

flow. In the south, the tidal signal is essentially coherent with Eulerian coherence level267

close to 1; see Fig. 5c) and a flat envelope of autocorrelations oscillations (Fig. 4f).268

In the center of the numerical domain, the internal tide propagation is perturbed by the269

balanced flow and results in a loss of coherencewith a decrease of the coherence level. This270

trend culminates in the northern part of the domain with a ratio of coherent variance over271

total tidal variance between 0.2 and 0.4. Note that the total (coherent+incoherent) tidal272

variance increases northward (Fig. 5d). This increase is caused by variations of theCoriolis273

frequency and of the stratification. Furthermore, a northwards surface intensification of the274

vertical mode structure requires an increase of the surface amplitude for a given vertically275

integrated energy flux. All together, these mechanisms result in a northward increase of276

the surface amplitudes of internal tide.277

Incoherent timescales exhibit values of about 5 days in the south and increases northward278

to reach values comprised between 10 and 20 days. We note that the envelope of the279

Eulerian tidal oscillations in the north (blue lines Fig. 4b) does reach a plateau, consistent280
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with a remaining coherent component and justifying the form of the fit for the motions we281

use (eq. 8).282

Lagrangian parameters present a significantly different picture compared to Eulerian283

ones as suggested by drifter trajectories (Fig. 2 a, c and e) and autocorrelations (Fig. 3).284

In the south, the envelope of the Lagrangian autocorrelation (Fig. 4 e) decays faster than285

the Eulerian one. Lagrangian coherence levels (red lines on Fig. 5c) range from 0.0 to 0.7.286

Incoherent timescales (Fig. 5a) remain between 10 and 20 days. In the center, Lagrangian287

tidal variance is largely incoherent with αL close to zero. Incoherent timescales decrease288

sharply in the same area down to 1 day in its center. We coin "apparent incoherence" the289

larger level of incoherence (i.e. smaller incoherence timescales, T̃ and coherence level α)290

of internal tide signature on Lagrangian velocities compared to Eulerian one and attribute291

it to the distortion of the Eulerian signal by balanced motions which is largest in the center292

area. In the north, such apparent incoherence diminishes and Lagrangian autocorrelations293

and parameters are comparable to Eulerian ones (Fig. 4 a and b, Fig. 5a and c). Regardless294

of this apparent incoherence, the total tidal variance is found similar in both Lagrangian295

and Eulerian autocorrelations (Fig. 5d).296

As expected, balanced motions variances diagnosed from autocorrelations parametric297

fit are maximum in the central area where the balanced flow resides (Fig. 5e). The298

Lagrangian balanced motion decorrelation timescales (Fig. 5b) reach the lowest boundary299

(∼2 days) in the central area. The Eulerian decorrelation timescales are larger, ≤10 days.300

It corresponds to the area of high balanced amplitude (Fig. 5e). It also coincides with the301

area of low Lagrangian incoherence timescales which supports an apparent incoherence302

in Lagrangian diagnostics dominant in this part.303
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c. Sensitivity to the balanced flow EKE304

The sensitivity of internal tide Lagrangian/Eulerian properties to the balanced flow305

EKE is investigated with five numerical simulations of increasing balanced flow strength.306

The meridional distributions of velocity amplitudes indicates a two-fold increase across307

simulations (Fig.6b).308

The internal tide total velocity variance Ṽ2 increases northwards (Fig.6d), as explained309

in section 3b. This increase is more pronounced for larger balanced flow strength, as310

expected from the larger change of stratification, and is of similar magnitude in both311

Eulerian and Lagrangian perspectives.312

Starting with the two most energetic simulations, S3 and S4, both Eulerian and La-313

grangian diagnostics show a loss of coherence of internal tides that occurs when internal314

tides cross the balanced flow. In the south area, the Eulerian coherence level is around 1,315

which indicates the internal tide is essentially coherent there (dashed lines in Fig. 6c). La-316

grangian coherence level, on the other hand, decreases rapidly below 0.1 which indicates317

substantial apparent incoherence.318

In the center area, Eulerian coherence level decreases towards 0.6 while the Lagrangian319

one remains below 0.1. Lagrangian incoherent timescales (Fig. 6a) reach minimal values320

