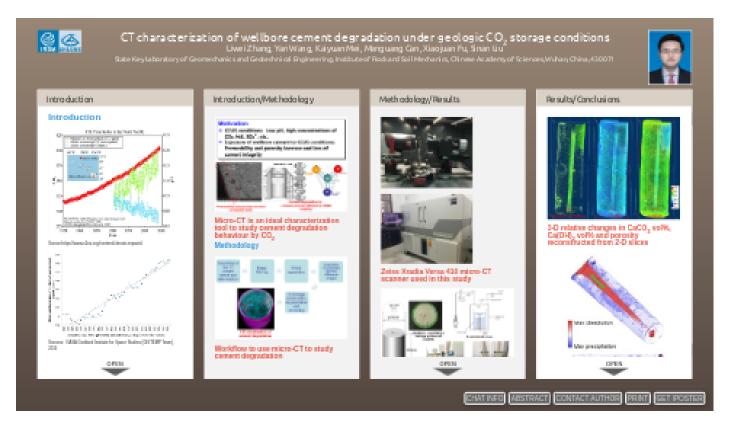
# CT characterization of wellbore cement degradation under geologic $CO_2$ storage conditions


Liwei Zhang<sup>1</sup>, Yan Wang<sup>1</sup>, Kaiyuan Mei<sup>1</sup>, Manguang Gan<sup>1</sup>, Xiaojuan Fu<sup>1</sup>, and Sinan Liu<sup>1</sup> <sup>1</sup>Institute of Rock and Soil Mechanics, Chinese Academy of Sciences

November 22, 2022

#### Abstract

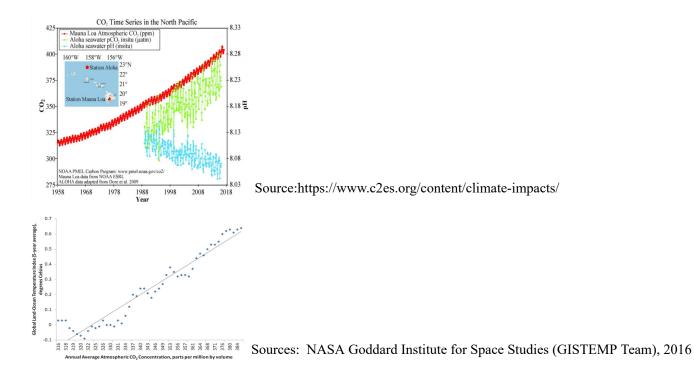
This presentation demonstrates a CT scanning and image analysis workflow to characterize wellbore cement degradation under corrosive geologic CO<sub>2</sub> storage (GCS) conditions. The workflow includes 1) acquisition of raw CT images of the cement sample (before and after exposure to CO<sub>2</sub>); 2) application of rigid registration to align raw CT images; 3) acquisition of grayscale intensity difference images; 4) application of noise filtering technique to obtain images with good quality; 5) acquisition of 3D pore structure change of the cement sample after CO<sub>2</sub> exposure from grayscale intensity difference images, showing degradation of wellbore cement. To demonstrate an application of the workflow, an experiment of reaction between CO<sub>2</sub> and wellbore cement under corrosive GCS conditions was conducted and the wellbore cement samples used in the experiment went through aforementioned CT scanning and image analysis procedures. CT image analysis results demonstrate a region with increased porosity in the exterior of the cement sample (Zone 1) and a region with decreased porosity next to Zone 1 due to CaCO<sub>3</sub> precipitation (Zone 2). Next to Zone 2, a region with increased porosity due to Ca(OH)<sub>2</sub> and C-S-H dissolution (Zone 3) was observed. In summary, this study proves feasibility to use 3D CT scanning and CT image analysis techniques to investigate CO<sub>2</sub>-induced degradation of wellbore cement.

## CT characterization of wellbore cement degradation under geologic CO<sub>2</sub> storage conditions



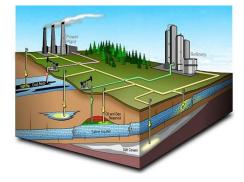
Liwei Zhang, Yan Wang, Kaiyuan Mei, Manguang Gan, Xiaojuan Fu, Sinan Liu

State Key Laboratory of Geomechanics and Geotechnical Engineering, Institute of Rock and Soil Mechanics, Chinese Academy of Sciences, Wuhan, China, 430071 AGU - iPosterSessions.com




PRESENTED AT:




