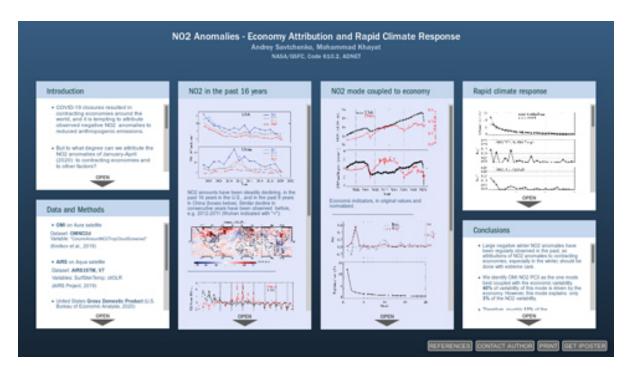
NO2 anomalies - economy attribution and rapid climate response

Andrey Savtchenko¹ and Mohammad Khayat¹


¹NASA/GSFC/610.2/ADNET Systems Inc.

November 22, 2022

Abstract

Using principal component (PC) analysis of 16 years of monthly series of nitrogen dioxide (NO2) from the Ozone Monitoring Instrument on the Aura satellite, we show that it is the third PC (PC3) from the deseasonalized hierarchy of principal modes that is best coupled with the economic indicators. This coupling is positive, i.e. PC3 and economic indicators manifest positive covariance. However, the economic variability can explain only 40% of the information in PC3. Furthermore, this mode by itself explains only 3% of the total deseasonalized NO2 variability. We thus conclude that, while having an unambiguous impact, the economy can be awarded at best third order of importance in the NO2 departures from the seasonal averages. Once we identified PC3 as the NO2 mode that is coupled with the economic variability, we use this mode as an indicator and look for rapid climate adjustments to that part of NO2 variability that we are confident is coupled with the economic variability. We focus on observational data from the Atmospheric Infrared Sounder (AIRS) on board of NASA Aqua satellite, decompose series of surface skin temperature and clear-sky outgoing longwave radiances (OLR) into principal components, and identify potential impacts of NO2 PC3 on these climate variables.

NO2 Anomalies - Economy Attribution and Rapid Climate Response

Andrey Savtchenko, Mohammad Khayat

NASA/GSFC, Code 610.2, ADNET

PRESENTED AT:

AGU - iPosterSessions.com

INTRODUCTION

- COVID-19 closures resulted in contracting economies around the world, and it is tempting to attribute observed negative NO2 anomalies to reduced anthropogenic emissions.
- But to what degree can we attribute the NO2 anomalies of January-April (2020) to contracting economies and to other factors?
- Considering this and past NO2 anomalies, can we see any rapid adjustments of the climate system?
- The NO2 cycle in the atmosphere is rather complex. Climate impacts are indirect, through formation of O3, CH4 and nitrate aerosols (Ciais, P., et al., 2013).

AGU - iPosterSessions.com

DATA AND METHODS

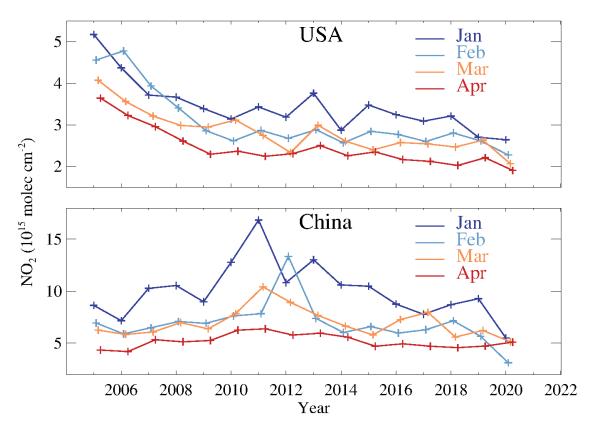
• **OMI** on Aura satellite

Dataset: **OMNO2d** Variable: "ColumnAmountNO2TropCloudScreened"

(Krotkov et al., 2019)

• AIRS on Aqua satellite

Dataset: AIRS3STM, V7

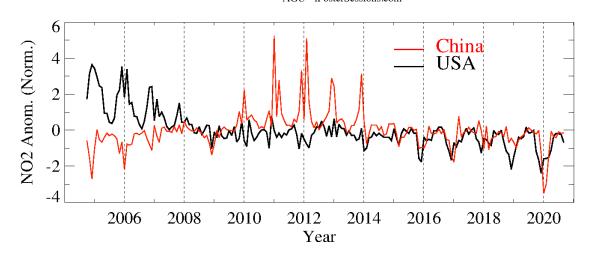

Variables: SurfSkinTemp; clrOLR

(AIRS Project, 2019)

