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Abstract

Snow and ice melt processes are a key in Earth’s energy-balance and hydrological cycle. Their quantification facilitates pre-

dictions of meltwater runoff as well as distribution and availability of fresh water. They control the balance of the Earth’s

ice sheets and are acutely sensitive to climate change. These processes decrease the surface reflectance with unique spectral

patterns due to the accumulation of liquid water and light absorbing particles (LAP), that require imaging spectroscopy to

map and measure. Here we present a new method to retrieve snow grain size, liquid water fraction, and LAP mass mixing

ratio from airborne and spaceborne imaging spectroscopy acquisitions. This methodology is based on a simultaneous retrieval

of atmospheric and surface parameters using optimal estimation (OE), a retrieval technique which leverages prior knowledge

and measurement noise in an inversion that also produces uncertainty estimates. We exploit statistical relationships between

surface reflectance spectra and snow and ice properties to estimate their most probable quantities given the reflectance. To

test this new algorithm we conducted a sensitivity analysis based on simulated top-of-atmosphere radiance spectra using the

upcoming EnMAP orbital imaging spectroscopy mission, demonstrating an accurate estimation performance of snow and ice

surface properties. A validation experiment using in-situ measurements of glacier algae mass mixing ratio and surface reflectance

from the Greenland Ice Sheet gave uncertainties of ±16.4 μg/g ice and less than 3%, respectively. Finally, we evaluated the

retrieval capacity for all snow and ice properties with an AVIRIS-NG acquisition from the Greenland Ice Sheet demonstrating

this approach’s potential and suitability for upcoming orbital imaging spectroscopy missions.
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Abstract

Snow and ice melt processes are a key in Earth’s energy-balance and hydrological cycle. Their quantification facilitates predictions
of meltwater runoff as well as distribution and availability of fresh water. They control the balance of the Earth’s ice sheets and
are acutely sensitive to climate change. These processes decrease the surface reflectance with unique spectral patterns due to the
accumulation of liquid water and light absorbing particles (LAP), that require imaging spectroscopy to map and measure. Here we
present a new method to retrieve snow grain size, liquid water fraction, and LAP mass mixing ratio from airborne and spaceborne
imaging spectroscopy acquisitions. This methodology is based on a simultaneous retrieval of atmospheric and surface parameters
using optimal estimation (OE), a retrieval technique which leverages prior knowledge and measurement noise in an inversion that
also produces uncertainty estimates. We exploit statistical relationships between surface reflectance spectra and snow and ice prop-
erties to estimate their most probable quantities given the reflectance. To test this new algorithm we conducted a sensitivity analysis
based on simulated top-of-atmosphere radiance spectra using the upcoming EnMAP orbital imaging spectroscopy mission, demon-
strating an accurate estimation performance of snow and ice surface properties. A validation experiment using in-situ measurements
of glacier algae mass mixing ratio and surface reflectance from the Greenland Ice Sheet gave uncertainties of ±16.4 µg/gice and less
than 3%, respectively. Finally, we evaluated the retrieval capacity for all snow and ice properties with an AVIRIS-NG acquisition
from the Greenland Ice Sheet demonstrating this approach’s potential and suitability for upcoming orbital imaging spectroscopy
missions.

Keywords: Imaging spectroscopy, Optimal estimation, Snow and ice, Light-absorbing particles in snow and ice, Greenland Ice
Sheet, Atmospheric correction, EnMAP

1. Introduction

Snow and ice are the most variable surfaces on Earth with re-
spect to their albedo, which ranges from 0.92 for fresh snow to
less than 0.3 for snow contaminated with high loadings of light
absorbing particles (LAP) (Flanner and Zender, 2006; Painter
et al., 2012). The amount of absorbed solar radiation and the
resulting melt processes are sensitive to the optical properties of
snow and ice (Wiscombe and Warren, 1980), which are mainly
determined by grain size as well as LAP type, mass mixing ra-
tio, and size distribution (see Warren (1982); Aoki et al. (2003);
Flanner and Zender (2006); Painter et al. (2001)). The accu-
mulation of LAP at the snow surface, such as black carbon
(BC), mineral dust, and photosynthetic algae decreases the sur-
face reflectance and leads to increased melting (Flanner et al.,
2007). The resulting liquid water releases nutrients enclosed in-
between the snow and ice grains so that algal growth is acceler-

∗Corresponding author at: GFZ German Research Centre for Geosciences,
Telegrafenberg, 14473 Potsdam, Germany.
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ated (Williamson et al., 2018). Furthermore, the grains tend to
form clusters if liquid water is present and show similar optical
properties as large grains (Dozier and Painter, 2004). This in
turn increases the absorptivity by BC as shown by Warren and
Wiscombe (1980).

The detection and quantification of LAP accumulated in the
upper snow and ice surface layer can provide a detailed ba-
sis for reconstructing physical and biological processes. In
contrast to multispectral sensors, imaging spectrometers can
more accurately map the amounts of surface parameters based
on the reflectance shape and magnitude (Painter et al., 2013).
These instruments spectroscopically measure the solar radia-
tion reflected by atmospheric and surface components in con-
tiguous spectral channels and enable the identification and
quantification of land, water, and atmosphere constituents us-
ing physically-based retrievals (Goetz et al., 1985; Schaepman
et al., 2009).

The mapping of snow properties using imaging spectroscopy
has been studied in great length for the past four decades. Tech-
niques to estimate snow grain size first appeared in the early
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80’s and improved during the following years. While Dozier
et al. (1981), still lacking a suitable instrument, initially showed
the potential of the near-infrared (NIR) to estimate grain
size, Nolin and Dozier (1993) introduced a method based on
the snow reflectance at 1030 nm using data from the National
Space and Aeronautics Administration (NASA)’s Airborne Vis-
ible Infrared Imaging Spectrometer (AVIRIS). They inverted a
model built upon the nonlinear relationship between modeled
directional reflectance and snow grain size. This approach was
subsequently extended to the complete 1030 nm ice absorp-
tion feature by relating the absorption band area to snow grain
size (Nolin and Dozier, 2000), and improved by taking into ac-
count snow sub-pixel cover (Painter et al., 2003). Painter et al.
(2013) reduced biases due to liquid water and water vapor ab-
sorption by introducing a spectral fitting approach between a
modeled snow spectrum and surface reflectance observed by the
instrument. A detailed analysis of spatial and temporal variabil-
ity of snow properties is presented in Seidel et al. (2016), and
the retrieval techniques have been further improved by com-
bining imaging spectroscopy with scanning lidar to develop the
Airborne Snow Observatory (ASO), providing a comprehensive
suite of snow retrieval algorithms (Painter et al., 2016).

While these approaches consistently use atmospherically
corrected spectra to retrieve snow surface parameters, several
studies have been introduced to map snow and ice properties
with simultaneously accounting for the effect of the atmosphere
based on data from the Moderate Resolution Imaging Spectro-
radiometer (MODIS). A prominent example is the snow grain
size and pollution amount (SGSP) algorithm, which has been
applied to retrieve snow grain size and soot concentration (Zege
et al., 2008, 2011; Carlsen et al., 2017). But also, a retrieval of
snow subpixel cover from MODIS top-of-atmosphere (TOA)
radiance has been presented (Sirguey et al., 2009).

The effects of liquid-water coatings around snow grains have
initially been incorporated into reflectance models for melting
snow by Green et al. (2002). To facilitate a discrimination
between wet and dry snow and to provide a basis for melt-
water runoff predictions, Green et al. (2006) also developed a
method to simultaneously retrieve the optical path lengths of
the three phases of water over melting snow from AVIRIS mea-
surements. Their approach was also transferred to synthetic
spaceborne EnMAP data (Bohn et al., 2020).

Many previous studies have investigated the influence of in-
organic LAP such as BC and mineral dust on the snow and ice
surface reflectance and incorporated their effects into radiative
transfer models (RTM) (see Clarke and Noone (1985); Flan-
ner et al. (2007); Brandt et al. (2011); Hadley and Kirchstet-
ter (2012); Skiles and Painter (2018)). However, despite be-
ing recognized as an absorptive surface quantity responsible for
increased meltwater runoff on the Greenland Ice Sheet (Yal-
lop et al., 2012), biological LAP have mostly been mapped for
snow surfaces.

The first approach was shown by Painter et al. (2001), who
developed a method to detect and quantify concentrations of
blooms of snow algae based on a model for the integral of
the continuum-scaled 680 nm chlorophyll absorption feature.
They used field measurements of the spectral hemispheric con-

ical reflectance factor (HCRF) and snow algal concentration to
build the model and applied it to AVIRIS data. However, they
did not perform a ground truth validation of the retrieval re-
sults. Takeuchi et al. (2006) found a relationship between the
reflectance ratio of the red to the green visible (VIS) wave-
lengths and snow algal biomass. They used multispectral satel-
lite data to estimate distribution and abundance of snow al-
gae. Recently, Gray et al. (2020) presented a quantification of
green snow algae biomass using the chlorophyll-a absorption at
680 nm based on multispectral Sentinel-2 data.

