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Abstract

Volcanic crises are often associated with magmatic intrusions or pressurization of magma chambers of various shapes. These

volumetric sources deform the country rocks, changing their density, and cause uplift. Both the net mass of intruding magmatic

fluids and these deformation effects contribute to surface gravity changes. Thus, to estimate the intrusion mass from gravity

changes the deformation effects must be accounted for. We develop analytical solutions and computer codes for the gravity

changes caused by triaxial sources of expansion. This establishes coupled solutions for joint inversions of deformation and

gravity changes. Such inversions can constrain both the intrusion mass and the deformation source parameters more accurately.
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Abstract13

Volcanic crises are often associated with magmatic intrusions or pressurization of magma14

chambers of various shapes. These volumetric sources deform the country rocks, chang-15

ing their density, and cause uplift. Both the net mass of intruding magmatic fluids and16

these deformation effects contribute to surface gravity changes. Thus, to estimate the17

intrusion mass from gravity changes the deformation effects must be accounted for. We18

develop analytical solutions and computer codes for the gravity changes caused by tri-19

axial sources of expansion. This establishes coupled solutions for joint inversions of de-20

formation and gravity changes. Such inversions can constrain both the intrusion mass21

and the deformation source parameters more accurately.22

Plain Language Summary23

Volcanic crises are usually associated with magmatic fluids that intrude and de-24

form the host rocks before potentially breaching the Earth’s surface. It is important to25

estimate how much fluid (mass and volume) is on the move. Volume can be determined26

from the measured surface uplift. Mass can be determined from surface gravity changes.27

The fluid intrusion increases the mass below the volcano, thereby increasing the grav-28

ity, and pressurizes the rocks. This dilates parts of the host rock and compresses other29

parts, changing the rock density and redistributing the rock mass. This causes secondary30

gravity changes, called deformation-induced gravity changes. The measured gravity change31

is always the sum of the mass and deformation-induced contributions. Here we develop32

mathematical equations for rapid estimation of these deformation-induced gravity changes33

caused by arbitrary intrusion shapes. This way we can take the mass contribution apart34

from the deformation contribution. We show that by using this solution not only the in-35

trusion mass, but also other intrusion parameters including the volume, depth and shape36

can be calculated more accurately.37

1 Introduction38

Intrusion of magma through the host rock or into an existing magma chamber de-39

forms the Earth’s crust and also changes the surface gravity field. The intrusion mass40

is a key information for characterizing the nature of the activity and its future evolution.41

Joint analyses of the measured surface displacements and gravity changes can constrain42

the intrusion mass, beside the other parameters of the deformation source, that is, its43

location, shape, spatial orientation, and some strength parameter (pressure or volume44

change; Okubo et al., 1991; Battaglia et al., 1999, 2003).45

Both the mass transport and the ensuing country-rock deformations contribute to46

the gravity changes (Hagiwara, 1977; Walsh & Rice, 1979; Bonafede & Mazzanti, 1998;47

Lisowski, 2007). Such deformation-induced effects may be substantial for non-spherical48

sources, as shown through numerical models based on the finite element method (FEM;49

see Currenti et al., 2007, 2008; Trasatti & Bonafede, 2008; Currenti, 2014). The defor-50

mation effects caused by tabular sources such as dikes and sills can be estimated through51

the Okubo (1992) analytical solutions. There are no analytical solutions for other source52

geometries, such as ellipsoids, yet rigorous joint inversions of surface displacements and53

gravity changes demand models accounting for the source shape (Amoruso et al., 2008).54

A source model composed of three orthogonal tensile dislocations can simulate the55

deformation field associated with triaxial sources (Lisowski et al., 2008; Bonafede & Fer-56

rari, 2009; Amoruso & Crescentini, 2013). Based on this concept, Nikkhoo et al. (2017)57

developed the point Compound Dislocation Model (point CDM), which represents the58

far-field deformation of generic triaxial sources. This source model spans a wider param-59

eter space than ellipsoids (Ferrari et al., 2015) while retaining the simplicity of the Mogi60

(1958) model.61
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In this study we use the Okubo (1991) expressions to derive analytical solutions62

for the gravity changes associated with the point CDM. We show how gravity changes63

due to point and finite ellipsoidal sources can be calculated by using the point CDM. We64

compare the point CDM gravity changes with the Hagiwara (1977) and Trasatti and Bonafede65

