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Abstract

To manage potential risks due to H2 leaks into the near-surface geosphere from H2 underground storages (e.g. salt caverns,

aquifer), reliable monitoring methods along with a precise knowledge of the geochemical environmental impacts are necessary.

Thus, the evolution of some prominent parameters in soil and aquifers can be determined: gas concentrations, redox potential,

ionic balance and trace elements. As part of the ROSTOCK’H project, Ineris simulated H2 leakage by injection of dissolved

H2 into a shallow aquifer (˜20 m deep) in an experimental site within the Paris basin. This experiment aimed to testing

advanced monitoring techniques and studying hydrogeochemical impacts at shallow depths. The aquifer water has calcium-

bicarbonate facies and a neutral pH. Eight piezometers were aligned over 80 m according to the aquifer main flow (west-east).

Hydrogeochemical monitoring devices were set up. One of the piezometers was equipped with a completion connected to a

Raman probe and a specific Mid-IR cell for continuous measurement of aqueous gases. At the experiment outset, 5 m3 of water

were extracted from the aquifer to be saturated with H2 under atmospheric conditions, before being reinjected through the

injection well. About 100 LSTP of dissolved H2 (concentration of 1,8 mg/L) was injected in the aquifer. The H2 injection was

preceded by the injection of underground water containing tracers (He(aq), uranine and LiCl) in order to warn the H2 plume

arrival in the piezometers located downstream of the injection well. The concentrations of aqueous gases (He, H2, N2, O2,

CO2, H2S and CH4) were measured in a control piezometer (20 m upstream) and in six piezometers up to 60 m downstream.

Thus, the maximum H2 contents were detected up to 20 m downstream of the injection well: 0.6 mg/L at 5 m, 0.17 mg/L at

7 m then 1.8 μg/L of H2 at 10 and 20 m during the first week. Following the H2(aq) addition, the aquifer physico-chemistry

has been modified: low increase in pH, high decrease in redox potential and O2(aq). These results confirm the feasibility of

detecting and monitoring H2 in shallow aquifers in very low concentration conditions and highlight the potential impacts. This

is of first importance for establishing the surveillance and security aspects related to with H2 storage.
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1. Context and research work objectives 

The underground storage of hydrogen is being considered as a temporary storage solution 
for electrical energy. To manage potential risks due to H2 leaks into the near-surface 
geosphere from H2 underground storages (e.g. salt caverns, aquifer), reliable monitoring 
methods along with a precise knowledge of the geochemical environmental impacts are 
necessary. Thus, the evolution of some prominent parameters in soil and aquifers can be 
determined: gas concentrations, redox potential,  ionic balance and trace elements. 

The Géodénergies "ROSTOCK'H" research project studies these risks by developing 
monitoring methods and characterizing potential impacts of H2 leaks. A simulation of leak 
by dissolved H2 injection into a water table in the Paris Basin was carried out. 
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2. Hydrogeochemical monitoring planned following the dissolved H2 
injection 

 

According to Lacroix et al. 2019 [1]. 

The Ineris experimental site in Catenoy (Paris Basin) is used to test direct and indirect 
near-surface monitoring methods relating to dissolved H2 [2]: 
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3. Geochemical baseline definition 

⇒ Physico-chemistry [1]: 
• pH of 7.3 ± 0.3 and temperature of 12.0 ± 1.8°C 
• electrical conductivity of 471 ± 40 µS/cm 
• positive redox potential 
• water of calcium-bicarbonate facies 

 
⇒ Baseline of dissolved gases acquired over 6 months (May-November 2019) [3]: 
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⇒ Combined Raman/Infrared metrology validated on site [3]: 

 

4. Protocol validation by preliminar injection of water saturated with He 

⇒ He: gas with a physical behavior similar to that of H2. 

⇒ Validation of the experimental protocol for the future H2 injection [4]: 

The steps of this protocol are presented in the following figure and audio 
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• success of this injection experimental protocol with monitoring of the He plume 
migration in the water table and up to 20 m downstream. 

• choice of 2 hydrogeological tracers among the 5 used during this preliminar injection 
(uranine and lithium). 

• characterization of the 2 distinct hydrodynamic regimes linked to a matrix and a 
fissure porosities. 

• protocol adaptability: change in the injection preparation and modification of the 
monitoring organization. 

5. Leak simulation by dissolved H2 injection 

⇒ On-site layout: 

 

Panoramic view of the Catenoy site: over a W-E length of 80 m. 