Both Takeuchi et al. (2006) and Gray et al. (2020) validated
their estimated spectral relationships such as band ratio and ab-
sorption feature depth with ground reflectance measurements,
but they likewise did not conduct a direct ground truth vali-
dation of the estimated algal biomass. Both studies mention
the limitations of multispectral satellite sensors to detect al-
gal blooms, which confirms the need for high-resolution orbital
imaging spectroscopy missions to quantify LAP in snow and
ice. For glacier ice, Cook et al. (2017b) introduced a snow
RTM accounting for organic LAP. Based on this model, it was
demonstrated that glacier algae indeed accelerate snow melt-
ing on the Greenland Ice Sheet by increasing the radiative forc-
ing (Cook et al., 2020).

Especially in view of upcoming orbital missions, imaging
spectroscopy of snow and ice faces new possibilities. For in-
stance, the Greenland Ice Sheet is the largest single contributor
to global sea level rise (Bamber et al., 2018), but is remote and
difficult to access. Besides already existing orbital acquisitions
from multispectral sensors, spaceborne imaging spectrometers
will significantly increase the amount of data available on a reg-
ular basis. They can therefore further improve our understand-
ing of melt processes on snow and ice surfaces, which is essen-
tial to evaluate the associated impacts on climate change (Stibal
et al., 2017).

Several orbital imaging spectroscopy missions were recently
or soon will be launched. The German Aerospace Center’s
(DLR) Earth Sensing Imaging Spectrometer (DESIS) (Mueller
et al., 2016) and the Italian Hyperspectral Precursor of the Ap-
plication Mission (PRISMA) (Loizzo et al., 2018) are in op-
eration since June, 2018 and March, 2019, respectively. The
German Environmental Mapping and Analysis Program (En-
MAP) (Guanter et al., 2015) and NASA’s Earth Surface Min-
eral Dust Source Investigation (EMIT) (Green et al., 2018)
are scheduled for launch in early 2022. Additionally, NASA’s
Surface Biology and Geology (SBG) investigation (National
Academies, 2019) is in formulation, and the Copernicus Hy-
perspectral Imaging Mission (CHIME) (Rast et al., 2019) led
by ESA is in the planning phase and considered for operation
starting around 2025.

This work presents a new method to retrieve snow and ice
surface parameters from imaging spectroscopy data. We use a
framework of a simultaneous retrieval of atmospheric and sur-
face parameters following the approach presented in Thomp-
son et al. (2018). The method is based on an optimal esti-
mation procedure incorporating prior knowledge and measure-
ment noise as well as model uncertainties. While Thompson
et al. (2018) use statistics calculated from a comprehensive col-
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lection of measured reflectance spectra as prior knowledge of
the surface state, we extend the prior distributions by assign-
ing additional snow and ice parameters such as grain size or
LAP mass mixing ratios to each spectrum. We calculate the
reflectance statistics based on many runs of the physical snow
RTM BioSNICAR-GO (Cook et al., 2020). However, as our
study focuses on homogeneous snow and ice surfaces on the
Greenland Ice Sheet, we do not include a retrieval of subpixel
snow-covered area as described in Painter et al. (2003), so that
the algorithm does not account for small-scale snow cover vari-
ations within the instantaneous field-of-view of the instrument
or mixed pixels that also include vegetation or soil. The effects
of physical properties of the surface such as slope and aspect of
the terrain are likewise not incorporated into the model due to
the mostly flat surface on ice sheets in general.

We evaluate the performance of the algorithm through a sen-
sitivity analysis, present retrieval uncertainties, and discuss the
potential for future orbital imaging spectroscopy missions. Ad-
ditionally, we validate the approach of the extended surface
model by comparing our results with field observations of sur-
face reflectance and algae mass mixing ratios from the Green-
land Ice Sheet. Finally, we use data from NASA’s Next Gen-
eration AVIRIS (AVIRIS-NG) to demonstrate the ability of the
algorithm to realistically map snow and ice surface parameters.

2. Methods

2.1. Optimal estimation
We determine statistical correlations between surface param-

eters and surface reflectance, and then use these to inform a si-
multaneous Bayesian inversion of surface and atmospheric pa-
rameters. We apply an extended version of the method intro-
duced by Thompson et al. (2018). The approach is based on the
probabilistic formalism of Rodgers (2000), known as Optimal
Estimation (OE). In-depth details of the mathematical expres-
sions presented in this section can be found in both mentioned
references. Following standard conventions, we use uppercase
boldface to indicate matrices and a lowercase boldface notation
for vectors and vector-valued functions.

We use a set of measured TOA radiances, combined in the
measurement vector y = [y1, ..., ym]T, to estimate the state vec-
tor x = [x1, ..., xn]T by inverting a well-parameterized forward
model f(x). It models TOA radiance for a given combined at-
mosphere and surface state using an atmospheric RTM. More
details on f are provided in Section 2.2. In general form, f can
be written as a vector-valued function depending on the state
vector x and yielding the measurement vector y :

y = f(x) + ε, (1)

where x is composed of an atmospheric state vector xATM and
a surface state vector xSURF. ε is a random error vector repre-
senting measurement noise and instrument calibration errors as
well as a priori uncertainties in the state vector variables and
errors due to unknown forward model parameters.

We invert the forward model by iteratively minimizing the
scalar-valued cost function χ2(x), which is commonly used for

OE procedures. By linearizing the forward model and assum-
ing Gaussian error statistics, this is the part of the negative log
posterior that is sensitive to changes in the state vector x:

χ2(x) =
1
2

(x−xa)TS−1
a (x−xa) +

1
2

(y− f(x))TS−1
ε (y− f(x)), (2)

where xa is the a priori state vector with the associated error
covariance matrix Sa; and Sε is the measurement error covari-
ance matrix. The cost function penalizes differences between
the modeled spectrum f(x) and the measured spectrum y, and
between the estimated state and the prior, by taking into ac-
count their uncertainties. At each iteration step, the state vec-
tor is changed to reduce the value of the cost function until a
local minimum is reached. Finally, the state with the highest
probability given the measurement and the a priori state is re-
ported. It must be noted that in some cases of a nonlinear prob-
lem the iteration may approach a local minimum so that the
reported solution state and the associated posterior predictive
uncertainties may not be the required solution. Existing litera-
ture only marginally attends to the question of correct conver-
gence (Cressie, 2018). However, we assume our approach to be
stable as the initial guess tends to be within ±10% of the full
probabilistic solution (see Section 2.3).

Sε is a sum of two covariance matrices, Sy comprising uncer-
tainties due to physical instrument noise and Ŝb accounting for
errors introduced by unknown forward model parameters:

Sε = Sy + Ŝb. (3)

Sy is calculated by:

Sy
j,k = cj,kσy,jσy,k, (4)

where σy,j and σy,k are the standard deviations of the measure-
ment errors for the j-th and k-th band of the imaging spectrom-
eter; and cj,k is the error correlation coefficient between the j-th
and k-th band. For standard imaging spectrometers, we assume
cj,k = 0 when j , k. Consequentially, Sy is diagonal having the
following elements, which are the noise-equivalent changes in
radiance for each instrument channel:

(δy
j,j)

2 =

(
Lj

S NRj

)2

+ ∆2
j , (5)

where Lj is the measured radiance in band j; S NRj is the
radiance-dependent signal-to-noise ratio (y/σy) of band j; and
∆j is the calibration uncertainty of band j.

There are often forward model parameters which are uncer-
tain and might affect the measurement, but which are not re-
trieved as part of the state vector. Following Thompson et al.
(2018), they can originate from the surface, the instrument, or
the atmosphere. They can include sky view effects, intrinsic er-
rors in water vapor absorption coefficients, systematic calibra-
tion and radiative transfer uncertainty as well as non-systematic
radiometric uncertainty. We assume them to be independent er-
ror sources and add their contributions to Sy. We decompose Ŝb
accordingly:

Ŝb = KbSbKT
b . (6)
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Inserting in Equation 3 gives:

Sε = Sy + KbSbKT
b , (7)

where Kb is the Jacobian of the forward model comprised of
partial derivatives with respect to the not retrieved model un-
knowns:

Kb
i,j =

δyi

δbj
. (8)

We adopt uncertainties of sky view effects and water vapor ab-
sorption intensity from Thompson et al. (2018) being 10 % and
1 %, respectively. The former is assumed to be the maximum
error in the fraction of the hemispherical sky illumination that
is visible from the surface, the latter is based on validation of
the HITRAN database (Rothman et al., 2009). Since our sen-
sitivity analysis is based on simulated data, we do not include
any systematic and non-systematic errors.

The OE approach enables the interpretation of the retrieval
uncertainty by providing several metrics of error analysis. Be-
sides the optimized and converged state vector, the method cal-
culates the posterior predictive error distribution by means of
the retrieval error covariance matrix Ŝ:

Ŝ = (KTS−1
ε K + S−1

a )−1, (9)

where K is the Jacobian of the forward model comprised of
partial derivatives with respect to the state vector x:

Ki,j =
δyi

δxj
. (10)

A similar quantity to K is the gain matrix G, which indicates
the sensitivity of the solution state vector to the measurement:

G = (KTS−1
ε K + S−1

a )−1KTS−1
ε . (11)

G is used to construct the averaging kernel matrix A:

A = GK. (12)

It contains several measures of the retrieval characteristics at the
same time. On the diagonal, it provides the Degrees of Freedom
(DOF) for each state vector parameter and consequentially, the
trace of A represents the total DOF of the retrieval. Rows of A
are the averaging kernels and give the sensitivity of a particu-
lar parameter of the solution state to different elements of the
true state. The columns show the impulse response of the solu-
tion state to a small change in a particular parameter of the true
state.