(2008) solutions. Finally, we elaborate on the potential of the model for coupled inver-66

sions of surface displacements and gravity changes.67

2 Methods68

Deformation-induced gravity changes are usually expressed as the sum of contri-69

butions due to deformation in the source region and country rocks, and the surface up-70

lift. Here we adopt a decomposition scheme compatible with the point CDM formula-71

tion. We assume a homogeneous, isotropic elastic half-space as a model for the Earth’s72

crust. We denote the Poisson’s ratio, shear modulus and bulk modulus in the medium73

by ν, µ and K, respectively. We adopt a right-handed xyz Cartesian coordinate system74

with the origin at the free surface and the z axis pointing upward. By “gravity change”75

we refer to the change in the absolute value of the gravity vector’s z component. Thus,76

a positive mass change (mass increase) below a gravimeter leads to a positive gravity change77

(gravity increase).78

2.1 Gravity changes caused by magma chamber pressurization79

As an example, suppose that magma degassing pressurizes a magma chamber (Fig-80

ure 1). We assume that the exsolved gases all gather at the interface between the cham-81

ber walls and the degassed magma, forming a shell-shaped cavity. The outward expan-82

sion of the chamber walls and inward compression of the magma lead to the oppositely83

signed chamber volume change, δVc, and magma volume change, δVm, respectively. The84

total volume created by the expansion-compression process—namely, the interface vol-85

ume change, ∆Vint—is given by86

∆Vint = δVc − δVm, (1)87

or equivalently by88

∆Vint = Vc − Vm, (2)89

where Vc = V + δVc and Vm = V + δVm are the chamber volume and magma volume in90

the deformed state, respectively, and V represents both the chamber volume and magma91

volume in the undeformed state. The chamber expansion also uplifts the surface and gen-92

erates a strain field, εij , in the surrounding rocks. This changes the density of the rocks93

by δρr = −ρrεkk, where ρr is the rock density in the undeformed state and εkk = ε11 + ε22 + ε3394

is the volumetric strain or dilatation—a positive dilatation reduces the density (see Fig-95

ure 1). Similarly, the magma density change, δρm, due to the compression is related to96

the magma compressibility, βm, through δρm = ρmβmδp, where ρm is the magma den-97

sity in the undeformed state and δp is the pressure change in the chamber (Rivalta &98

Segall, 2008). Provided that βm and δp are known, we have99

δVm = V βmδp. (3)100

Since we can consider the created volume ∆Vint as void, the density change in the δVc101

and δVm portions is −ρr and −ρm, respectively. Similarly, uplift, or subsidence, at the102

Earth surface will either fill void space, or create a void space. So, the other zone of sub-103

stantial density change is the Earth’s surface, where areas of uplift and subsidence are104

subjected to density changes +ρr and −ρr, respectively.105

The same deformation-induced density changes exist if instead of exsolved gases,106

the interface cavity is formed by, and filled with, the intrusion of some external fluids.107

In such case, the interface cavity is filled with a net mass108

∆M = ρint∆Vint, (4)109

–3–
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Figure 1. Schematic mass redistribution and surface uplift caused by chamber pressuriza-
tion. Compressed magma (red) is surrounded by the interface cavity. The dashed ellipse depicts
chamber walls prior to pressurization and separates the δVm and δVc portions of the interface
cavity (see equation 1). The country rocks are subjected to positive dilatation/density decrease
(light gray and white contours) and negative dilatation/density increase (dark gray and black
contours). Thick black contour marks zero dilatation. The gravity station (black triangle) has
been subjected to gravity change δg and vertical displacement uv.

where ρint is the intrusion density.110

The magma chamber expansion leads to a vertical displacement, uv, and the fol-111

lowing gravity change contributions for each observation point at the surface:112

1. ∆gβ , due to density change δρm in the magma volume in the deformed state, Vm,113

2. ∆gδVm , due to density change −ρm within the δVm volume,114

3. ∆gδVc , due to density change −ρr within the δVc volume,115

4. ∆gεkk
, due to density changes δρr throughout the country rocks,116

5. ∆gSM, due to presence of the displaced surface mass layer with density +ρr,117