(≤5 days) while Eulerian ones remain around or above 5 days in all simulations. The321

width of this area of apparent incoherence is clearly identified from Lagrangian incoherent322

timescales (Fig. 6a) and is consistent with the increase of the strength of the balanced flow323

(Fig. 6b).324

In the northern area, both simulations exhibit comparable Eulerian and Lagrangian325

coherence level and incoherence timescales, i.e. there is little apparent incoherence.326

In the intermediate case, S2, a sharp decrease of Lagrangian coherence level points327

towards apparent incoherence in the center area similarly to S3 and S4. The Eulerian328

coherence level drops sharply to 0 in the north while the incoherent timescale increases329
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towards values between 30 and 40 days unlike S3 and S4. This discrepancy might result330

from an inconsistent behaviour of the fit associated with an absence of plateau in Eulerian331

autocorrelations and the ambiguous distinction between coherent and slowly incoherent332

signals in such situation.333

Unlike S3 and S4 the two least energetic simulations, S0 and S1, exhibit a weak loss334

of coherence in Eulerian perspective as coherence levels are above 0.6 at all meridional335

positions. Lagrangian coherence level drops sharply to zero in the balanced flow while336

incoherence timescales drop to 1 day. This indicates that Lagrangian apparent incoherence337

is effective even in weakly energetic simulations.338

4. Lagrangianmodel for autocovariance and comparison to observed autocovariance339

a. Theoretical expectation for the Lagrangian autocorrelation340

A theoretical model is developed next in order to predict Lagrangian velocity auto-341

covariances based on Eulerian ones along with flow parameters. The model effectively342

represents distortions, in the Lagrangian frame of reference, of Eulerian tidal fluctuations343

induced by drifters displacements associated with the balanced flow.344

We then validate this model based on the Eulerian and Lagrangian autocovariance345

presented in previous sections.346

We assume that the tidal signal is a modulated monochromatic wave propagating in a347

single direction (say x) and characterized by a frequency ω and wavenumber k:348

ṽ(x,t) =<
{
ṽe(x,t)ei(ωt−k x)

}
, (11)

where ṽe is the complex amplitude, which varies slowly both in time and space. Let’s349

consider a parcel traveling with the flow with trajectory X(t). The autocovariance of ṽ as350

16



measured along the parcel trajectory is given by:351

C̃L(τ) = 〈ṽ(t + τ)ṽ(t)〉, (12)

=
1
2
<

{〈
ṽe

[
X(t + τ),t + τ

]
ṽ∗e

[
X(t),t

]
ei

[
ωτ−k(X(t+τ)−X(t))

] 〉}
, (13)

=
1
2
<

{
eiωτ ×

〈
ṽe

[
X(t + τ),t + τ

]
ṽ∗e

[
X(t),t

]
e−ikδX(t,τ)

〉}
, (14)

where we assume that oscillation terms (∝ e±2iωt) are smoothed out by the averaging352

procedure and we have introduced the displacement δX(t,τ) = X(t + τ)− X(t).353

We assume here that the internal tide is not transported by the balanced surface flow354

which is reasonable for low mode internal tides as further discussed in section 5a. In such355

case, the amplitude of the tide and the displacement are presumably uncorrelated:356

C̃L(τ) =
1
2
<

{
eiωτ ×

〈
ṽe

[
X(t + τ),t + τ

]
ṽ∗e

[
X(t),t

]〉
×

〈
e−ikδX(t,τ)

〉}
, (15)

The second term in the product of (15) right hand-side combines both the spatial and357

temporal variability of the Eulerian tidal envelope in general. As further discussed in358

sect. 4b, horizontal displacements after time intervals comparable to a incoherent time359

scale can be expected to be smaller than the length scale of the complex amplitude of the360

tide, which leads to:361

〈
ṽe

[
X(t + τ),t + τ

]
ṽ∗e

[
X(t),t

]〉
≈ C̃e(τ), (16)

where C̃e(τ) is the fixed point (i.e. zero spatial lag) autocovariance of the tidal amplitude.362