2.2. Forward model
Our forward model f is a function of the state vector x, which

contains the free parameters that are optimized throughout the
iteration procedure. x is split in an atmospheric part xATM =

[xH2O, xAOT]T including the columnar water vapor in g cm−2 and
the dimensionless Aerosol Optical Thickness (AOT) at 550 nm,
and a surface part xSURF = [xλ1 , ..., xλm , xSURF1 , ..., xSURFn ]T,
which includes the also dimensionless surface reflectance
for each of m instrument channels with center wavelengths

[λ1, ..., λm] and n additional surface parameters. Details on the
reflectance quantity we are referring to are provided in Sec-
tion 2.2.1. We only retrieve water vapor and AOT for the atmo-
spheric part since they belong to the few temporally-variable
parameters of the atmosphere, which mainly determine the
shape of the TOA radiance spectrum and can usefully be esti-
mated with imaging spectroscopy (Thompson et al., 2018). The
additional surface parameters retrieved in our study the snow
grain radius in µm, the liquid water fraction in percent as well as
mass mixing ratios of snow algae, glacier algae, BC, and min-
eral dust, all in units of µg/gsnow/ice. Although the additional
surface variables are part of the state vector, they do not serve
as an input to our forward model. We call this a ’lazy’ prior-
driven inversion since the optimization of those parameters is
entirely based on their prior mean and covariance.

2.2.1. Atmosphere radiative transfer model
For the atmosphere model we use the same setup as described

in Bohn et al. (2020), which relies on radiative transfer simula-
tions by the MODTRAN code (Berk et al., 1989). It enables the
calculation of atmospheric radiation components for the ultravi-
olet (UV), VIS, NIR, shortwave-infrared (SWIR), and thermal
infrared (TIR) spectrum covering a wavelength range of 0.2 -
104 µm in a one-dimensional space. To match the optical spec-
tral range, we simulated gaseous transmittance, radiance, and
fluxes spanning wavelengths from 400 nm to 2500 nm. We
selected the MODTRAN band model mode choosing a spec-
tral sampling interval (SSI) of 1.0 cm−1. To calculate gaseous
transmittance, MODTRAN uses absorption lines taken from the
HITRAN database (Rothman et al., 2009), and performs multi-
ple scattering simulations based on the DISORT N-stream pro-
gram (Stamnes et al., 1988).

We follow the approach of Chandrasekhar (1960) and model
the TOA radiance LTOA at a specific wavelength by a simplified
solution of the radiative transfer equation:

LTOA = L0 +
1
π

ρs(Edirµsun + Edif)T↑
1 − S ρs

, (13)

where L0 is the atmospheric path radiance; Edir and Edif are the
direct and diffuse solar irradiance arriving at the surface; µsun is
the cosine of the solar zenith angle; T↑ is the total upward atmo-
spheric transmittance; and S is the spherical albedo at bottom
of atmosphere (BOA). The parameter ρs expresses the dimen-
sionless surface reflectance, whose quantity is determined by
the RTM selected for calculating the prior statistics.

In case of a Lambertian, horizontal, infinite, and isotropic
surface, the incident solar radiation is equally reflected in
all directions. However, like all natural surfaces, snow and
ice reflectance shows a certain degree of spectrally-variant
anisotropy (Painter and Dozier, 2004a; Schaepman-Strub et al.,
2006). This means that the scattering of light follows an angu-
lar distribution in terms of directional reflectance or hemispher-
ical directional reflectance factor (HDRF). It is controlled by
snow texture, grain morphology, solar zenith angle, liquid wa-
ter content, LAP concentration, and surface roughness (Painter
and Dozier, 2004b). Measurements taken by an airborne or
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spaceborne imaging spectrometer sample from the HDRF, with
varying SZA across the seasons and a range of VZA depending
on the instrument angle and the local topography (Schaepman-
Strub et al., 2006). However, as we assume clear sky and a
plane-parallel atmosphere as well as a Lambertian, infinite, hor-
izontal, and isotropic surface, ρs is representing the spectral
albedo in our modeling. It is defined as the integral of all HDRF
over the full hemisphere (Dozier and Painter, 2004):

αλ(θ0, r) =

∫ 2π

0

∫ π
2

0
HDRFλ(θ0, θv, φ, r) cos θv sin θvdθvdφ,

(14)
where θ0, θv, and φ represent solar zenith angle (SZA), view
zenith angle (VZA), and relative azimuth angle (RAA), respec-
tively; and r is the snow grain radius. An appropriate measure
to quantitatively express the difference between spectral albedo
and HDRF is given by the spectral anisotropy factor c. It is
defined as the ratio of spectral albedo to HDRF (Painter et al.,
2013):

cλ(θ0, θv, φ, r) =
αλ(θ0, r)

HDRFλ(θ0, θv, φ, r)
. (15)

Substituting HDRF for spectral albedo is accurate for near-
nadir acquisitions over a horizontal surface since snow property
retrievals are only slightly affected by directional reflectance
under these conditions (Painter and Dozier, 2004a; Dumont
et al., 2010). As we use EnMAP nadir simulations and sub-
sets from an AVIRIS-NG acquisition covering almost flat sur-
faces on the Greenland Ice Sheet, simulations of spectral albedo
in place of HDRF are sufficient to demonstrate the princi-
ples of our inversion. Furthermore, the HDRF of snow is
less anisotropic for wavelengths below 1000 nm (Painter and
Dozier, 2004b), so that the retrieval of LAP concentration, be-
ing primarily absorptive in the VIS, will be less affected by
varying solar and observation geometries. Nevertheless, a more
detailed treatment with a broad range of LAP inclusions in a
directional modeling will come in subsequent work. A detailed
discussion of our choice is given in Section 4.1.4.

The free parameters of the atmospheric state are implicitly
included since all components of the right side of Equation 13
except ρs are functions of xATM. The free parameters of the
surface appearing in our forward model, [xλ1 , ..., xλm ], are ex-
pressed by ρs for each particular wavelength.

We apply the algebraic conversions presented in Guanter
et al. (2009) to obtain L0, Edir, Edif , T↑, and S from the orig-
inal MODTRAN output. We ran the RTM for various atmo-
spheric states and observation geometries, which we assume to
comprise most of the possible acquisition conditions of the in-
struments used in this study, and built a multidimensional Look-
Up-Table (LUT) containing all atmospheric components (Table
1) (see Bohn et al. (2020)).

The atmospheric priors are constructed as an unconstrained
diagonal covariance matrix. For simplicity, we assume no in-
tercorrelation.

2.2.2. Snow and ice radiative transfer model
RTMs for snow and ice generally use the effective snow grain

radius for parameterizing the geometry of the surface particles.

Table 1: Gridding of LUT parameters for MODTRAN radiative transfer sim-
ulations according to Guanter et al. (2009). Varied parameters include VZA,
SZA, RAA, surface elevation (HSF), AOT, and columnar water vapor (CWV).

1 2 3 4 5 6 7
VZA (◦) 0 10 20 30 40 - -
SZA (◦) 0 10 20 35 50 70 -
RAA (◦) 0 25 50 85 120 155 180

HSF (km) 0 0.7 2.5 8 - - -
AOT 0.05 0.12 0.2 0.3 0.4 0.8 -

CWV (g cm−2) 0 1 1.5 2 2.7 3.5 5

It is the area-weighted mean radius of the snow grains within
a specific surface area (Warren, 1982). However, in order to
obtain the effective grain radius, several different approaches
exist to model the shape of snow and ice particles. One of the
most commonly used methods is to model non-spherical snow
particles as a collection of spheres using Lorenz-Mie calcula-
tions (Warren, 1982). This approach is based on the assump-
tion that the effective snow grain radius is much larger than the
incident radiation wavelengths. Thereby, the scattering of elec-
tromagnetic radiation from a sphere of a particular medium is
approximated by computing the extinction efficiency, the single
scattering albedo, and the scattering asymmetry factor (Wis-
combe, 1980). Applying the collected-spheres approach, ex-
tinction efficiency and single scattering albedo of snow are ac-
curately expressed (Warren, 2019). However, the scattering
asymmetry factor tends to be overestimated using this method
so that its effect needs to be corrected by slightly reducing the
effective snow grain radius in model simulations (Dang et al.,
2016).

