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Abstract

The Ridgecrest sequence (Mw6.4 and Mw7.1, July 2019, California) is a cross-fault earthquake that has been observed using
a wide range of geophysical and geological methods. The sequence ruptured consecutively two orthogonal cross-fault systems
within 34 hours (northeast- and northwest-trending). It raised the question of the relation between the two systems of faults both
at depth and at the surface, and its impact on the surface displacement pattern. Here we use high-resolution (50 cm) satellite
optical image correlation to measure the 3D surface displacement field at 0.5 meters ground resolution for the two earthquakes.
Because our images bracket the whole sequence, our displacement and deformation maps include both earthquakes. Our data
allow for measuring series of slip profiles in the components parallel and perpendicular to the rupture, and in the vertical
direction, to look at the correlation between slip distribution and rupture complexity at the surface. We point out significant
differences with previous geodetic and geological-based measurements and show the essential role of distributed faulting and
diffuse deformation in the comprehension of surface displacement patterns. We discuss the segmentation of the rupture regarding
the fault geometry and along-strike slip variations. We image several surface deformation features with similar orientation to
the deeply embedded fabric identified in seismic studies. This northeast-trending fabric influenced the surface deformation both
during the foreshock and the mainshock earthquakes. We also derive strain fields from the horizontal displacement maps and
show the predominant role of rotational and shear strains in the rupture process. We finally compare our results to kinematic
inversions and show that the foreshock did influence the mainshock by clamping the fault and encouraging off-fault diffuse

deformation rather than fault slip in some areas.
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Drone photography of the

Ridgecrest surface rupture

(Duross et al., 2020)
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The Ridgecrest earthquakes (California, 4th and 6th of July 2019):
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Correlation of high-resolution (0.5 meters) pre- and

post-earthquake optical images:
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Difference of pre- and post-earthquake Digital Surface

Models to measure the co-seismic vertical displacement:

We transform the pre-earthquake DSM using the

horizontal co-seismic displacements measured (Axy):
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The displacement field is
heterogeneous and complex:

More than 50 discontinuous faults ruptured
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Good concordance with the
field-based rupture map:
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Vertical map is coherent wit
other studies and long-term

topography:
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Sometimes, all the surface
deformation is diffuse, meaning
that the primary fault is blind:
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Cross-cutting left-lateral faults
were activated during the

mainshock:
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No cumulative slip across the
faults - bookshelf faulting:

clockwise block ,-°
rotation R ,

right-lateral
shear

modified from Tapponnier et al. (1990)

Compressive side

= —
-1W 0 T1E
D] Left-lateral slip (m) 9
C 1 i i 4 5 + $ i’ C
7 10
0.4 - + 7 12 14
] ' A A A Vo
‘
0 -
0.2 1, : : . ; .
0 1000 2000 3000 4000 5000
Distance across the normal fault system (m)

12/23



Cross-cutting faults are also detected in the seismicity:

Seismicity cross section parallel to the mainshock azimuth:
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Systematic quantification of right-lateral
slip along-strike:
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Fault slip curves fit field data points but total slip curve

does not because ~30% of the deformation is diffuse:
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Predictions of surface slip from kinematic

inversions fit our total slip budget:
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Inversions are based on various data sets (InSAR, optical, GNSS, seismology) and using

various geometries (see Wang et al., 2020):
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3 domains with different proportions of fault slip
and diffuse deformation:
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Segments are co-located with sub-event
distribution of slip at depth:
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Segments are co-located with sub-event
distribution of slip at depth:

Right-lateral displacement (m)
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Asymmetric slip pattern around the M,,6.4 rupture:
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The compressive lobe of the foreshock inhibits fault

slip at the beginning of $3 on the mainshock:
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The compressive lobe of the foreshock inhibits fault

Right-lateral displacement (m)

slip at the beginning of $3 on the mainshock:

area of junction with
the M,,/6.4 rupture
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Using high-resolution optical image correlation we can quantify
slip on all the faults of the system as well as diffuse deformation
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(2) The foreshock rupture
impacted the mainshock
displacement pattern:
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