The displacement may be decomposed into a wave high frequency contribution and363

a lower frequency component that may be associated with an independent flow and/or364

wave motions themselves via second order effects (Wagner and Young 2015). The former365

contribution is time periodic with frequency ω and a bounded amplitude equal to the wave366

excursion (Ṽ/ω where Ṽ is the amplitude of the wave velocity) which is small compared to367

1/k (0.4-0.7 versus 25-35 km/rad for our simulations). The low frequency displacement is368
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likely to continuously grow on the other hand and produces a displacement that ultimately369

dominates in the exponential of (15) right hand-side third term, even for flow amplitudes370

smaller than tidal ones. We will thus ignore tide displacements in the latter exponential.371

To proceed further, we assume that the balanced flow is a stationary Gaussian process,372

with rms amplitude V̄ (over one direction) and exponential decorrelation in time with373

typical time scale T̄ – consistently with the model (9).374

Such model – sometimes referred as an unbiased correlated velocity model in the liter-375

ature (Gurarie et al. 2017) – corresponds to the time-homogeneous Ornstein-Uhlenbeck376

process. The displacement δX(t,τ) is also a Gaussian process with null mean and variance377

given by (Pope 2015, Chap. 12):378

σ2(τ) ≡ 〈δX(t,τ)2〉 = 2T̄2V̄2
[
τ/T̄ −

(
1− e−τ/T̄

)]
. (17)

Note that the variance of the displacement admits two asymptotic regimes : σ2(τ)→ V̄2τ2
379

for τ� T̄ , and σ2(τ)→ 2V̄2T̄τ for τ� T̄ . The third term in the right hand side of eq. (15)380

may then be computed :381 〈
e−ikδX(t,τ)

〉
=

∫ ∞

−∞

cos(kδX)p(δX)dδX, (18)

=

∫ ∞

−∞

cos(kδX)
e−δX2/(2σ2)

σ
√

2π
dδX (19)

= e−σ
2k2/2 = exp

(
−k2V̄2T̄2

[
τ/T̄ −(1− e−τ/T̄ )

] )
(20)

Combining (16) with (20) into (15) leads to the following expression for the autocovari-382

ance of internal tide in the Lagrangian frame of reference:383

C̃L(τ) = C̃e(τ)cos(ωτ)e−σ
2(τ)k2/2 (21)

= C̃E (τ)e−σ
2(τ)k2/2, (22)

which becomes with the heuristic model of Eulerian tidal autocovariance C̃E Eq.(8):384

C̃L(τ) = cos(ωτ)Ṽ2 (
α+ (1−α)exp(−τ/T̃E )

)
e−σ

2(τ)k2/2 (23)
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The Lagrangian autocorrelation Eq.(22)) and Eq.(23) has no coherent part and decays385

as fast or faster than the Eulerian autocorrelation because of the last term on the right386

hand-side of both equations. This larger incoherence in the Lagrangian frame of reference387

embodies the "apparent incoherence". Its origin is purely kinematic and associated with388

drifter displacements relative to tidal phase patterns as indicated by the origin of this term389

in (15). We define the "apparent incoherence timescale" as the timescale T̃app that satisfies:390

k2σ2(T̃app) = 1 (24)

Figure 7 sumarizes the different regimes of coherence/incoherence encountered with391

the present theoretical model. In the Eulerian frame of reference, tidal autocorrelations392

are controlled by the coherence level αE . For moderate to low αE , the autocorrelation393

decays over the timescale T̃E to a plateau (zero) in moderately (low) coherent cases. In the394

Lagrangian frame of reference, the shape of the tidal autocorrelation is first determined395

by the relative size of the Eulerian incoherence timescale compared to the apparent one:396

• When the Eulerian incoherence timescale is larger than the apparent one (T̃E � T̃app),397

advection by the slow flow is strong enough for apparent incoherence to control the398