A different technique was introduced by Aoki et al. (2007),
who come up with three types of dimensions for defining snow
grain size. They consider length, width, and thickness of the
ice crystals. Kokhanovsky and Zege (2004) likewise pointed to
the limitations of the collected-spheres approach due to the ir-
regular shaped ice crystals. They present a calculation of snow
optical properties based on geometric optics (GO) equations.
Hereinafter, this method has been refined by combining GO
with a stereological approach that considers snow as a two-
phase mixture of ice particles and air (Malinka, 2014). Ul-
timately, Libois et al. (2013) introduced a grain shape model
based on only two parameters: the absorption enhancement pa-
rameter and the geometric asymmetry factor. They assume GO
and a week snow absorption while illustrating the limitations of
the collected-spheres approach.

It is not straightforward though to reproduce these parame-
terization approaches empirically since measuring the snow ef-
fective grain size in the field is challenging (Cook et al., 2017a).
The grain radius can be estimated accurately using contact
spectroscopy (Painter et al., 2007), whereas the observed quan-
tity from hand lenses is different and cannot be equalized with
the effective radius as it does not describe the full path length
of the ice absorption (Cook et al., 2017a). Other instruments
to measure snow grain radius in the field comprise laser diodes
in combination with an integrating sphere or a high-resolution
penetrometer (Gallet et al., 2009; Arnaud et al., 2011; Proksch
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et al., 2015). Although some studies tried to develop a re-
producible relationship between the observed and the effective
grain radius (see Painter et al. (2007)), a direct validation of the
RTM assumptions is still difficult.

We use the snow and ice RTM BioSNICAR-GO to calculate
the prior reflectance statistics and the input reflectance spec-
tra for our sensitivity analysis (see Sections 2.2.3 and 3.1).
The model is available as Python package and was developed
by Cook et al. (2020). They coupled a bio-optical model with
the two-stream multilayer SNow, ICe, and Aerosol Radiation
model SNICAR (Flanner et al., 2007). The latter is built on the
theory of Wiscombe and Warren (1980) and the two-stream ap-
proximations of Toon et al. (1989), which enable the modeling
of heterogeneous snow properties in multiple vertical layers.
Additionally, the effects of the underlying surface reflectance
can be incorporated into the model.

BioSNICAR-GO provides a coupling between a bio-optical
model, Mie and GO modeling, and a two-stream RTM. Espe-
cially the possibility to use GO for modeling arbitrarily shaped
ice crystals guided us in selecting BioSNICAR-GO. It offers the
possibility to model optical properties either based on Lorenz-
Mie calculations for snow and small LAP such as BC, min-
eral dust, and snow algae, or based on the GO approach for
large ice crystals and glacier algae. For incorporating the effect
of liquid water, we coupled BioSNICAR-GO with the spectral
snow-reflectance model developed for melting snow by Green
et al. (2002). It uses two-layer coated sphere Lorenz-Mie calcu-
lations to increase the snow grain radius by a particular liquid
water fraction. This approach has proven more accurate than
accounting for liquid water as separate spheres mixed with ice
crystals (Green et al., 2002). However, the scattering properties
of a mixture of water and ice are not rigorously treated by radia-
tive transfer models yet (Dozier and Painter, 2004), and Gallet
et al. (2014) show that both optical models are not ideal to re-
produce the water-ice distribution in wet snow. Their analysis
still confirms though the partial validity of the coated spheres
approach. Alternatively, one might model the effect of liquid
water in snow by simply increasing the grain radius, but as the
transparency of ice has a significant impact on the penetration
depths of different wavelengths, this approach might lead to er-
roneous retrieval results (Dozier and Painter, 2004).

Based upon the optical properties obtained from Mie or GO
modeling, the spectral albedo, subsurface light field, and the en-
ergy absorbed per vertical layer can be simulated using the two-
stream RTM. Here, the user can define several input parameters
including the number and thickness of vertical layers, the snow
density, and grain size as well as liquid water fraction and types
and mass mixing ratios of LAP. Furthermore, the incoming ir-
radiance and the two-stream approximation type can be given,
for which the user can choose between Eddington, quadrature,
and hemispheric mean schemes. In cases with highly asym-
metric phase functions the accuracy of the two-stream approxi-
mations can be further increased by applying an optional delta-
transformation. In-depth details about this approach and inho-
mogeneous multiple scattering atmospheres in general are pro-
vided in Toon et al. (1989).

Table 2: Values and step sizes used for calculating the prior surface statistics
Parameter min,...,max step size

Snow Grain Radius [µm] 50,...,1500 10
Ice Crystal Side Length and Diameter [µm] 1000,...,30000 1000

Liquid Water Fraction [%] 0,...,25 5
Snow Algae (C. Nivalis) [µg/gsnow] 0,...,400 10

Glacier Algae (M. Berggrenii) [µg/gice] 0,...,400 20
Glacier Algae (A. Nordenskioldii) [µg/gice] 0,...,400 20

BC [µg/gsnow/ice] 0,...,1 0.1
Mineral Dust [µg/gsnow/ice] 0,...,400 40

2.2.3. Prior surface statistics
We use an extended version of the approach presented

in Thompson et al. (2018) to model the surface. Besides the
spectral albedo ρs (see Equation 13), xSURF also includes ad-
ditional surface parameters, which are not needed by our for-
ward model but optimized throughout the inversion. Conse-
quentially, direction and gradient of [xSURF1 , ..., xSURFn ] during
the iteration are exclusively guided by the prior knowledge. The
surface prior is a multivariate Gaussian with mean xs and co-
variance Ss. We treat the additional surface parameters as un-
observed instrument channels that are related to observed re-
flectance channels by a joint mean and covariance. Ss is not
diagonal as we expect correlations across channels to occur en-
suring physical plausibility and numerical stability.

Whereas Thompson et al. (2018) used a collection of mea-
sured reflectance spectra as prior surface statistics, we simu-
lated snow and ice spectra for a range of grain sizes and crys-
tal dimensions using BioSNICAR-GO (see Section 2.2.2). We
perturbed the simulations by varying liquid water fractions and
different types and mass mixing ratios of LAP. Table 2 shows
minimum and maximum values as well as step sizes chosen for
calculating the prior statistics. For BC, we selected hydropho-
bic uncoated spheres, and a global average with typically Saha-
ran optical properties was chosen for the mineral dust simula-
tion (Flanner et al., 2007, 2009). The choice of range and step
size was guided by observed and retrieved values presented in
various studies. We defined a typical snow grain radius range of
50−1000 µm with extreme values of about 1500 µm for very wet
snow (Painter et al., 2013; Green et al., 2002). For ice crystal
dimensions, we chose the value range available in BioSNICAR-
GO due to the lack of field observations. The liquid water frac-
tions were selected according to the simulations in Green et al.
(2002). For snow and glacier algae, we defined maximum val-
ues following field measurements performed by Painter et al.
(2001) and Cook et al. (2020), respectively. Finally, the range
of inorganic LAP was guided by observations of BC concentra-
tion presented in Flanner et al. (2007), and by measurements of
dust concentration from the Greenland Ice Sheet used in Cook
et al. (2020). As our study focuses on ice surfaces on the Green-
land Ice Sheet and uses the field measurements from Cook et al.
(2020) for validation, we followed their parameterization of the
ice layer physical properties having five layers of thicknesses
between 0.1 and 1 cm; underlying surface albedo of 0.15; and
layer densities between 500 and 600 kgm−3. Cook et al. (2020)
selected this particular parameterization for the radiative trans-
fer modeling as it reduces the discrepancy of simulated spec-
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tra without any impurities to the mean field-measured clean-ice
spectrum from the Greenland Ice Sheet. The simulations sum
up to a comprehensive collection of reflectance spectra with
sample mean xs and covariance Ss, which serve as prior surface
statistics.

Figures 1 and 2 show some selected examples of reflectance
spectra drawn from the collection of prior surface statistics.
They evidence that our simulations capture typical spectral
characteristics of snow and ice surfaces. The reflectance de-
creases with increasing snow grain size as shown by Figure 1a.
Wet snow not only shows a lower reflectance but also broader
convolved ice and water absorption features that open to shorter
wavelengths (Green et al., 2002) (Figure 1b). Side lengths and
diameters of hexagonal columnar ice crystals can be more than
10 mm (Cook et al., 2020), having a significant effect on the
glacier ice reflectance (Figure 1c).

Figure 2 illustrates the effects of LAP on snow and ice sur-
face reflectance. It is obvious that absorption due to LAP pri-
marily occurs in the VIS. A mass mixing ratio of 1 µg/gsnow
BC can lead to a similar reduction in reflectance as a two or-
ders of magnitude higher ratio of mineral dust (Figure 2a - b).
However, this depends entirely on the optical properties of BC
and dust, which have enormous variability and for which no
consensus has been reached yet how to accurately model and
measure them (Skiles et al., 2017; Tuzet et al., 2019, 2020).
Biological impurities in snow and ice can be classified into dif-
ferent species (Cook et al., 2020). On snow surfaces, unicellu-
lar Chlamydomonas nivalis are most dominant (Painter et al.,
2001). They show unique chlorophyll-a and b absorption fea-
tures at 680 nm as well as a broad carotenoid feature (Fig-
ure 2c). On ice surfaces, such as the Greenland Ice Sheet, the al-
gal occurrence is mainly controlled by Mesotaenium berggrenii
and Ancylonema nordenskioldii (Yallop et al., 2012). Here, the
main driver of absorption is a purple pigment having similari-
ties to purpurogallin (Stibal et al., 2017), whose effect on the
spectral shape of the ice reflectance is shown in Figure 2d.