6. ∆gFA, due to the free air change in gravity associated with uv,118

7. ∆g∆M , due to the added intrusion mass ∆M that leads to density change ρint within119

the interface cavity,120

for a total surface gravity change of121

δg = ∆gβ + ∆gδVm + ∆gδVc + ∆gεkk
+ ∆gSM + ∆gFA + ∆g∆M . (5)122
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∆g∆M , also known as residual gravity, can be used to constrain ∆M (see Battaglia et123

al., 2008). However, this requires all the other terms in equation (5) to be quantified first.124

At each station, δg and uv can be determined through repeated gravity and deforma-125

tion measurements, respectively. Then we have126

∆gFA = γuv, (6)127

where γ ' −0.3086 mGal/m is the free air gradient, and128

∆gSM = 2πGρruv, (7)129

where G is the gravitational constant. Note that equation (7) uses the Bouguer plate ap-130

proximation and is valid for flat topographies. The other terms in equation (5) can be131

estimated only by using a deformation model for the chamber pressurization. Note that132

equation (5) is valid for sources both in the near field and the far field. In the follow-133

ing we first introduce an analytical point-source model, which can be applied to sources134

in the far field, and show that in this case equation (5) can be simplified. Next, we present135

a semi-analytical finite-source solution and elaborate on the issues that may limit its ap-136

plicability to near-field problems.137

2.1.1 The far field approximations138

The far field gravity changes caused by the intruded fluid mass can be calculated139

through a point-mass approximation as140

∆g∆M = G∆M d

r3 , (8)141

where d is the depth to the center of the chamber and r is the distance between the cen-142

ter of the chamber and the surface observation point. This approximation can be applied143

also to the far field gravity changes caused by the other density changes in the cham-144

ber, as145

∆gβ = GδρmVm
d

r3 ,146

∆gδVm = GρmδVm
d

r3 ,147

∆gδVc = −GρrδVc
d

r3 ,148

∆g∆Vint = −Gρr∆Vint
d

r3 . (9)149

The conservation of the initial magma mass in the chamber implies δρmVm = −ρmδVm,150

which together with equation (9) yields151

∆gβ + ∆gδVm = 0. (10)152

Note that for shallow finite sources equation (10) does not necessarily hold, as mass re-153

distribution within the chamber may lead to measurable gravity changes. The far field154

form of equation (5) can now be written as155

δg = ∆gδVc + ∆gεkk
+ ∆gSM + ∆gFA + ∆g∆M , (11)156

which expresses the surface gravity changes associated with a deep pressurized cham-157

ber as the sum of contributions due to displaced mass at the chamber walls (∆gδVc), vol-158

umetric strain in the host rocks (∆gεkk
), displaced mass at the Earth’s surface (∆gSM)159

and the vertical displacement of gravity stations (∆gFA), superimposed on the mass change160

contribution (∆g∆M ).161

Note that equations (1–11) hold for any chamber shape and boundary conditions162

on the chamber walls.163

–5–
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Figure 2. Triaxial volumetric sources. a) A point CDM with potencies ∆Vx (yellow), ∆Vy

(green) and ∆Vz (blue), where ∆Vx = ∆Vy > ∆Vz. Inset shows the equivalent CDM (see
Nikkhoo et al., 2017). b) A uniformly pressurized cuboidal source with Km = K. The two in-
terface cavity portions δV Cub

c and δV Cub
m are indicated, where ∆V Cub = δV Cub

c + δV Cub
m . c)

Same as (b), but for a uniformly pressurized ellipsoidal source. The interface cavity portions are
δV Ell

c and δV Ell
m , with ∆V Ell = δV Ell

c + δV Ell
m . Note that δV Cub

c 6= δV Ell
c and δV Cub

m 6= δV Ell
m but

∆V Cub = ∆V Ell. d) A set of N point CDMs uniformly distributed within the ellipsoidal cavity
in c. The point CDM in (a) represents the far field of all the finite sources in (b), (c) and (d).
Provided N →∞, the near fields of (c) and (d) are equivalent. For the models in (b) and (c)
ν = 0.25.