Lagrangian tidal autocorrelation. The shape of the Lagrangian autocorrelation is399

either gaussian for long balanced flow autocorrelation timescales (kVT � 1) (Fig. 7,400

label (2)) with incoherence timescale (kV)−1 or exponential for short balanced flow401

autocorrelation timescales (kVT � 1) with incoherence timescale (kV)−1×(kVT)−1.402

• When the Eulerian incoherence timescale is smaller than the apparent one (T̃E �403

T̃app), the Eulerian level of incoherence determines the shape of the Lagrangian404

tidal autocorrelation. In coherent situations (α ∼ 1), Lagrangian autocorrelations are405

controlled by apparent incoherence with an exponential or gaussian shape depending406

on the size of the balanced flow autocorrelation timescale (via the non-dimensional407

parameter kVT) (Fig. 7, label (1)) as for T̃E � T̃app. For intermediate Eulerian408
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coherence levels (0 < α < 1), the Lagrangian autocorrelation exhibits a first decay409

over the Eulerian incoherence timescale T̃E and a second, slower decay at the apparent410

incoherence timescale T̃app (Fig. 7, label (3)). For low levels of Eulerian coherence,411

the Lagrangian autocorrelation is solely controlled by the Eulerian one with no effect412

of apparent incoherence.413

b. Comparison of observed autocovariances and predicted Lagrangian ones414

Observed Lagrangian internal tide autocorrelation envelopes (Fig. 8 middle column)415

are assembled from Lagrangian averaged autocovariance fitted parameters and Eq.8 (with416

the cosine term omitted and normalization by the value at lag 0). These envelopes417

are compared to predicted Lagrangian envelopes (Fig. 8 right column) estimated from418

observed Eulerian autocovariances (assembled similarly as Lagrangian ones and shown419

on Fig. 8 left column) and Eq. (22)420

Observed Eulerian autocorrelation envelopes exhibit decay rates that are increasingly421

faster in the northwards direction for all three simulations considered (S0, S2 and S4; shown422

in Fig. 8, top, middle and bottom rows respectively). This reflects the loss of coherence423

of the internal tide as it propagates northwards.424

Observed Lagrangian autocorrelation envelopes have markedly different structure with425

a well-defined central area characterized by a rapid (couple of days timescale) fall-off426

compared to Eulerian envelopes. The width of this area of strong apparent incoherence427

is increasing with the balanced flow strength. Outside of this area, the south and north428

autocorrelation decay are slower and hence closer to Eulerian ones with a more rapid429

decay in the north compared to the south. Predicted Lagrangian envelopes reproduce the430

rapid envelope fall-off in the center, the north/south contrast, as well as the sensitivity of431

the envelopes to balanced flow strength. We conclude the model proposed in order to432

relate Eulerian and Lagrangian tidal autocovariances is thus consistent with observations.433
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The Eulerian coherence level, α (dashed lines Fig. 6c), and the ratio between the Eulerian434

incoherence timescale and the apparent incoherence timescale (Fig. 9a) provide all the435

necessary information to interpret and predict the nature of Lagrangian incoherence. Its436

form is controlled by the parameter kVT (Fig. 9c).437

In the southern area, the Eulerian coherence level is around 1 for all simulations: internal438

tides are coherent in the Eulerian frame of reference. Eulerian incoherence timescales are439

smaller than T̃app. Lagrangian autocorrelations are controlled by kVT which in lower than440

one in the area, suggesting an expected exponentially decaying form. Observed Lagrangian441

incoherence timescales are moderately weaker than their theoretical predictions T̃app with442

values of their ratio between 0.2 and 0.7 (Fig. 9b).443

In the central area, the Eulerian coherence level is moderate (e.g. between 0.4 and 0.9)444

and the Lagrangian one close to zero. Eulerian incoherence timescales are larger than445

apparent incoherence timescales (ratio up to 20 for least energetic simulations). Observed446