  

⇒ Dissolved H2 transfer dynamics according to distance [2]: 

• [H2(aq)] max injected in the injection well (PZ2) is 1.78 mg.L-1: 

90% of theorical saturation in 5m3 tank (after 16h of dissolution) 

 

• 1114 Raman spectra acquired during the period following the H2 injection  
from 19 to 30 November 2019. 
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• Detection of H2(aq) up to 20 m downstream and at very low concentrations 1.8 µg.L -1 

 

⇒ Behavior of Redox and dissolved O2 in PZ2bis (5 m downstream) monitored over 
1 month [5]: 

 

 

Conclusions 

⟹ Successful of H2 and other gases in-situ and continuous monitoring by Raman and 
FTIR spectroscopy: 

• Conclusive results for the continuous monitoring of gases in aquifers by specific 
device (completion, gas circulation lines, optic sensors) over a long period of time. 

• Very good sensitivity for the continuous detection of H2 in aquifer (<0.03 mg.L-1). 

⟹ Successful of H2 monitoring by degassing water samples. 

⟹ Under our experimental conditions, the physicochemical impact of a H2 leak is 
moderate and <10 m. 
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6. Scientific valuation of the project 

[1] Lacroix E., Lafortune S., De Donato P., Gombert P., Pokryszka Z., Rupasinghe S., 
Caumon M.-C. et Barrès O. (2019), Développement d’outils de monitoring pour la 
surveillance des sites de stockage souterrain d’H2 : premiers résultats de l’expérimentation 
de simulation de fuite à Catenoy (60). Poster presentation, colloque CNRS Miti « H2 
naturel », Paris, 10/10/2019. 

[2] Lacroix, E., Lafortune, S., De Donato, P., Gombert, P., Pokryszka, Z., Adélise, F., 
Caumon, M.-C., Barrès, O., and Rupasinghe, S. (2020), Development of monitoring tools in 
soil and aquifer for underground H2 storages and assessment of environmental impacts 
through an in-situ leakage simulation, EGU General Assembly 2020, Online, 4–8 May 2020, 
EGU2020-17949, https://doi.org/10.5194/egusphere-egu2020-17949. 

[3] Lacroix E., de Donato P., Lafortune S., Caumon M.-C., Barres O., Derrien M., 
Piedevache M. and Liu X., Metrological development based on in situ and continuous 
monitoring of dissolved gases in an aquifer: application to the geochemical baseline 
definition for hydrogen leakage survey. Analytical Methods. To be submitted. 
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(2020), Monitoring Scheme for the Detection of Hydrogen Leakage from a Deep 
Underground Storage. Part 1: On-Site Validation of an Experimental Protocol via the 
Combined Injection of Helium and Tracers into an Aquifer. Appl. Sci., 10, 6058, 
https://doi.org/10.3390/app10176058 

[5] Gombert P., Lafortune S., Pokryszka Z., Lacroix E., de Donato P., Jozja N.  Monitoring 
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Abstract 

To manage potential risks due to H2 leaks into the near-surface geosphere from H2 
underground storages (e.g. salt caverns, aquifer), reliable monitoring methods along with a 
precise knowledge of the geochemical environmental impacts are necessary. Thus, the 
evolution of some prominent parameters in soil and aquifers can be determined: gas 
concentrations, redox potential, ionic balance and trace elements. 

As part of the ROSTOCK'H project, Ineris simulated H2 leakage by injection of dissolved H2 
into a shallow aquifer (~20 m deep) in an experimental site within the Paris basin. This 
experiment aimed to testing advanced monitoring techniques and studying 
hydrogeochemical impacts at shallow depths. The aquifer water has calcium-bicarbonate 
facies and a neutral pH. Eight piezometers were aligned over 80 m according to the aquifer 
main flow (west-east). Hydrogeochemical monitoring devices were set up. One of the 
piezometers was equipped with a completion connected to a Raman probe and a specific 
Mid-IR cell for continuous measurement of aqueous gases. 

At the experiment outset, 5 m3 of water were extracted from the aquifer to be saturated with 
H2 under atmospheric conditions, before being reinjected through the injection well. About 
100 LSTP of dissolved H2 (concentration of 1,8 mg/L) was injected in the aquifer. The H2 

injection was preceded by the injection of underground water containing tracers (He(aq), 
uranine and LiCl) in order to warn the H2 plume arrival in the piezometers located 
downstream of the injection well. The concentrations of aqueous gases (He, H2, N2, O2, CO2, 
H2S and CH4) were measured in a control piezometer (20 m upstream) and in six 
piezometers up to 60 m downstream. Thus, the maximum H2 contents were detected up to 
20 m downstream of the injection well: 0.6 mg/L at 5 m, 0.17 mg/L at 7 m then 1.8 µg/L of 
H2 at 10 and 20 m during the first week. Following the H2(aq) addition, the aquifer physico-
chemistry has been modified: low increase in pH, high decrease in redox potential and O2(aq). 
These results confirm the feasibility of detecting and monitoring H2 in shallow aquifers in 
very low concentration conditions and highlight the potential impacts. This is of first 
importance for establishing the surveillance and security aspects related to with H2 storage. 
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