2.2 Gravity changes caused by the point CDM164

The point CDM represents the far field of triaxial sources of expansion with arbi-165

trary spatial orientations (Nikkhoo et al., 2017). The point CDM is composed of three166

mutually orthogonal point tensile dislocations (see Figure 2a) constrained to either ex-167

pand or contract together. The strength of each point tensile dislocation is determined168

by its potency, defined as the product of dislocation surface area and opening (Aki &169

Richards, 2002; Nikkhoo et al., 2017, see also Appendix A). The point CDM has 10 pa-170

rameters: 3 location coordinates, 3 rotation angles, 3 potencies specifying the expansion171

–6–
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intensity along the three principal axes of the source, and Poisson’s ratio, ν. The total172

potency of the point CDM, denoted by ∆V , is the sum of the three potencies. ∆V has173

the units of volume but it is not a physical quantity. Rather, it is a measure of the source174

strength and it holds ∆V = ∆Vint, provided that Km = K, where Km = 1/βm is the bulk175

modulus of magma.176

Triaxial sources of differing shapes, but identical far field deformation, have the same177

point CDM representation and thus, the same ∆V . However, in order to have the same178

δVc these sources must have also identical shapes (except for ν = 0.5 which leads to179

∆V = δVc). For example, the uniformly-pressurized cuboidal and ellipsoidal chambers180

in Figure 2 have the same potencies but their volume changes are different. Analytical181

expressions relating ∆V and δVc are available for ellipsoidal sources from Eshelby (1957).182

For uniformly pressurized ellipsoids we have (Nikkhoo et al., 2017):183

∆V Ell = δV Ell
c + V δp

K
. (12)184

Recalling that K = 2µ(1+ν)
3(1−2ν) and that for a spherical source of radius a the total vol-185

ume and volume change are V Sph = 4
3πa

3 and δV Sph
c = π

µa
3δp, respectively, equation (12)186

becomes187

∆V Sph = 3 (1− ν)
(1 + ν) δV

Sph
c , (13)188

which for ν = 0.25 leads to ∆V Sph = 1.8δV Sph
c (see also Aki & Richards, 2002; Bonafede189

& Ferrari, 2009; Ichihara et al., 2016).190

Gravity changes caused by point tensile dislocations can be calculated through the191

Okubo (1991) analytical expressions (Appendix A). By superimposing the gravity changes192

associated with three mutually orthogonal point dislocations (equations A1) we derive193

the analytical gravity changes associated with the point CDM as194

δg = ∆g∆V + ∆gMD + ∆gSM + ∆gFA + ∆g∆M , (14)195

where ∆g∆V is the interface cavity contribution (white space in Figure 2b-c) and ∆gMD196

is the contribution due to the medium dilatation both inside and outside the source (gray197

space in Figure 2b-c). Noting that ∆g∆V = ∆gδVc +∆gδVm and ∆gMD = ∆gεkk
+∆gβ198

and using equation (10) we have199

∆g∆V + ∆gMD = ∆gδVc + ∆gεkk
, (15)200

from which it follows that the δg from equation (14) and the δg from equation (11) are201

equivalent. Therefore, the point CDM can be used to compute the effects of deforma-202

tion on gravity change and thus estimate the mass change ∆M .203

2.2.1 Gravity changes caused by point and finite pressurized ellipsoidal204

cavities205

For any point ellipsoidal model after Davis (1986) there is an equivalent point CDM,206

related to the elastic parameters of the medium and the ellipsoid semi-axes and pressure207

change through the Eshelby (1957) tensor (see Nikkhoo et al., 2017). Thus, equation (14)208

also holds for point ellipsoidal sources. By calculating δVc for ellipsoidal cavities ∆gδVc209

(equation 9) and thus, ∆gεkk
(equation 15) can be determined for ellipsoidal sources.210

Assume that a point CDM with potencies (∆Va,∆Vb,∆Vc) represents the far field211

of a pressurized ellipsoidal cavity with semi-axes (a, b, c). Then, a set of N point CDMs212

with potencies (∆Va/N,∆Vb/N,∆Vc/N), uniformly distributed within the ellipsoid (see213

Figure 2d), approximates the near field deformations of the pressurized cavity (Eshelby,214

1957; Davis, 1986; Yang et al., 1988; Amoruso et al., 2008; Segall, 2010; Amoruso & Cres-215

centini, 2011). Provided that N →∞, this procedure leads to an accurate solution, un-216

less the cavity is immediately below the free surface (Yang et al., 1988; Segall, 2010; Amoruso217

–7–
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& Crescentini, 2011). Similar accuracies can be achieved by using the finite Ellipsoidal218