We apply a similar refinement to the prior statistics
as Thompson et al. (2018). To allow the retrieval to match
shapes outside the library subspace, we numerically regularize
Ss by adding the product of the identity matrix I and a small
value α = 10−6. To model non-Gaussian behavior, we first
cluster the spectra into small groups and then fit a Gaussian dis-
tribution to each group independently (Funk et al., 2001). A
small number of 8 components sufficiently improves the prior
representation of the surface. We associate each cluster with
mean xj and covariance Sj with j = {1, ..., 8}.

Throughout the optimization, the algorithm assigns the cur-
rent xSURF to its closest cluster by minimizing the Mahalanobis
distance d( j) to xj accounting for Sj:

d( j) = (xSURF − xj)TS−1
j (xSURF − xj). (16)

Thus, the appropriate surface mean and covariance to be con-
sidered for Equation 2 are selected. To avoid constraints on
the reflectance magnitude, we scale the chosen xj and Sj by the
norm of xSURF, z and z2, respectively.

2.3. Optimization

The optimization generally requires a first guess solution
for the state vector parameters. The better the initial solu-
tion the more stable the inversion, which leads to fast conver-
gence (Thompson et al., 2018). We start each iteration with
the result from a band ratio retrieval for xH2O using instrument
channels located around 870, 900, and 940 nm (after Guanter
et al. (2008)). For xAOT, we use the prior mean as first guess.
The resulting initial solution for xATM is used to algebraically
invert Equation 13 to solve for a first estimate of [xλ1 , ..., xλm ].
For [xSURF1 , ..., xSURFn ], we also take the prior mean.

The objective of the optimization is to find the maximum
probability solution state x̂. We equate the first derivative of the
right side of Equation 2 to zero. Since the derivative or gradient
of our forward model is equivalent to its Jacobian, the following
implicit equation for x̂ must be solved numerically (Rodgers,
2000):

− K̂TS−1
ε [y − f(x̂)] + S−1

a (x̂ − xa) = 0, (17)

where K̂ is the Jacobian of the forward model with respect to x̂.
The optimization usually converges in less than 30 iterations.
Details on the numerical method we use for estimating the so-
lution state that satisfies Equation 17 and the convergence cri-
terion we apply to stop the iteration are presented in Appendix
A.

3. Materials

This section introduces the imaging spectroscopy data we use
to evaluate the performance of the presented algorithm. First,
we present the workflow to simulate EnMAP data, which serve
as a basis for the sensitivity analysis (Section 3.1). Subse-
quently, Section 3.2 shortly presents the dataset of field ob-
servations collected on the Greenland Ice Sheet in July 2017,
which we use to validate our results. Finally, Section 3.3 in-
troduces the chosen AVIRIS-NG acquisition, likewise from the
Greenland Ice Sheet.

3.1. Synthetic EnMAP data

We simulated EnMAP-like TOA radiance spectra of snow
and ice surfaces with known grain size, liquid water fraction
as well as LAP type and mass mixing ratio using a coupling
of BioSNICAR-GO and the sensor model EnMAP end-to-end
Simulation tool (EeteS) (Segl et al., 2012).

EnMAP is a push-broom imaging spectrometer scheduled for
launch in 2022 with a mission lifetime of 5 years. The sci-
entific preparation of the mission is led by the GFZ German
Research Centre for Geosciences and should lead to Level 2A
and 3 products designated for distribution under an open data
policy (Guanter et al., 2015). EnMAP will move in a sun-
synchronous orbit equipped with two cameras: a VIS/NIR cam-
era covering 420 − 1000 nm with a mean SSI of 6.5 nm and a
SWIR camera spanning 900 − 2450 nm with a mean SSI of
10 nm. The instrument is designed to have a swath width of
30 km and a ground sampling distance (GSD) of 30 m.
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Figure 1: Snow and glacier ice surface reflectance modeled using BioSNICAR-GO for a) different snow grain radii [µm]; b) different liquid water fractions [%] for
a grain radius of 1500 µm (for clarity, only the spectral interval from 650 to 1450 nm is shown); c) different side lengths and diameters of glacier ice grains [µm].
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Figure 2: Snow and ice surface reflectance including different LAP with varying mass mixing ratios in µg/gsnow/ice modeled using BioSNICAR-GO. a) BC; b)
mineral dust; c) snow algae; d) glacier algae. a) - c) are modeled for a snow grain radius of 100 µm; d) for an ice crystal side length and diameter of 5000 µm.
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3.1.1. Modeling at bottom-of-atmosphere

We built collections of simulated reflectance spectra for two
surface categories: snow and glacier ice. For both surfaces we
set the same layer physical properties as for the simulation of
the prior reflectance statistics (see Section 2.2.3). Likewise, we
used the same types of BC and mineral dust as described in Sec-
tion 2.2.3. We simulated snow spectra based on Mie modeling
with grain radii ranging from 100 to 1500 µm, liquid water coat-
ings in fractions between 0 and 25 %, and various mass mixing
ratios of snow algae, BC, and mineral dust.

The simulation of glacier ice spectra was based on the GO ap-
proach, for which we used ice crystal side lengths and diameters
ranging from 5000 to 30000 µm and various mass mixing ratios
of the glacier algae Mesotaenium berggrenii and Ancylonema
nordenskioldii. We consciously chose comparatively large ice
crystal dimensions for the GO modeling to better match the
surface characteristics of melting ice sheets (see Cook et al.
(2020)). Here, we abstained from incorporating inorganic LAP
to reduce the complexity of the prior surface statistics. How-
ever, our simulation of snow spectra considers various BC and
dust mass mixing ratios, which change the effect of a simulta-
neously present algae concentration. We acknowledge that this
needs to be further validated with field measurements in order
to better evaluate the influence of surface BC or dust on glacier
algae retrievals.

3.1.2. Modeling at top-of-atmosphere

The two datasets of snow and ice surface reflectance spectra
served as input for EeteS to calculate synthetic EnMAP TOA
radiance. This tool simulates the entire final EnMAP product
including a processing chain, which starts with the initial im-
age data acquisition, provides radiometrically corrected Level-
1B and orthorectified Level-1C data, and finally calculates at-
mospherically corrected Level-2A data. In-depth details about
EeteS can be found in Segl et al. (2012).

Since the modeled datasets consist of a collection of re-
flectance spectra without any spatial reference, we only perform
a simulation of spectral and radiometric characteristics assum-
ing a pixel size of 30 m. The atmospheric simulation within
EeteS is based on the MODTRAN code and we used identical
viewing geometry and physical parameters for all snow and ice
reflectance spectra (VZA = 0◦, SZA = 40◦, RAA = 177◦, HSF
= 0.1 km, AOT = 0.2, rural aerosol model). Only CWV was
varied between 1.0 and 2.0 g cm−2 since its absorption overlaps
the ice absorption features so that a closer look at the sensitiv-
ity of the algorithm to varying CWV concentration was neces-
sary. To produce a synthetic dataset close to reality we sim-
ulated instrument noise with EeteS based on coefficients of a
parametric noise model (Guanter et al., 2015). We used these
coefficients to calculate radiance-dependent additive noise for
each of the simulated TOA radiance spectra. For the calcula-
tion of the measurement error covariance matrix Sy, we use the
same model to calculate the spectral SNR as a function of TOA
radiance at run time.

3.2. Field measurements

In addition to the sensitivity analysis on fully synthetic data,
we use field observations from the Greenland Ice Sheet to val-
idate the results of the retrieval algorithm. The field data in-
clude reflectance measurements conducted with an ASD (An-
alytical Spectral Devices, Colorado) FieldSpec Pro 3 and lab-
oratory measurements of glacier algae mass mixing ratios ob-
tained from ice samples taken from within the viewing area of
the ASD. The data were collected and provided by Cook et al.
(2020) in the frame of the Black and Bloom Project and were
sampled from a Greenland field site at 67.04◦ N and 49.07◦ W
between 10 and 17 July 2017.

The ASD was used to measure both the albedo and the HCRF
from nadir view. A detailed description of the measurement
protocol is provided in Cook et al. (2017a). We took the ASD
HCRF spectra as input for the atmospheric and sensor simu-
lations performed by EeteS to come up with TOA radiance in
EnMAP dataformat. We used the same model parameters as
described in Section 3.1.2. This step is necessary as the OE
retrieval framework presented in this study requires TOA radi-
ance spectra as input, so that a simultaneous retrieval of atmo-
spheric and surface parameters is enabled.

To estimate glacier algae mass mixing ratios, Cook et al.
(2020) investigated the ice samples by microscopic analyses in
a laboratory. Based on the morphology of the cells they were
separated into the two species Mesotaenium berggrenii and An-
cylonema nordenskioldii. Total biovolume for each sample was
then calculated by using measurements of the cell dimensions,
the number of cells for each species, and an average cell vol-
ume. We followed the description in Cook et al. (2020) to con-
vert biovolume to mass mixing ratio by multiplying the total av-
erage cell volume first by a constant cell density of 0.87 g cm−3,
then by the total number of cells/mL for each sample, and fi-
nally by multiplying by the weight of 1 mL of ice (0.917 g).
We use the resulting mass mixing ratios to validate the values
obtained from the retrieval algorithm.