Lagrangian incoherence timescales are also close to their theoretical predictions. This447

regime corresponds to the first regime described in section 4a and Fig. 7(label (2)) of448

strong apparent incoherence. kVT is larger than one which would be associated with449

a gaussian autocorrelation envelope and an apparent incoherence insensitive to the slow450

flow time-variability.451

In the north, Eulerian coherence levels, αE , remain moderate (ranges from 0.2-0.3 for452

S3 and S4 to 0.6-0.8 for S0 and S1), there is some Eulerian incoherence or even prevalence453

of the incoherent signal for S3 and S4. Eulerian incoherence timescales is smaller than454

apparent incoherence timescales. We interpret this regime (section 4a and Fig. 7 label455

(3)) as one where the observed Lagrangian incoherence is dominated by the Eulerian456

incoherence, while being moderately affected by the Lagrangian distortion.457
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5. Discussion458

a. On the nature of internal tide propagation in the presence of a background flow459

The assumption of no transport of the internal tide by the surface flow used to derive460

(15) is now discussed. Low mode internal tides have by definition large vertical scales –461

similar to that of the background flow. Advection by the balanced flow is of particular462

importance for discussing the Eulerian/Lagrangian distortion, even though it does not463

fully capture the interaction between the balanced flow and the internal tide (Dunphy et al.464

2017; Savage et al. 2020). A vertical mode expansion of equations of motions linearized465

around the balanced background flow shows that advection of the internal tide mode is466

driven by a non-trivial weighted average of the background flow. This effective advection467

is expressed as H−1
∫ 0
−H φ

2
nUdz (Kelly and Lermusiaux 2016), where φn is the standard468

pressure mode for an internal tide with vertical mode number n and U is the balanced flow469

(see also Duda et al. 2018, for a more technical approach). Thus, for a surface intensified470

background flow, the flow advecting the drifter (at the surface) and the one advecting the471

internal tide mode is different, explaining why the Lagrangian observer renders a distorted472

view of the internal tide signal. For the simulation with moderate jet intensity S2, for473

instance, the mode 1 effective advection velocity (computed, but not shown) is of order474

0.2 ms−1 at its maximum, while the surface velocity is typically greater than 1 ms−1: the475

Eulerian distortion, driven by the effective advection velocity, is therefore smaller than the476

Lagrangian distortion, driven by the difference between this effective advection and the477

surface velocity transporting the drifter.478

For small scale internal tides on the other hand, ray theory can be used to describe479

their propagation through the background flow (Broutman et al. 2004). This approach480

shows that wave packets are advected by the local flow, which is associated with a Doppler481

shifting of the Eulerian frequency: ω = ω̂+ k ·U, where ω and ω̂ are respectively the482

tide absolute (or Eulerian) and intrinsic (as measured in a frame of reference moving483
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with the balanced flow) frequencies and k is the wave vector. Ignoring advection of the484

drifter by the tidal current, the signal measured by the drifter coincides with the tidal485

field in the frame co-moving with the mean flow with least distortion in the Lagrangian486

frame of reference. This situation is opposite to the configuration investigated here, as487

Lagrangian autocorrelation exhibits faster decrease with time lag compared to Eulerian488

auto-correlation, and the theoretical model proposed here would obviously not be relevant.489

In a realistic configuration, the range of validity of each of these two regimes (e.g. small490

vs large scale internal tide) remains to be quantified.491

b. On the internal tide spatial incoherence492

Another assumption of the theoretical model required to derive (16) is that spatial vari-493

ations of the complex tidal amplitude may be neglected. In reality the amplitude of the494

internal tide propagates with the internal tide group speed, which results in spatial variabil-495

ity if a temporal one is admitted. A reasonable estimate of the associated horizontal length496

scale is T̃E cg. A sufficient condition for (16) to hold is thus that the drifter displacement497

after a decorrelation time scale T̃L remains smaller than the complex amplitude horizontal498

length scale:499

δX(T̃L) � T̃E cg . (25)

An upper bound for this displacement is T̃L max(V̄,Ṽ), which enables to rewrite the500

preceding condition as:501

T̃L

T̃E
�

cg
max(V̄,Ṽ)

. (26)