Cavity Model (finite ECM) after Nikkhoo and Rivalta (2022), which uses a smaller num-219

ber of point sources with depth-dependent spacing and strengths. By incorporating the220

expressions for the point CDM gravity changes in these configurations, we derive new221

solutions for the gravity changes caused by a finite pressurized ellipsoidal cavity. While222

the finite ECM is more accurate than the point CDM in modelling shallow pressurized223

ellipsoidal cavities, it is still an approximate solution for both deformation and gravity224

change calculations. Similar to the Yang et al. (1988) solution, the finite ECM provides225

excellent accuracies in the limit that the source dimensions are small compared to its depth(see226

Nikkhoo & Rivalta, 2022, for further details).227

3 Results228

3.1 Comparisons with other gravity change solutions229

Hagiwara (1977) derived closed-form expressions for the gravity change contribu-230

tions caused by the Mogi (1958) source, later used to validate analytical (Okubo, 1991)231

and numerical solutions (Currenti et al., 2007, 2008; Trasatti & Bonafede, 2008).232

An isotropic point CDM is equivalent to the Mogi (1958) model (Bonafede & Fer-233

rari, 2009). Assuming potency ∆V Sph and depth d for such a point CDM, eq. A1 yields:234

∆gSph
MD = 1

3Gρr (1− 2ν) ∆V Sph d

r3 ,235

∆gSph
SM = 2

3Gρr (1 + ν) ∆V Sph d

r3 ,236

∆gSph
∆V = −Gρr∆V Sph d

r3 . (16)237

By using equations (9), (13) and (15) we rewrite equations (16) in terms of δV Sph
c :238

∆gSph
εkk

= −Gρr (1− 2ν) δV Sph
c

d

r3 ,239

∆gSph
SM = 2Gρr (1− ν) δV Sph

c
d

r3 ,240

∆gSph
δVc

= −GρrδV
Sph

c
d

r3 , (17)241

which are equivalent to the Hagiwara (1977) expressions (see also Hagiwara, 1977; Run-242

dle, 1978; Walsh & Rice, 1979; Savage, 1984; Okubo, 1991). This validates the gravity243

change solution for the point CDM in the case of point spherical cavities. As proved by244

Walsh and Rice (1979), the sum of the three terms in each set of equations (16) and (17)245

vanishes. Note also that, for any point CDM, if ν = 0.5 then ∆gMD = ∆gεkk
= 0.246

We now show that the gravity change solutions for the point CDM also provide a247

basis for rigorous benchmarking of numerical solutions. We use the point CDM and the248

finite ECM to calculate the surface displacements (Figure 3a) and gravity changes (Fig-249

ure 3b) associated with the Trasatti and Bonafede (2008) FEM solution for a pressur-250

ized vertical prolate spheroidal cavity. In the far field, the point CDM and the finite ECM251

displacements are indistinguishable. The FEM solution shows a small deviation which252

can be attributed to the finite domain of the model. In the near field, the finite ECM253

and the FEM displacements show a very good agreement. The maximum ∼ 9% differ-254

ence between the finite ECM and the point CDM reflects the difference between a point-255

source and a finite-source solution.256

There is also a good agreement between the gravity changes from all approaches257

(Figure 3b). The maximum differences between ∆gδVc , ∆gεkk
, ∆gSM and ∆g from the258

finite ECM and point CDM are ∼ 6%, ∼ 9%, ∼ 9% and ∼ 6%, respectively. Since the259

cavity in this example is relatively deep, the finite ECM calculations are very accurate.260

–8–
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Thus, in this particular case the subtle differences between the finite ECM and the FEM261

gravity change contributions mostly reflect the errors in the FEM vertical displacements262

and cavity volume change. The largest difference between the Trasatti and Bonafede (2008)263

and the other solutions is slightly above 1 µGal, which is more than double the error that264

Trasatti and Bonafede (2008) estimated by comparison with Hagiwara (1977). This sug-265

gests that comparing numerical models with the solution for spherical cavities only may266

underestimate the numerical computation errors.267

3.2 Implications for the retrieval of deformation source parameters268

Dieterich and Decker (1975) showed that different source shapes produce almost269

indistinguishable uplift patterns if the source depths are appropriately adjusted. How-270

ever, the associated horizontal displacements will be completely different. The implica-271

tion is that in order to constrain all source parameters reliably, horizontal and vertical272

displacement data must be inverted together. Similar to horizontal and vertical surface273

displacements, the deformation-induced gravity changes depend on the deformation source274

parameters. Thus, gravity changes can potentially help better constrain them (Trasatti275