3.3. AVIRIS-NG measurements

To demonstrate the ability of the algorithm to realistically
map snow and ice surface parameters we chose a dataset of real
imaging spectroscopy measurements. We selected an AVIRIS-
NG image acquired over the Greenland Ice Sheet on 31 August
2019 and chose two subsets of the flightline: one capturing a
dark ice surface at an elevation of around 900 m at 66.97◦N
and 49.12◦W, and another one covering a snow surface in a
higher elevated region of around 2000 m with center coordi-
nates 66.96◦N and 46.86◦W (Figure 3). This selection was
driven by our aim to show the differences in surface composi-
tion for dark ice and white snow, and to assess the influences of
liquid water and glacier algae accumulation on the reflectance
characteristics of ice and snow surfaces.

The channels of AVIRIS-NG cover the 380− 2500 nm wave-
length range with an SSI of 5 nm and varying GSD due to dif-
ferent flying altitudes (Hamlin et al., 2011). It can be installed
on the NASA ER-2 research aircraft so that AVIRIS-NG is able
to acquire data from a height of up to 20 km, which results in
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Figure 3: Map of Greenland showing the AVIRIS-NG flightline as a red box (upper left panel) and a true-color image of the flight line with a map of the corresponding
surface elevation in m (lower panel). The red boxes in the flightline indicate the locations of the subsets covering a) the lower lying dark ice and b) the higher elevated
snow surface (upper right panel).

a GSD of 20 m. The AVIRIS-NG noise-equivalent change in
radiance for each instrument channel needed for the retrieval
algorithm was calculated according to Thompson et al. (2018).

4. Results and discussion

4.1. Model sensitivity analysis
4.1.1. Posterior predictive uncertainties

We analyze the sensitivity of the extended surface model by
comparing the values of the solution state vector elements with
the simulation input. Scatter plots illustrate the performance of
the algorithm for each surface parameter separated into the dif-
ferent simulated surface categories snow (Figure 4) and glacier
ice (Figure 5). Error bars within the plots visualize the posterior
predictive uncertainties calculated during the optimization.

First of all, the results for atmospheric water vapor from the
snow spectra confirm the ability of the retrieval algorithm to de-
couple atmospheric and surface state by showing an RMS E of
0.01 g cm−2 and a mean posterior uncertainty of ±0.01 g cm−2

(Figure 4a).
Furthermore, the grain radius posterior predictive uncertain-

ties shown in Figure 4b agree with model uncertainties esti-
mated in previous studies or even outperform them (Nolin and
Dozier, 2000; Painter et al., 2013). Compared with the No-
lin/Dozier model, which has an uncertainty of ±20 − 50 µm for
grain radii of up to 900 µm (Nolin and Dozier, 2000), our study
indicates uncertainties in the same range for grain radii of more

than 500 µm (±22 − 42 µm), but decreased retrieval errors for
grain radii below 500 µm (±8 − 12 µm).

Overall, grain size, liquid water fraction, and algae mass mix-
ing ratio show a distinct correlation with the simulation input.
However, we observe a systematic structure in Figure 4d, which
can be related to the saturating nature of algal absorption. The
inversion using the multivariate Gaussian treats the relationship
between the state vector and reflectance as locally linear, but
in case of large absorption, nonlinearity in x increases. To im-
prove performance for nonlinear state vector parameters, one
could use alternative representations such as log(µg/gsnow/ice)
instead of µg/gsnow/ice.

The inorganic LAP have higher posterior predictive uncer-
tainties since they do not exhibit distinct absorption features
such as those of algae or liquid water (Cook et al., 2017b). In-
stead, they cause a smooth decrease in reflectance in cases of
higher mass mixing ratios, comparable with the absorption and
scattering effects of atmospheric aerosols (see Figure 2). There-
fore, an accurate estimation of inorganic LAP concentration is
more challenging.

In particular, the estimated BC mass mixing ratios show a
higher RMS E of 0.20 µg/gsnow. Here, the mean posterior
predictive uncertainties range from ±0.05 to ±0.11 µg/gsnow,
meaning a relative uncertainty of up to 100 % for some BC
retrievals (Figure 4e). This decreased performance can be ex-
plained by the coincidence of a relatively high BC sensitivity
of the surface reflectance in the VIS but significantly lower ob-
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Figure 4: Comparison of retrieved atmospheric water vapor and surface state parameters with the simulation input for the snow case. a) Water vapor [g cm−2]; b)
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servable BC concentrations than other inorganic LAP can show
(see Figure 2). Consequentially, even very low BC mass mix-
ing ratios cause absorption in the VIS but could be overlayed
with the absorption of higher concentrated LAP, such as dust
and algae. Ultimately, the relative spectral invariance of BC ab-
sorption can lead to degeneracy with variation in absorption by
other LAPs.

Finally, the retrieval performance of dust LAP, which tend to
be underestimated in our analysis (Figure 4f), will strongly de-
pend on the knowledge of actual dust optical properties. Skiles
et al. (2017) and Skiles and Painter (2018) have shown with
a novel optical property retrieval that the SNICAR dust can
markedly be different from geographically varying dust and that
what has been quantified in the field in impacting radiative forc-
ing.

The retrieval of glacier ice surface parameters performs dif-
ferently. Estimated ice crystal dimensions are correlated with
the simulation input but clearly underestimated for values larger
than 10000 µm (Figure 5b). As previously illustrated in Fig-
ure 1, the decrease in reflectance magnitude weakens with in-
creasing ice crystal size. This impedes an accurate estimation
of larger dimensions.

Another source of inaccuracy is the separated optimization
of two types of glacier algae, which leads to lower R2 values
of 0.62 and 0.77, respectively (Figure 5c and d). Mesotaenium
Berggrenii and Ancylonema Nordenskioldii have very similar
absorption features with only marginal differences. Hence, we
propose to optimize the sum of both mass mixing ratios in or-
der to achieve more accurate retrieval results. Nevertheless, the
results — especially for Ancylonema Nordenskioldii — are still
in an acceptable range and underline the capability of the lazy
prior-driven inversion to recognize even small absorption dif-
ferences based on the prior surface statistics.

4.1.2. Posterior error correlation
Next, we take a closer look at the posterior error correlation

of the solution state. The Ŝ matrix not only provides an es-
timate of the retrieval uncertainties but also information about
the correlation between posterior errors of different state param-
eters. Govaerts et al. (2010) introduced a method to normalize
Ŝ so that a direct interpretation of the error correlation is en-
abled. This rescaling transforms Ŝ into an error correlation ma-
trix providing the correlation coefficients between the posterior
predictive uncertainties of the state vector parameters.

Figure 6 presents error correlation matrices for the two sur-
face types from the sensitivity analysis, snow and glacier ice.
The snow matrix clearly shows an independence between at-
mospheric and surface state since uncertainties in both water
vapor and AOT are almost uncorrelated with all surface poste-
rior errors. Retrieval uncertainties show a marginal correlation
between water vapor and BC as well as between AOT and grain
size, liquid water, and snow algae errors. This could simply be
introduced by having a high number of surface state parame-
ters. In contrast to that, the anticorrelation between estimation
uncertainties of grain size and AOT for the glacier ice case can
be explained by the decrease in reflectance magnitude caused
by larger ice crystal dimensions. As this effect resembles the

absorption caused by atmospheric aerosols, an underestimation
of grain size could lead to an overestimation of AOT and vice
versa. Furthermore, the matrix for the retrieval from snow spec-
tra highlights the correlation between errors in the estimation of
grain size and liquid water fraction, which might be caused by
the only slightly shifted absorption lines of liquid water and ice
(see Green et al. (2006); Bohn et al. (2020)).

4.1.3. Sensitivity to the true state
Figure 7 shows normalized averaging kernels of water va-

por, grain size, liquid water, and algae displayed for different
simulated surface conditions. Overall, the sensitivity of the pa-
rameters to changes in the true state reflectance follows our ex-
pectations. Water vapor, liquid water, and grain size are most
sensitive to reflectance changes in the water vapor absorption
bands around 940 and 1140 nm, when excluding the saturated
features in the SWIR, and the algae estimation can be biased
especially through changes in the true VIS reflectance. The to-
tal degrees of freedom displayed in panel d) indicate a similar
amount of information available in the spectra, except for the
wet snow case. This suggests that larger grain sizes in combi-
nation with liquid water fractions decrease the number of re-
trievable variables above the measurement noise. Interestingly,
this is not the case for high algae mass mixing ratios, leading to
the assumption that the level of information content is almost
independent from present algae concentrations.

All these findings imply the validity of the lazy prior-driven
inversion to map additional surface parameters for snow and ice
surfaces. However, the sensitivity analysis is based on synthetic
EnMAP TOA radiance spectra excluding any spatial simula-
tion. Therefore, we assume pixels with 30 m GSD without any
influences of neighboring pixels or mixed surface types affect-
ing the reflectance. Using real data, these effects could certainly
have an impact on the retrieval accuracy.