We believe this condition is met in general based on 1/ typical values for cg (around502

2 m/s for the first mode semi-diurnal internal tide at mid-latitude (Zhao 2017)) and503

flow amplitude, 2/ observations that T̃L ≤ T̃E , this inequality being self-consistent with504

theoretical model predictions and 3/ the observation that stronger flows and thus weaker505

cg/V̄ concur with smaller T̃L/T̃E ratios.506
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Spatial inhomogeneities of the tidal amplitude could, at the cost of added complexity,507

potentially be included in the model without the approximation (16). This would require508

combining information about horizontal displacement distribution and the tidal amplitude509

spatial-temporal autocorrelation. However, diagnostics of spatio-temporal autocorrelation510

of the internal tide field have never been reported – to our knowledge.511

c. Autocorrelation models and coherent/incoherent decomposition512

Heuristic choices have been made regarding the shape of the internal tide and balanced513

motion autocorrelation. Limits to these choices are visible on Figure 4c for balanced514

motions and are speculated to affect estimates of internal tide incoherent time scales in515

the southern part of the domain.516

At earlier stage of this work, we chose an envelope for the internal tide autocorrelation517

that included a single exponential decaying term instead of the sum of coherent/incoherent518

contributions. We eventually abandoned this choice, because it does not naturally lead519

to a decomposition of the signal into coherent/non-coherent contributions, and because520

it resulted in overly large time scales in coherent cases (>1000 days). One may also fit521

the more general form Eq.(23) to Lagrangian autocorrelations, for example, and evaluate522

its relevance compared to the single linear exponential form. This would add one more523

parameter to estimate, however, and would require to determine whether this more general524

form leads to a significant an improvement whichwe felt was a study on its own. Therefore,525

we did not attempt to do this in favor of a more qualitative assessment of the theory.526

Determining what form is more appropriate for Eulerian/Lagrangian low-527

frequency/internal tide autocorrelations is a study on its own that will require more528

advanced statistical tools (Sykulski et al. 2016; Gurarie et al. 2017) and that we be-529

lieve may be more relevant to perform in realistic settings (e.g. observation or numerical530
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simulations). Sykulski et al. (2016) proposes a more general alternative with the Matérn531

process whichmay help to more accurately modeling statistically the low frequency signal.532

6. Conclusion533

This study investigated, in idealized numerical simulations, the signature of internal534

tides on surface velocities via the computation of averaged autocorrelations and fits of535

these autocorrelations on heuristic models. This exercise was performed on both Eulerian536

and Lagrangian time series which enabled to compare and contrast internal tide signatures537

in both frames of reference. The central result of this study is that displacements of drifters538

induced by low-frequency motions produce distortions of the tide signals in Lagrangian539

time series which results in larger levels of incoherence compared to Eulerian ones. We540

coined this process "apparent incoherence". Sensitivity experiments enabled to verify541

that this apparent incoherence is increasing with balanced-motion intensity. A theoretical542

model, relating Lagrangian averaged autocovariances to Eulerian ones and accounting for543

apparent incoherence, was derived and validated against observed estimates.544

These results highlight the relevance of GDP data for the mapping of global internal tide545

properties. More specifically, we were able to recover the total internal tide variance from546

drifter velocity averaged autocorrelations. Pending validation in more realistic conditions,547

the knowledge of the distribution of internal tide surface kinetic energy that could be548

inferred from drifter tracks would be a substantial constraint for the mapping of internal549

tides. Our study suggests that the identification of (Eulerian) coherent versus incoherent550

contributions from drifter data may be complicated because of apparent incoherence, as551

anticipated in earlier studies (Zaron and Elipot 2020). This may still be feasible in areas552

where incoherence is significant and rapid and/or where low-frequency variability is weak.553

