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Abstract

This research study shows the ability of cloud resolving models (CRM) to simulate Mesoscale Convective Systems (MCS)
over the far Eastern Pacific region, off the coast of Colombia and Panama. The simulation period coincides with the newly
developed OTREC field campaign (August-September, 2019), which provided enhanced upper-air soundings, NSF/NCAR G-V
dropsonde and HIAPER Cloud Radar data to help evaluate the model and diagnose the environmental conditions favoring MCS
development. We tested the model sensitivity to three different microphysics schemes: two popular bulk schemes (Thomson
and Morrison) and one spectral bin (SBM) scheme. The models are diagnosed on their ability to simulate the observed
large-scale and mesoscale environments associated with MCSs development, including the ChocoJet and Caribbean low-level
jets, the semi-permanent Panama low, vertical shear, and mid-level diurnal gravity waves. We also examined the vertical
distribution of hydrometeors concentrations and diabatic heat and cooling profiles. Results show that not only the SBM
represents better the spatial and vertical distribution of precipitation, but also simulates better MCSs characteristics (intensity,
duration, organization) and their predominant westward movement. We hypothesize that the success of the SBM in producing
better organized and more long-lasting MCS stands in the stronger diabatic heating, related to a top-heavier mass profile
that helps support upper-level convergence, and more intense low-level diabatic cooling that helps support stronger gravity
currents. OTREC observations and CRM results shed light on the role of MCSs in the generation of enhanced mid-level
mesoscale vorticity, which has been related to generation of easterly waves or enhancement of existing ones. Although the SBM
is unpractical due to its computation cost (fast version takes about 10-12 times longer), it represents an important step forward
in cloud modeling, with suggestive results indicating that SBM improves confidence of the physical basis of the elusive and

challenging simulation of realistic tropical MCSs.



Desert Research Institute

DE ANTIOQUIA

1 803

Mesoscale Convective Systems over the rainiest spot on
Earth: OTREC field campaign and Cloud-Resolving
Simulations

John F. Mejia, Division of Atmospheric Sciences, Desert Research Institute,
Reno, Nevada

and
Juan J. Henao, GIGA, Escuela Ambiental, Universidad de Antioquia, Colombia



What determines the distribution of deep atmospheric convection
over the east Pacific?

* OTREC (Aug-Sept, 2019):
 Vertical structure of convection; guidance
for models and reanalyses.

* Deep convection with more top-heavy
mass flux profiles in stratiform off the
Colombia Pacific coast (Fuchs-Stone et al. s
2020-GRL).

* Convection organization is highly related
to enhanced southwesterly cross o
equatorial flow, which interacts with the
Andes and coastal Colombian Pacific -
diurnal oscillation Mejia et al. (2020-JGR-
Atm-rev.)
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Field Catalog: http://catalog.eol.ucar.edu/otrec/missions

22 Research
flights; 9 of
which took
place off the
Colombian
Pacific coast.
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Mission table for OTREC

List OTREC events

OTREC Events

New OTREC Events report

Create parent event

List dataset events

Jump to event: [ FFO1 (2019/08/03 16:00:00) Vv |

Name Begin date/time End date/time Catalog GV Reports Flight Plan Mission Summary Actions

(UTC) (UTC) Products tracks

FFO1 2019-08-03 16:00 2019-08-03 21:00 Aircraft GV kml Ferry GV ferry flight from Colorado to Costa Rica B View file
Advisory GV plot &, Download
Model
Radar
Satellite
Surface
Upperair

RFO1 2019-08-07 12:30 2019-08-07 18:00 Aircraft GV kml  Mission Summary B2 A massive deep convective blowup occurred during the flight along the ITCZ between roughly 5 N and 9 N. Shallow stratocumulus existed south of the blowup. Significant | View file
Advisory GV plot whitecaps were visually observed in this region. The blowoff from the deep convection extended mainly to the south, with 50 kt NNE winds at flight level. Winds were light & Download
Model north of the main convection at flight level. Isolated shallower convection was observed north of the main deep convective region. The G-V landed with no difficulty in light
Radar rain. Ground observers noted the presence of lightning in Playa Hermosa near this time.
Satellite
Surface
Upperair

RF02 2019-08-11 12:30 2019-08-11 18:30 Aircraft GV kml Mission Summary B1 A strong MCS was encountered in Box B1a. Lightning and heavy rainfall was observed during the night from Colombia. High stratiform clouds and elevated onion atop B View file
Advisory GV plot cumulus clouds were observed in the south part of the box. Heading north heavy rain started. Deep convection was observed on the W side of the box between 6 Nand 7 & Downlo,
Model N.
Radar D
Satellite
Surface

Upperair


http://catalog.eol.ucar.edu/otrec/missions

NSF/NCAR Gulfstream-V
flight tracks and special
radiosondes
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GPM Precipitation patterns
during Aug-Sept, 2019
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Our modeling research guestions are:

1. Can CRM develop MCSs and related mesoscale circulation and
precipitation characteristics off the coast of Colombia and Panama?

2. What are the environmental conditions favoring MCSs
development/propagation?

3. Do the MCSs develop for the “right” conditions, i.e., as shown in
Mapes et al. (2003-MWR), Yepes et al. (2019-BAMS, 2020-MWR),
Mejia et al. (2020-JGR-Atm-rev)?



WRF(4.1)-cloud-resolving model mode:

ERAS (with assimilation of OTREC data)
Domain 1: 9 km (211 x 221)

Domain 2: 3 km (472 x 469)
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Model adequately simulates

westward moving convective
clusters.
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Diurnal Cycle: MP vs PBL (MY]J)
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Summary and Conclusions

* From observations and modeling results: We hypothesize that a robust
stratiform region tends to enhance the top-heavy (mass-flux) heating
profiles and favor longer-lived MCSs propagating westward off the
Colombian Pacific coast.

* The role of convective outflows in such propagation is intriguing. More

analysis is needed to assess how the outflows interact with the Chocolet
and the environmental vertical shear.

 Spectral bin (MP30) and WSM-6 (MP6), both on opposite ends in the
hierarchy and complexity of the microphysics schemes, revealed similar
propagating characteristics.

* Thomson (MP8) and Morrison (MP10) microphysics parameterizations
were more sensitive to PBL schemes ; when switching from MYJ to YSU,
longer-lived westward moving MCSs were favored.
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