4.1.4. Sensitivity to directional effects
As we use simulations of snow and ice spectral albedo in

place of HDRF to build the prior surface reflectance statistics,
this section illustrates the sensitivity of our approach to direc-
tional effects in the reflectance.

Based on a set of snow HDRF simulations processed with
DISORT for varying solar and observation angles as well as
snow grain radii, we calculate the anisotropy factor c accord-
ing to Equation 15. Figure 8 shows the sensitivity of c to
changing SZA, VZA, and grain radii, respectively. The snow
anisotropy factor is closer to 1 for wavelengths below 1000 nm,
especially for both small SZA and VZA. The sensitivity to in-
creasing grain radii is also markedly smaller in the VIS and NIR
spectrum, and only increases towards the SWIR. Figures 8a and
b demonstrate that even in the wavelength range between 1000
and 1500 nm the difference between spectral albedo and HDRF
for the particular geometry we simulated in our study (SZA =

40◦, VZA = 0◦; depicted by the red lines) is less than 20%.
In order to exemplify the sensitivity of the retrieval algo-

rithm to directional effects in the surface reflectance, we sim-
ulated EnMAP TOA radiance spectra based on a selected sub-
set of HDRF simulations with SZA = {5◦, ..., 70◦}, VZA =
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Figure 6: Correlation error matrices for the atmospheric and surface state parameters except for the surface reflectance, calculated for the two different surface types.
a) Snow; b) glacier ice.
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Figure 7: Normalized averaging kernels from the sensitivity analysis for selected surface conditions. a) Water vapor; b) snow grain size; c) liquid water fraction; d)
algae mass mixing ratio. The additional legend in panel d) shows the total degree of freedom ds for each surface.
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Figure 9: Absolute retrieval uncertainty of snow grain radius as a function of
varying solar and view zenith angles. The values are obtained by calculating the
root-squared error between inferred and input snow grain radius after applying
the spectral albedo-based retrieval framework to synthetic EnMAP TOA radi-
ance spectra. The latter are generated from HDRF simulations with a constant
input grain radius of 500 µm and RAA of 0◦.

{0◦, ..., 40◦}, and fixed snow grain radius of 500 µm and RAA
of 0◦. Then, we applied the retrieval framework using spectral
albedo as prior statistics and calculated absolute retrieval un-
certainties of snow grain radius (Figure 9). Our results show
that snow grain radius retrieval uncertainties significantly in-
crease for SZA beyond 45◦. Similarly, VZA larger than 10◦

lead to uncertainties of ±100 µm and more if the solar zenith
angle is at least 25◦. However, we observe low uncertainties
of ±0 − 40 µm for SZA below 25◦ and VZA between 0◦ and
10◦. The particular geometry used for our sensitivity analysis

of SZA = 40◦ and VZA = 0◦ likewise shows a low uncertainty
of ±14.7 µm. These values accord both with the estimated pos-
terior predictive uncertainties presented in Section 4.1.1 and the
Nolin/Dozier model (Nolin and Dozier, 2000).

Ultimately, these arguments justify the use of a simplified
two-stream model such as BioSNICAR-GO for our case study,
especially since the focus of this work is on the OE-based re-
trieval method rather than the radiative transfer modeling of
snow itself. However, for the full implementation for airborne
and spaceborne instruments that covers the SZA and VZA
ranges of such programs, it is requisite that we use boundary
condition spectral HDRF that incorporate the optical properties
of the organics into the directional reflectance modeling.

4.2. Retrieval from field measurements
4.2.1. Validation with measurements of glacier algae

Cook et al. (2020) measured the mass mixing ratio of glacier
algae separated into the species Mesotaenium Berggrenii and
Ancylonema Nordenskioldii. We use the summed concentra-
tions to validate the values estimated by the lazy prior-driven
inversion. Figure 10 shows this information as a scatter plot.
The result reports an R2 of 0.64 and about one third of the sam-
ples being located on or close to the 1 : 1-line. However, the
mean posterior predictive uncertainty of ±16.4 µg/gice corre-
sponds to a relative retrieval error of up to 50%. As visualized
by Figure 6, uncertain knowledge of other surface parameters
can influence the retrieval accuracy of algal LAP. Therefore,
improved studies of quantifying BC and dust optical properties
will be mandatory to increase the retrieval accuracy of glacier
algae concentration. Our analysis can be seen as one of the
first approaches though to validate retrieved algae mass mixing
ratios with in-situ measurements.

4.2.2. Averaging kernels
We again analyze selected averaging kernels for the field val-

idation. Figure 11 illustrates the normalized sensitivity to the
true state reflectance of retrieved water vapor, snow grain size
and ice crystal dimension, liquid water fraction, and algae mass
mixing ratio. We display four surface conditions which are de-
termined based on our retrieval results: dry snow without algae,
wet snow with low algae mass mixing ratio, large ice crystals
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Figure 10: Comparison of estimated glacier algae mass mixing ratio with the
laboratory measurements in units of µg/gice. Error bars show the posterior
predictive uncertainties.

with low algae concentration, and small ice crystals contam-
inated by a high algae loading. The averaging kernels show
a similar behavior as those from the sensitivity analysis (see
Figure 7). Errors in water vapor, grain size, and liquid wa-
ter estimation are most likely introduced through changes in
the reflectance of the water absorption bands around 940 and
1140 nm. In contrast to that, algae mass mixing ratios are
mainly sensitive to changes in the true VIS reflectance. It is
notable that the total degrees of freedom vary much more than
in the sensitivity analysis. Snow surfaces provide significantly
more information than ice surfaces which are composed of crys-
tals with considerably larger dimensions than snow grains typ-
ically have. As previously shown, large ice crystals not only
increase the depth of the ice absorption features but also de-
crease the reflectance magnitude. Consequentially, the lower
reflectance levels provide less retrievable information.

Nevertheless, the algorithm is able to accurately estimate
different shapes and magnitudes of snow and ice surface re-
flectance (Figure 12). We compare the values from the solution
states with the ASD spectra which served as input for the sim-
ulated data (see Section 3.2). For all wavelengths, the residuals
are below 2 % except for the saturated SWIR water absorption
features. However, small deviations in the estimated surface
reflectance could also be caused by calibration errors or uncer-
tainties due to measurement noise in the ASD instrument.

4.3. Retrieval from AVIRIS-NG measurements
4.3.1. Retrieval maps

In the following sections we finally present retrieval results
from the selected AVIRIS-NG Greenland subsets. Figure 13
shows surface parameter maps for snow grain size, ice crys-
tal dimensions, liquid water fraction, and mass mixing ratios

of snow and glacier algae. For the high elevated snow surface,
the algorithm reports small grain sizes, no liquid water coatings
around the snow grains and likewise no accumulation of snow
algae on the surface. Here, the grain size map shows remark-
able linear features emerging in west-east direction. They can
be the direct cause of imperfect calibration of the radiance data
and appear in the array spectrometer data at level 1a and 1b. In
contrast, the dark ice surface with an elevation of around 900 m
features large ice crystals with both accumulated liquid water
and comparatively high glacier algae mass mixing ratios. Espe-
cially the estimated distribution of liquid water suggests active
melt processes. This indicates the potential of the algorithm
to exploit imaging spectroscopy measurements for supporting
observations and the understanding of melting ice sheets.

4.3.2. Liquid water vs. glacier algae
A key finding from analyzing the AVIRIS-NG data is a sig-

nificant positive correlation between the amount of available
liquid water in-between the ice crystals and the occurrence of
glacier algae. The need for addressing the relationships of algal
concentration to snow and ice physical properties was already
formulated in Painter et al. (2001) and plays an important role
in understanding the impacts of algal blooms on the melting of
the Greenland Ice Sheet (Yallop et al., 2012; Cook et al., 2017b,
2020). We analyze the estimated values for the western subset
and present scatter plots for both liquid water fractions in per-
cent and absolute liquid water sphere radius in µm accompanied
with the respective prior mean glacier algae mass mixing ratios
chosen from the surface statistics (Figure 14). To reduce the
complexity of the scatter plots and to generate spatially more
robust values for comparison, we clustered the estimated glacier
algae map into contiguous segments of nearly similar mass mix-
ing ratios. We then took the same spatial segments to cluster the
remaining retrieval maps and the prior mean and compare the
average values from each segment. While we observe an R2 of
0.76 for the correlation with liquid water fraction, the glacier al-
gae accumulation seems to be likewise correlated with the abso-
lute amounts of liquid water coated around the ice crystals hav-
ing an R2 of 0.64. Overall, our results support the assumption
of the positive glacier algae-liquid water feedback mentioned
in Williamson et al. (2018) and Dial et al. (2018). Both stud-
ies report a high probability that the accumulation of glacier
algae leads to increased melt due to enhanced radiative forcing.
The successive generation of liquid water releases nutrients in-
between the ice crystals, which further stimulates glacier algal
growth. These nutrients can originate from deposited mineral
dust introducing a feedback even between inorganic LAP and
glacier algae (Stibal et al., 2017). The causal interpretation of
Figure 14 could just as easily be inverted, with increased glacier
algal mass mixing ratios causing higher liquid water fractions.
Figure 14 also confirms the performance of the surface model
as values of prior and solution state of glacier algae mass mix-
ing ratio show a distinct accordance. We observe that the prior
assumption is already close to the solution demonstrating that
the pre-calculated statistical relationships between the surface
components capture the solution state.
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Figure 11: Normalized averaging kernels from the retrieval based on the ASD field measurements for selected surface conditions. a) Water vapor; b) snow grain
size/ice crystal side length and diameter; c) liquid water fraction; d) algae mass mixing ratio. The additional legend in panel d) shows the total degree of freedom ds
for each surface.
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Figure 12: Examples of estimated surface reflectance from the simulated EnMAP TOA radiance spectra based on the ASD field measurements.
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Figure 13: Estimated surface parameter maps for the AVIRIS-NG snow and dark ice subsets. Upper panel: a) True-color image; b) snow grain radius; c) liquid
water fraction; d) snow algae mass mixing ratio. Middle panel: a) True-color image; b) ice crystal dimension; c) liquid water fraction; d) glacier algae mass mixing
ratio. The results are accompanied with a true-color image of the complete flight line with a map of the corresponding surface elevation in m (lower panel). The red
boxes in the flight line indicate the locations of the subsets covering 1) the higher elevated snow surface and 2) the lower lying dark ice.

