Synergistic use of spectral information from Landsat and Sentinel-2 data for modeling near real-time crop water status across California vineyards

Nishan Bhattarai¹, William Kustas², Guido D'Urso³, Feng Gao⁴, Nicolas Bambach⁵, Martha Anderson⁶, Andrew McElrone⁷, Kaniska Mallick⁸, Kyle Knipper⁹, Maria Mar Alsina¹⁰, Mahyar Aboutalebi¹¹, Lynn McKee², Joseph Alfieri², John Prueger¹², and Oscar Belfiore¹³

¹USDA-ARS Hydrology and Remote Sensing Lab
²U. S. Department of Agriculture, Agricultural Research Service, Hydrology and Remote Sensing Laboratory
³Univ Napoli Federico II
⁴USDA
⁵University of California Davis
⁶USDA ARS Hydrology and Remote Sensing Laboratory
⁷USDA ARS
⁸Luxembourg Institute of Science and Technology (LIST)
⁹USDA Beltsville Agricultural Research Center
¹⁰E&J Gallo
¹¹E.&J. Gallo Winery
¹²U. S. Department of Agriculture, Agricultural Research Service
¹³University of Naples Federico II

November 24, 2022

Abstract

Landsat-based monitoring of seasonal and near real-time evapotranspiration (ET) in California vineyards is currently challenged by its low temporal revisit period and missing data under cloudy conditions. Gap-filling approaches, such as data fusion with high-temporal resolution images (e.g., MODIS) and interpolation of actual to potential ET ratio (ET/ETo) between image acquisition dates are now commonly used to overcome this challenge. However, these methods may not fully capture nonlinear changes in crop condition due to scheduled irrigation, and other management decisions affecting ET during days when satellite images are unavailable and can lead to biased ET estimates. In this study, we combined Landsat-8 and Sentinel-2 data to develop a Shuttleworth-Wallace (SW) based near real-time ET modeling framework for mapping daily ET across three California Vineyard sites. In addition, we utilized daily Leaf area index (LAI) products derived from the Harmonized Landsat and Sentinel-2 (HLS) surface reflectance and MODIS LAI data products to constrain key resistance parameters in the SW model and tested the model across nine flux towers covering three vineyard sites in California. Results suggest that compared to the linear interpolation-based ET/ETo approach, this framework can help reduce biases and root mean squared error of estimated daily ET by over 10%. Results point to a potential utility of the combined Landsat-8 and Sentinel-2 based approach to monitor near real-time ET and complement ongoing thermal remote sensing-based ET modeling approaches to better characterize near real-time crop water status in California vineyards.

Hosted file

essoar.10508172.1.docx available at https://authorea.com/users/546663/articles/604721synergistic-use-of-spectral-information-from-landsat-and-sentinel-2-data-for-modelingnear-real-time-crop-water-status-across-california-vineyards

Synergistic use of spectral information from Landsat and Sentinel-2 data for modeling near real-time crop water status across California vineyards

Nishan Bhattarai¹, William P. Kustas¹, Guido D'Urso², Feng Gao¹, N. Bambach-Ortiz³, Martha Anderson¹, Andrew J. McElrone^{4,5}, Kaniska Mallick⁶, Kyle R. Knipper¹, Maria M. Alsina⁷, Mahyar Aboutalebi⁷, Lynn Mckee¹, Joseph G. Alfieri¹, John H. Prueger⁸, Oscar R. Belfiore²

¹USDA-ARS, Hydrology and Remote Sensing Laboratory, Beltsville, MD, USA

²Department of Agricultural Sciences, University of Naples Federico II, Portici, ITALY

³Department of Land, Air and Water Resources, University of California, Davis, CA, US

 $^4\mathrm{USDA}\text{-}\mathrm{ARS}$ Crops Pathology and Genetics Research Unit, Davis, CA, 95616 USA

⁵Department of Viticulture and Enology, University of California, Davis, CA 95616 USA

⁶Remote Sensing and Natural Resources Modeling, Department ERIN, Luxembourg Institute of Science and Technology (LIST), L4422 Belvaux, Luxembourg

⁷E & J Gallo Winery, Viticulture, Chemistry and Enology, Modesto, CA, USA

 $^8\mathrm{USDA}\xspace$ ARS, National Laboratory for Agriculture and the Environment, Ames, IA 50011, USA

Landsat-based monitoring of seasonal and near real-time evapotranspiration (ET) in California vineyards is currently challenged by its low temporal revisit period and missing data under cloudy conditions. Gap-filling approaches, such as data fusion with high-temporal resolution images (e.g., MODIS) and interpolation of actual to potential ET ratio (ET/ETo) between image acquisition dates are now commonly used to overcome this challenge. However, these methods may not fully capture non-linear changes in crop condition due to scheduled irrigation, and other management decisions affecting ET during days when satellite images are unavailable and can lead to biased ET estimates. In this study, we combined Landsat-8 and Sentinel-2 data to develop a Shuttleworth-Wallace (SW) based near real-time ET modeling framework for mapping daily ET across three California Vineyard sites. In addition, we utilized daily Leaf area index (LAI) products derived from the Harmonized Landsat and Sentinel-2 (HLS) surface reflectance and MODIS LAI data products to constrain key resistance parameters in the SW model and tested the model across nine flux towers covering three vineyard sites in California. Results suggest that compared to the linear interpolation-based ET/ETo approach, this framework can help reduce biases and root mean squared error of estimated daily ET by over 10%. Results point to a potential utility of the combined Landsat-8 and Sentinel-2 based approach

to monitor near real-time ET and complement ongoing thermal remote sensingbased ET modeling approaches to better characterize near real-time crop water status in California vineyards.