## INTRODUCTION

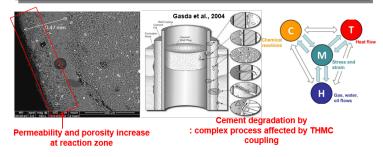
#### Introduction

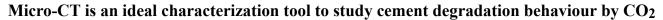


## Greenhouse Gas Effect: elevated CO<sub>2</sub> concentration in the atmosphere and global temperature rise

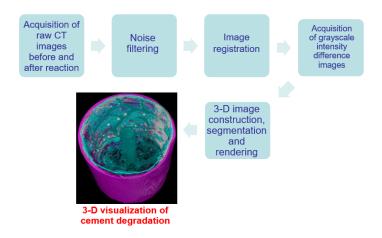
AGU - iPosterSessions.com




Source: Global CCS Institute, 2017


Carbon Capture, Utilization and Storage (CCUS)—a promising technology to reduce atmospheric CO2 concentration

## INTRODUCTION/METHODOLOGY

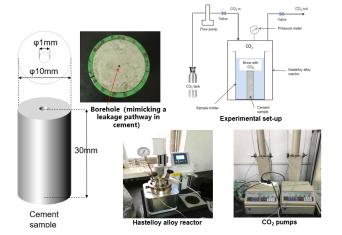

#### Motivation

- CCUS conditions: Low pH, high concentrations of CO<sub>2</sub>, H<sub>2</sub>S, SO<sub>4</sub><sup>2-</sup>, etc.
- Exposure of wellbore cement to CCUS conditions: Permeability and porosity increase and loss of cement integrity



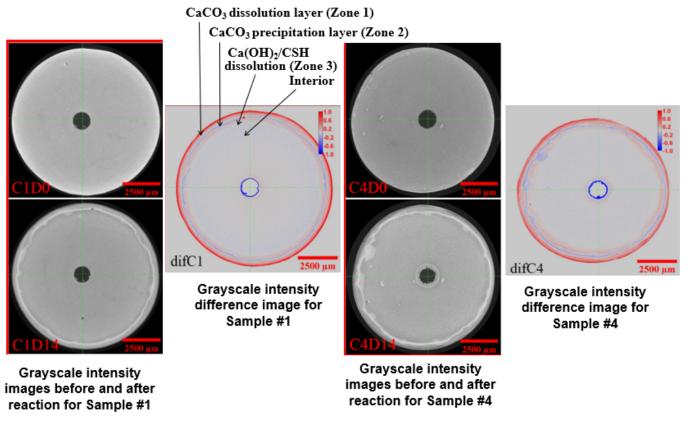


Methodology




Workflow to use micro-CT to study cement degradation

## METHODOLOGY/RESULTS

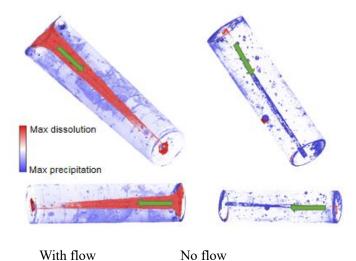



#### Zeiss Xradia Versa 410 micro-CT scanner used in this study



CO<sub>2</sub> exposure experiment

#### Results




2-D micro-CT slices of the cement sample after exposure to CO<sub>2</sub>

## **RESULTS/CONCLUSIONS**



3-D relative changes in CaCO<sub>3</sub> vol%, Ca(OH)<sub>2</sub> vol% and porosity reconstructed from 2-D slices



In now no now

#### Flow within cement fracture accelerates cement dissolution

### Conclusions

• CT imaging of the cement after reacting with CO<sub>2</sub> reveals 3 reaction zones and the dissolution-precipitation-dissolution "sandwich" pattern

- Dissolution mainly occurs in the exterior, and no dissolution is observed in the fracture (no flow case)
- When there is flow within the fracture, dissolution of cement occurs surrounding the fracture.

## ABSTRACT

This presentation demonstrates a CT scanning and image analysis workflow to characterize wellbore cement degradation under corrosive geologic CO<sub>2</sub> storage (GCS) conditions. The workflow includes 1) acquisition of raw CT images of the cement sample (before and after exposure to CO<sub>2</sub>); 2) application of rigid registration to align raw CT images; 3) acquisition of grayscale intensity difference images; 4) application of noise filtering technique to obtain images with good quality; 5) acquisition of 3D pore structure change of the cement sample after CO<sub>2</sub> exposure from grayscale intensity difference images, showing degradation of wellbore cement. To demonstrate an application of the workflow, an experiment of reaction between CO<sub>2</sub> and wellbore cement under corrosive GCS conditions was conducted and the wellbore cement samples used in the experiment went through aforementioned CT scanning and image analysis procedures. CT image analysis results demonstrate a region with increased porosity in the exterior of the cement sample (Zone 1) and a region with decreased porosity next to Zone 1 due to CaCO<sub>3</sub> precipitation (Zone 2). Next to Zone 2, a region with increased porosity due to Ca(OH)<sub>2</sub> and C-S-H dissolution (Zone 3) was observed. In summary, this study proves feasibility to use 3D CT scanning and CT image analysis techniques to investigate CO<sub>2</sub>-induced degradation of wellbore cement.