& Bonafede, 2008).276

We use the point CDM to simulate the radial and vertical displacements and the277

gravity changes associated with three different radially-symmetrical deformation sources:278

a horizontal sill, an isotropic source and a prolate source (see Figure 4). For all sources279

∆M = 0. The source depths in Figure 4a lead to similar vertical displacements (Figure 4c),280

but distinct horizontal displacements (Figure 4d) and distinct gravity changes (free air281

contribution removed; Figure 4b). Adjusting the source depths differently (Figure 4e)282

such that the horizontal displacements match (Figure 4h), leads to distinct vertical dis-283

placements (Figure 4f) and distinct gravity changes (Figure 4g). This implies that, from284

a theoretical perspective, gravity changes may also help to better constrain the defor-285

mation source parameters, beside the mass changes. In practice, however, if ∆M 6= 0,286

gravity changes may be dominated by ∆g∆M and thus, depending on the signal-to-noise287

ratio of the data, the ∆g curves (Figure 4b,f) may become indistinguishable.288

4 Discussion289

Volcano gravity changes caused by the net mass of intruding magmatic fluids and290

the induced host rock deformations may have comparable magnitudes to those of hydro-291

logical origin, such as changes in the water table. Such hydrogravimetric disturbances292

can be corrected for by employing hydrological monitoring and modeling techniques (Battaglia293

et al., 2003, 2006; Creutzfeldt et al., 2010; Van Camp et al., 2010; Lien et al., 2014; Kazama294

et al., 2015) or by analyzing time-lapse gravity data (Güntner et al., 2017). Thus, the295

mass of intruding fluids at volcanoes can be inferred reliably once such effects are cor-296

rected for.297

New-generation, low-cost and accurate gravimeters might soon provide gravity mea-298

surements at an unprecedented spatio-temporal resolution (Carbone et al., 2017, 2020).299

Permanent networks provide opportunities for new insight on magmatic plumbing sys-300

tems (Battaglia et al., 2008; Carbone et al., 2019). One main challenge associated with301

these developments is to perform both detailed Bayesian inferences for in-depth under-302

standing of the volcano, and rapid inversions for hazard assessment and early warning.303

The available FEM gravity change models can incorporate various chamber shapes304

(Currenti et al., 2007, 2008; Trasatti & Bonafede, 2008; Currenti, 2014), the Earth’s sur-305

face topography (Currenti et al., 2007; Charco et al., 2009), crustal density and mate-306

rial heterogeneities (Wang et al., 2006; Currenti et al., 2007, 2008; Trasatti & Bonafede,307

2008), viscoelasticity of the Earth’s crust (Currenti, 2018), self-gravitation effects (Fernández308

et al., 2001, 2005; Charco et al., 2005, 2006) and magma compressibility (Currenti, 2014).309
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Figure 3. Comparing the finite ECM with the Trasatti and Bonafede (2008) FEM solution
for a vertical prolate spheroidal cavity with semi-major axes 1.842 km, aspect ratio 0.4 and depth
to the center 5 km. a) Radial (ur) and vertical (uv) displacements, normalized by the maximum
vertical displacement of the finite ECM solution. b) Gravity change contributions, normalized by
the maximum ∆gSM of the finite ECM solution.
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Figure 4. Gravity changes (∆g = δg −∆gFA), vertical displacements (uv) and radial dis-
placements (ur) for point sources of different aspect ratios and depths. Top block: The sources
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Besides difficulties in implementing the FEM such as meshing issues, this powerful method310

is computationally too demanding to be used for detailed inverse modelling. In contrast,311

the point CDM is a half-space model, but has already proven to be suitable for explor-312

ing the parameter space in both detailed Bayesian inferences (see Lundgren et al., 2017)313

and rapid and unsupervised inversions of deformation data (see Beauducel et al., 2020).314

The gravity change solutions for the point CDM, which we provide here, extend this po-315

tential to joint inversions of surface displacements and gravity changes. Volcanic defor-316

mation sources are often deep or far enough from the observation point to be treated as317

far field sources. The point CDM can provide a first order solution which can be later318

improved by more sophisticated numerical models. Some complexities such as layering319

or viscoelasticity can be accounted for (Amoruso et al., 2008) by using appropriate Green’s320

functions for point dislocations (Okubo, 1993; Sun & Okubo, 1993; Wang et al., 2006).321