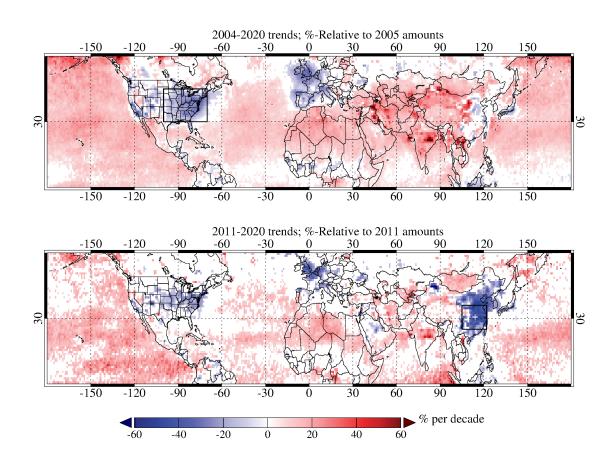
- United States Gross Domestic Product (U.S. Bureau of Economic Analysis, 2020)
- Monthly Imports Indicator for China (Organization for Economic Co-operation and Development, Imports, 2020)
- **Principal Component Analysis** is applied to <u>deseasonalized</u> monthly series of OMI and AIRS. Northern Hemisphere only.

AGU - iPosterSessions.com

NO2 IN THE PAST 16 YEARS

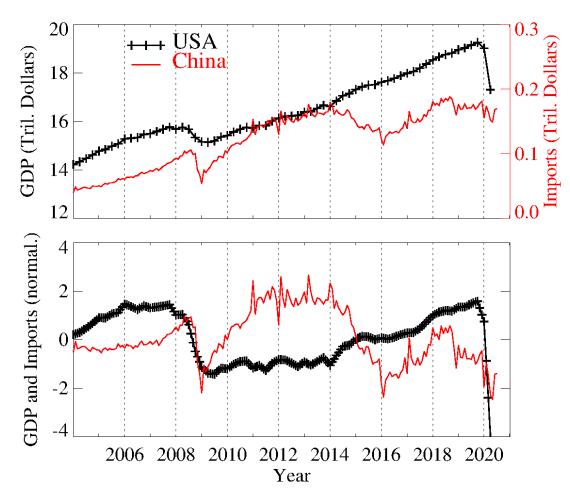


NO2 amounts have been steadily declining, in the past 16 years in the U.S., and in the past 9 years in China (area average in the boxes, below). Similar decline in consecutive years have been observed before, e.g. 2012-2011 (Wuhan indicated with "+"):



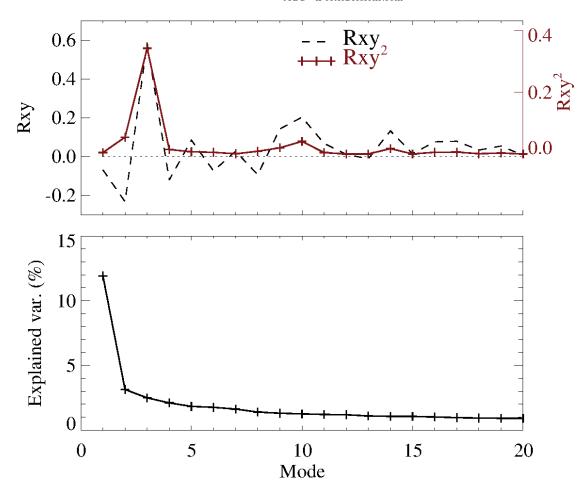
11/23/2020

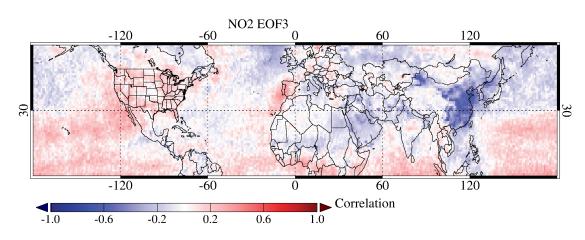
AGU - iPosterSessions.com


Area averages from the boxes above, land only. Strong negative NO2 anomalies have been observed before, always in the winter.

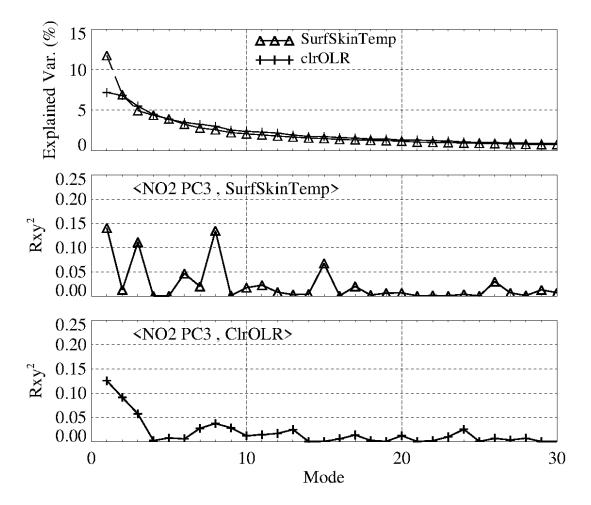
Declining tendencies of NO2 amounts are seen at 95% confidence over the U.S. and China.