Figure 14: Correlation between estimated glacier algae mass mixing ratio and a) liquid water fraction, and b) absolute liquid water sphere radius, for the AVIRIS-NG
dark ice subset. The colormap shows the particular prior state value for the glacier algal LAP selected from the surface model.
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4.3.3. Estimated surface reflectance
Finally, Figure 15 shows estimated surface reflectance spec-

tra from the lazy prior-driven inversion and the ATREM code,
which is currently applied for generating the official AVIRIS-
NG L2A data products (see Thompson et al. (2015)). We
present results for a dry snow spectrum without significant ab-
sorptive influence of LAP as well as a spectrum of melting ice
contaminated with a high algae mass mixing ratio. Both ex-
amples confirm a match between the two atmospheric correc-
tion methods, which leads to the assumption that the lazy prior-
driven inversion is suited to estimate snow and ice surface re-
flectance by drawing upon the simulated surface prior statistics.
We did not exclude reflectance values from instrument channels
located within the deep SWIR water vapor absorption features
so that some spikes, e.g., around 1350 nm remain. The atmo-
sphere is almost opaque at these wavelengths and even some
marginal errors in the simulation of atmospheric water vapor
transmission could lead to artificially high reflectance values.
However, the performance of the presented inversion method is
further corroborated by the fact that the ATREM code incorpo-
rates a three phases of water retrieval leading to an increased ac-
curacy of the estimated surface reflectance (Green et al., 2006;
Thompson et al., 2015; Bohn et al., 2020). Applied to snow
and ice spectra this method smooths the ice absorption features
around 1030 and 1250 nm, which are likewise captured by the
lazy prior-driven inversion.

5. Conclusion

We present a new method to retrieve snow and ice surface
parameters from imaging spectroscopy measurements. The re-
trieval exploits the statistical relationships between reflectance
and snow grain size, ice crystal dimension, liquid water frac-
tion as well as mass mixing ratio of various LAP by adopting
an extended surface model. The framework of a simultane-
ous retrieval of atmospheric and surface parameters provides
a novel rigorous propagation of uncertainties caused by instru-
ment noise, unknown model parameters, and prior knowledge,
through the retrieval chain up to a quantification of final level
3 product uncertainties. At the same time, this approach en-
ables a detailed investigation of posterior error correlation be-
tween atmospheric and surface state parameters. We analyze
the sensitivity of the algorithm based on synthetic EnMAP data
and present a field validation using samples of ASD measured
spectra with corresponding laboratory measurements of glacier
algae collected on the Greenland Ice Sheet.

The sensitivity analysis demonstrates accurate estimation of
surface properties both for snow and glacier ice. All snow pa-
rameters are retrieved with an R2 of more than 0.90 and less
than 0.8% posterior uncertainty, except for inorganic LAP such
as BC and mineral dust. They show larger deviations between
simulated and retrieved values since their spectral absorption
features are less distinct. This makes an accurate estimation
more challenging. The results from glacier ice spectra indi-
cate that retrieval uncertainties increase with grain size since
the reflectance magnitude significantly declines for larger ice

crystal dimensions. This reduces the degrees of freedom and
the information content provided by the measurement. In con-
trast, our analysis shows that the information content is almost
independent from the occurrence of biological LAP, which is
a promising basis for future investigations of algal blooms on
snow and ice surfaces. Furthermore, the investigation of pos-
terior uncertainty correlation between atmospheric and surface
state parameters emphasizes that errors in the retrieval of atmo-
spheric AOT can significantly bias the estimation of ice crystal
dimensions on ice surfaces.

The validation with field observations is one of the first
approaches to directly compare remotely retrieved snow or
glacier algae concentrations with in-situ measurements. It
yields promising results with an R2 of 0.64 and a high retrieval
accuracy for more than half of the samples. In addition, the
algorithm precisely maps different shapes and magnitudes of
surface reflectance spectra with less than 3% residuals.

Finally, we evaluate the algorithm with a case study of an
AVIRIS-NG acquisition from the Greenland Ice Sheet. The re-
trieval reports likely expected value ranges and indicates active
melt processes on dark ice surfaces. Furthermore, the results
confirm a remarkable positive correlation between the amount
of available liquid water in-between the ice crystals and the oc-
currence of glacier algae. This is in accordance with the pos-
itive algae-liquid water feedback described in previous studies
and underlines the value of the presented method for improving
the understanding of glacier ice melt processes.

In summary, our study demonstrates a promising potential to
exploit imaging spectroscopy measurements for supporting ob-
servations of melting ice sheets. In this context, the lazy prior-
driven inversion proves of value for estimating additional sur-
face parameters based on prior statistics. It is a straightforward
method, which serves as a prototype for future snow and ice
surface property retrievals.

However, as our work uses simulations of spectral albedo in
place of HDRF for the prior statistics, the consideration of di-
rectional reflectance from anisotropic surfaces will be an impor-
tant part of future work. In particular, when transferring the al-
gorithm to rough mountainous terrain and using off-nadir point-
ing capabilities of imaging spectrometers, the use of a multi-
stream RTM such as DISORT to consider directional effects in
the surface reflectance would be important to achieve accurate
retrieval results.

Furthermore, mixed pixels are not accessible for accurate re-
trievals applying the method presented in this study. In con-
trast to most parts of the ice sheets, the remaining cryosphere
mainly features a mixture of varying surface cover. Therefore,
an upstream retrieval of snow subpixel cover will significantly
decrease uncertainties when applying the algorithm to other re-
gions than the Greenland Ice Sheet.

Upcoming orbital imaging spectroscopy missions such as
EnMAP and CHIME, and the anticipated SBG investigation,
can address these issues by providing data on a regular basis
with a global coverage and hence, a valuable input for a trans-
fer of the presented snow and ice parameter retrieval to more
challenging surfaces.
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Figure 15: Examples of estimated surface reflectance from the AVIRIS-NG radiance measurements calculated with the ATREM code and the lazy prior-driven
inversion. a) Dry snow; b) melting ice contaminated with high algae mass mixing ratio.
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Appendix A. Numerical optimization method

We use the Gauss-Newton method for estimating the solution
state that satisfies Equation 17 (see Rodgers (2000)). Compared
with Newton’s iteration scheme, it does not require the calcu-
lation of second derivatives of the forward model, which can
pose an elaborate challenge. The maximum a posteriori solu-
tion for x̂ can be written in the m-form, if the dimension of the
measurement vector is smaller than the dimension of the state
vector, or the n-form, which is the other way round. Since our
state vector contains both reflectance values for each instrument
channel and the additional atmospheric and surface parameters,
its dimension is always larger than the number of elements in
the measurement vector. Consequentially, we apply the m-form

to find the most probable x̂ and update the solution state at iter-
ation step i + 1 by:

xi+1 = xa +SaKT
i (KiSaKT

i +Sε)−1[y−f(xi)+Ki(xi−xa)], (A.1)

where Ki is the Jacobian of the forward model with respect to
the solution state vector at iteration step i. It is numerically cal-
culated using finite differences for xATM and by applying the
chain rule to Equation 13 for [xλ1 , ..., xλm ]. Since the additional
surface parameters [xSURF1 , ..., xSURFn ] are not part of our for-
ward model, their partial derivatives are not included in Ki.

Each optimization algorithm requires a test for convergence.
We use the criterion for the m-form presented in Rodgers
(2000):

[f(xi+1) − f(xi)]TS−1
δŷ [f(xi+1) − f(xi)] < εxm, (A.2)

where Sδŷ is the covariance matrix of the difference between the
fit and the measurement; εx is a threshold in fraction of variance
(here: εx = 0.01); and m is the dimension of the measurement
vector.
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