Besides, theory errors, arising from ignoring real Earth complexities, can be estimated322

in terms of noise covariance matrices within a Bayesian framework (see Minson et al.,323

2013; Duputel et al., 2014; Vasyura-Bathke et al., 2021).324

Finite pressurized ellipsoidal cavities can be approximated by a set of point CDMs325

uniformly distributed in the cavity volumes. With a high number of point CDMs, this326

approach can be used for benchmarking numerical models. An alternative solution is the327

finite ECM after Nikkhoo and Rivalta (2022), which provides comparable accuracies for328

a lesser number of point CDMs. The finite ECM is very fast and thus, provides a prac-329

tical way for performing coupled inversions of surface displacements and gravity changes.330

It is important to recall that for ellipsoidal deformation models in the half-space,331

including the finite ECM and the Yang et al. (1988) spheroid, the full-space expressions332

are used to calculate δVc (Amoruso & Crescentini, 2009). While this approximation may333

often be acceptable for deformation studies, it may lead to large errors in gravity change334

calculations involving shallow finite sources. This warrants future systematic compar-335

isons with numerical models in order to quantify the associated error.336

Deformation-induced gravity changes may be substantial (see Figure 3b) and should337

be accounted for in joint inversions of surface displacements and gravity changes. Pro-338

vided that coupled models are employed for such inversions, the gravity changes may be339

exploited to better constrain the deformation source parameters besides the mass change.340

How practical this may be, depends on the observation uncertainties and the signal-to-341

noise ratio. We will explore this feature in future studies.342

Coupled inversions of surface displacements and gravity changes constrain the de-343

formation source parameters and the intrusion mass without making any assumption on344

the properties of the intruding fluid. The intrusion density can be estimated from the345

inferred mass only if the interface volume change, ∆Vint, is known (∆Vint should not be346

mistaken for the chamber volume change δVc). It can be shown from equations (2) and (3)347

that the determination of ∆Vint requires knowledge of the fluid compressibility. This shows348

that unlike mass change estimates, the estimates of the intrusion density are prone to349

large uncertainties.350

5 Conclusions351

1. Surface gravity changes are sensitive to both the intruding fluid mass and the deformation-352

induced surface uplift (subsidence) and country rock dilatation. Due to this cou-353

pling between the gravity changes and host rock deformations, gravity changes can354

be used also to constrain deformation source parameters, namely, the location, spa-355

tial orientation and potency of triaxial source models for expanding reservoirs.356

2. We provide analytical solutions and MATLAB codes for the surface displacements357

and gravity changes caused by both the point CDM, a model for triaxial sources358
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of expansion, and the finite ECM, a model for ellipsoidal sources of uniform pres-359

surization.360

3. While modelling gravity changes caused by shallow sources it may be necessary361

to account for the mass redistribution within the source. This issue and also the362

inherent error in δVc for half-space solutions may limit the applicability of the fi-363

nite ECM.364

4. The analytical solutions presented here can be used to validate new numerical grav-365

ity change models. Such validations should ideally consider various source depths366

and aspect ratios.367

5. By using the point CDM and the finite ECM, coupled inversions of surface dis-368

placements and gravity changes can now be performed.369

Appendix A Gravity changes caused by point tensile dislocations370

Following the conventions in section 2 and Okubo (1991), a point tensile disloca-371

tion below the origin with depth d, azimuth 0, dip angle θ, potency ∆V and filled with372

an intrusion mass ∆M , causes the following gravity change contributions at (x, y, 0)373

∆g∆V = −Gρr∆V
d

r3 ,374

∆gMD = Gρr∆V (1− 2ν)
[
d

r3 −
1

r(r + d) + x2(2r + d)
r3(r + d)2

]
sin2 θ,375

∆gSM = 2πGρruv,376

∆gFA = γuv,377

∆g∆M = G∆M d

r3 , (A1)378

where ∆g∆V , ∆gMD, ∆gSM, ∆gFA and ∆g∆M are the contributions due to dislocation379

cavity, medium dilatation, displaced surface mass, free air effect and intruded mass, re-380

spectively, r =
(
x2 + y2 + d2)1/2 and uv is the surface uplift (see Okada, 1985; Okubo,381

1991). Note that for ν = 0.5 and also, for horizontal tensile cracks (θ = 0) we have382

∆gMD = 0.383
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