AGU - iPosterSessions.com


NO2 MODE COUPLED TO ECONOMY

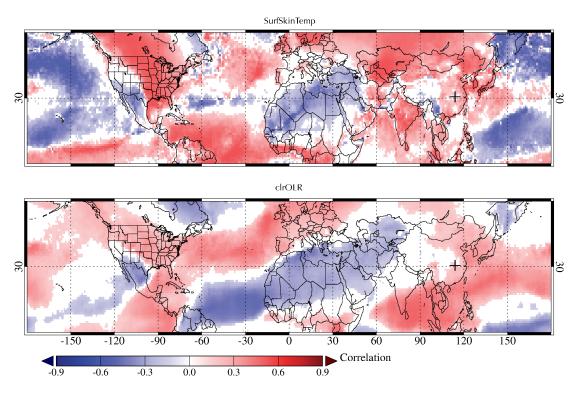

Economic indicators, in original values and normalized.

AGU - iPosterSessions.com



- Indicators regressed to NO2 Principal Components show that NO2 **PC3** is the one coupled and positively correlated with economy.
- 40% of variability in **PC3** can be explained by the economy.
- However, PC3 explains only 3% of NO2 variability.

EOF3 shows the spatial pattern of the most likely impacts of economy on NO2.


RAPID CLIMATE RESPONSE

- (Top) Explained **SurfSkinTemp** and **clrORL** deseasonalized variability by each of the principal modes.
- OMI NO2 PC3 impacts AIRS modes 2-8, but weakly explains less than $30\% (R_{XY}^2)$.
- Furthermore, modes 2-8 explain less than 20% of SurfSkinTemp and clrORL variability.

AGU - iPosterSessions.com

Using only impacted modes, we reconstruct series of **SurfSkinTemp** and **clrOLR**, and regress them with NO2 **PC3**. Shown are correlation coefficients that pass 95% confidence test. Wuhan region is indicated with a "+" symbol.

These are the patterns of the most likely climate impacts.

CONCLUSIONS

- Large negative winter NO2 anomalies have been regularly observed in the past, so attributions of NO2 anomalies to contracting economies, especially in the winter, should be done with extreme care.
- We identify OMI NO2 PC3 as the one mode best coupled with the economic variability. **40%** of variability of this mode is driven by the economy. However, this mode explains only **3%** of the total deseasonalized NO2 variability.
- Therefore, roughly **12%** of the deseasonalized NO2 variability can be explained by the economy, but the rest is driven by other factors.
- We use NO2 PC3 as an indicator to assess climate adjustments to the economy-driven NO2 variations.
- Rapid climate adjustments to these NO2 anomalies, in terms of **clear-sky OLR**, and **surface skin temperatures**, are visible in a band of their principal components, but are weak. Most likely they cannot be felt directly, and should only be considered in the context of other impacts.
- Increase in the economy-driven NO2 emissions have warming potential for large portions of the industrialized regions (Europe, USA, eastern China, south Asia). Conversely, NO2 reductions should have cooling contribution in these regions.
- We note a different regime of NO2 impacts over Northern Africa cooling with increased NO2 emissions which is indicative of likely dominance of nitrate aerosols production.

REFERENCES

Ciais, P., et al., 2013: Carbon and Other Biogeochemical Cycles. In: Climate Change 2013: The Physical Science Basis. Contribution of Working Group I to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change [Stocker, T.F., D. Qin, G.-K. Plattner, M. Tignor, S.K. Allen, J. Boschung, A. Nauels, Y. Xia, V. Bex and P.M. Midgley (eds.)]. Cambridge University Press, Cambridge, United Kingdom and New York, NY, USA.

AIRS project (2019), Aqua/AIRS L3 Monthly Standard Physical Retrieval (AIRS-only) 1 degree x 1 degree V7.0, Greenbelt, MD, USA, Goddard Earth Sciences Data and Information Services Center (GES DISC), Accessed: October, 2020, https://doi.org/10.5067/UBENJB9D3T2H

U.S. Bureau of Economic Analysis, "Table 1.1.6. Real Gross Domestic Product, Chained Dollars", accessed May 7, 2020.

Organization for Economic Co-operation and Development, Imports, 2020: Value Goods for China [XTIMVA01CNM667S], retrieved from FRED, Federal Reserve Bank of St. Louis; https://fred.stlouisfed.org/series/XTIMVA01CNM667S, accessed June 23, 2020.