The theoretical model developed may provide guidance in order to decide where this may554

occur in the ocean. Improved mapping of internal tides are directly relevant to the future555
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analysis of SWOT data, to the validation of emerging high resolution global numerical556

simulations resolving tides (Arbic et al. 2018; Yu et al. 2019), as well as to our fundamental557

understanding of internal tide lifecycle.558

More advanced and likely efficient statistical tools may be required before tackling559

realistic configurations. Substantial difficulties are associated with the superposition of560

motions in the real ocean (neighboring tidal harmonics, near-inertial variability) and with561

the effective statistical stationarity of these motions. Parametric estimations based on562

maximum likelihood theory offer promising perspectives whether formulated in spectral563

space (Sykulski et al. 2019) or temporal space (Fleming et al. 2014). Filtering based564

approaches taking into account the bivariate nature of the velocity signal may also be565

relevant (Lilly and Olhede 2009). These tools may help identify which statistical models566

are better suited to describe tidal and low-frequency variability as well as resolve the567

temporal evolution of the parameters (e.g. amplitude, frequency, bandwidths) describing568

these processes, which would be a substantial improvement over descriptions of the569

averaged variability.570

The estimation of internal tides properties in a realistic set-up will be carried out571

using MITgcm simulation LLC4320 using Eulerian outputs of the simulation as well as572

Lagrangian simulated trajectories. Further analysis should enable us to estimate if our573

results hold in realistic configuration.574
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Figure 1. (a) : Mean field of zonal (blue line), meridional (orange line), total (green) and low-passed

(red) velocity amplitudes ; (b) : Zonal velocity at t=750 days (color) with positions of 1/4 of the drifters

at the same time represented by black dots. (c) : Averaged temporally low-passed kinetic energy and

vertical structure of first baroclinic mode (shifted to be equal to zero at the bottom).
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Figure 2. Trajectories of 3 drifters in three different area of the domain (north (a and b), central (c

and d) and south (e and f)) over a period of 40 days and corresponding time series. Left column :

Trajectory of each the drifter (black line) with the meridional velocity in the background. The red circle

represents the position of the drifter at initial time, t0, and the blue diamond the position at mid period.

A black straight line is plotted representing a quarter of the wavelength. Right column : Meridional

velocity time series along the drifter trajectory in red and at a fixed position (blue diamond in the left

figure) in blue.
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Figure 3. Autocorrelation of meridional velocity v computed from Lagrangian outputs (a) and

Eulerian one (b). The y-axis corresponds to the y bins in which the autocorrelation have been averaged.

The x-axis is the time lag. Horizontal black lines indicate the three latitudes of interest discussed in

the paper (see Figs. 2 and 4)
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Figure 4. Autocorrelation of meridional velocity at fixed bin in three different area : north (a and

b), center (c and d) and south (e and f) of the domain). The Eulerian (right column) and Lagrangian

(left column) autocorrelation derived from our data are represented respectively in blue and red. The

autocorrelation corresponding to the best fit of our theoretical model (eq.(10)) with the averaged

autocovariance are plotted in black dashed lines. Corresponding values of the fitted parameters are

indicated in each panel.
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Figure 5. Estimated eulerian (blue lines) and Lagrangian (red lines) incoherence timescale, T̃ (a),

decorrelation of the balanced flow, T (b) as well as coherence level, α (c) and tidal and balanced

components variance, Ṽ2 (d) and V
2 (e). The estimates are found by fitting the theoretical model

(Eq.(10)) to the autocorrelation of v. Error due to sampling are computed via bootstrap and represented

by the gray area.
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Figure 6. Estimated parameters for five simulations. (a) Lagrangian and Eulerian internal tides

incoherence timescales, T̃ . (c) and (d) : Internal tide coherence level, α and total tidal variance, Ṽ2.

(b) balanced flow variance, V
2 is also represented. Incoherence timescales lower than 1 day and larger

than 40 days were not allowed by our fitting procedure.
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Figure 7. Schematics representing synthetic forms of Eulerian (blue lines) and Lagrangian (red lines)

autocorrelations depending on the Eulerian coherence level (� ) and the ratio of Eulerian incoherence

timescale (eTE ) over the apparent incoherence timescale (eTapp ). The synthetic cases corresponding to

regimes observed in the di�erent part of our domain are numbered as follows: (1) South, (2) center

and (3) North
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