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Abstract

Subsurface characterization is important for the detection and development of underground resources. Useful subsurface models
can correctly make production forecast and optimize development plans, such as infill well location in an aquifer, geothermal,
and hydrocarbon reservoir development. A useful subsurface model should honor geological concepts as well as all the available
measurements, such as fluid production history, geophysical measurements. However, common subsurface modeling methods
cannot efficiently honor the two concepts. To build subsurface models in a way that it is easy to condition them to both geological
concepts and available measurements, we develop a new machine learning method, referred to as the stochastic pix2pix method.
In this method, we use convolutional neural networks and adversarial neural networks to stochastically generate new subsurface
models matching both geological concepts and static measurements, such as seismic and well data. This method first extracts the
depositional patterns from analog training images, such as outcrops, high-resolution seismic images, and depositional process-
based reservoir models, and then minimizes the Jensen-Shannon entropy between the training images and new subsurface
models, as well as the mismatch of static measurements. The hydraulic inverse problem is solved with a machine learning-based
proxy model on the model parameter space defined by stochastic pix2pix. The stochastic pix2pix method helps maintain the
match of geological concepts and static measurements during the inversion. To verify and benchmark our procedure, we show
the conditional subsurface models generated with stochastic pix2pix reproduce the geological concepts as good as synthetic
unconditional process-based models. we successfully build reservoir models for channel and turbidite fan systems, where the
depositional patterns of common geobodies are well reproduced. The synthetic well data, seismic interpretation, net-to-gross
ratio, and time records of fluid production are well-matched with this new method. Additionally, we generate conditional
subsurface models 90% faster than with conventional object-based modeling methods and with more accurate reproductions of

the available measurements.
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1. INTRODUCTION

Limitations of classical subsurface modeling methods

Field data conditioning Difficult

Pyrcz and Deutsch, 2014
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Figure 1. Problems in classical subsurface modeling methods.

Subsurface models should match all the static and dynamic field data as well as geological settings, to be able to help
optimize the production from a hydraulic or hydrocarbon reservoir. However, It is difficult for classical subsurface
modeling methods to satisfy both static data constraints (well log, seismic) and geological concepts (patterns)
constraints (Fig. 1). Although recent object/rule-based reservoir modeling methods successfully reproduce the

depositional patterns, the hierarchies of the depositional patterns, the model parameterization, and static data
conditioning are still unsolved problems.

Stochastic pix2pix for better subsurface modeling
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Figure 2. Turbidite channel models calculated with stochastic pix2pix.
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Figure 3. Hierarchies in a lobe system.
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Figure 4. Stochastic reservoir models with good static data and geological concept conditioning calculated with the
stochastic pix2pix for a lobe system.

The stochastic pix2pix method proposed by Pan et al.(2020). This new machine learning method learns depositional
patterns and data conditioning from training images calculated based rule-based models to calculate new subsurface
model realizations. It successfully calculates subsurface models with good reproduction of the depositional patterns and
hierarchies and good static data conditioning (Fig. 2,3,4). It also maps the conditional models to a small Gaussian latent
space, rendering a good model parameterization.

A synthetic case study is used to demonstrate the advantages and the workflow of using the stochastic pix2pix method
for solving hydraulic inverse problems
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2. HISTORY MATCHING FOR SYNTHETIC LOBE
RESERVOIR

Lobe scale truth facies model Lobe-element scale truth facies model
0B1 I

Synthetic hydraulic inverse problem setup . l

Lobe scale truth porosity model Lobe-element scale truth porosity model
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4000 .4

Figure 5. Truth facies and porosity model at lobe scale and lobe-element scale.

1). A lobe reservoir with 4 observation wells(OB) and one production well(P0), the production well is producing at a
constant 300 psi bottom hole pressure (BHP), and the initial pressure of the reservoir is 1000 psi (Fig. 5).

2). The BHPs of the four observation wells are used to calculate the facies and property distribution of the reservoir.

3). Unknown parameters: lobe and lobe-element distribution (latent variables in the stochastic pix2pix), porosity/
permeability multipliers of each lobe, and lobe element.

4). The depositional patterns and static data conditioning should not be distorted during solving the hydraulic inverse
problem.
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3. WORKFLOW FOR STOCHASTIC PIX2PIX-BASED
HIERARCHICAL HISTORY MATCHING

Large-scale depositional structures usually affect the low-frequency components of the production data and local
depositional structures (heterogeneity) usually affect the high-frequency components of the production data. To take
advantage of this relationship and the hierarchies in the depositional environment, a hierarchical history matching
workflow is proposed.
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Figure 6. The workflow of stochastic pix2pix assisted hierarchical history matching.

The coarse, lobe-scale reservoir models are upscaled and conditioned to the production first, and then they are used as
prior models to calculate fine, lobe-element-scale models that better match the production data (FIg. 6, 9).

Remove bias in the lobe-scale model

Because of the lack of lobe-element scale features and upscaling, the production data for the lobe-scale

model conditioning should not be the same as the truth production data (Figure 7). To extract the low-frequency
components out of the truth production data and use them to condition the lobe-scale model, a neural network is
trained to learn the mapping from the production data of unconditional lobe-element-scale models to their
corresponding lobe-scale models (Figure 8).
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Figure 7. Different production data from lobe-element-scale models and their corresponding lobe-scale models.
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Figure 8. The mapping of production data learned by the NN.

Conditional lobe-scale models are used as prior models for lobe-element-scale model
history matching
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Unconditional lobe-element model based on good lobe models
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Figure 9. Conditional lobe-scale models are used as prior models for lobe-element-scale model history matching.
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4. RESULTS

Production data match for two types of the lobe system

Production data matching for truth model with extended complete shale Production data matching for truth model with broken shale drapes
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Figure 10. BHP data match at four observation wells.

Based on 5-day BHP data of 4 observation wells, the pressure forecast based on the posterior models are satisfactory.

Posterior reservoir porosity models
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Figure 11. Posterior lobe-element-scale models conditional to static, dynamic data as well as geological concepts.

The depositional patterns, hierarchies and static data conditioning are preserved during history matching.
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5. CONCLUSIONS

1). The stochastic pix2pix method is efficient in calculating subsurface models conditioning to both geological
concepts and static data.

2). The model parameterization rendered by the stochastic pix2pix method decreases the dimensionality of the
hydraulic inverse problem.

3). The geological concepts and static data conditioning are preserved through the history matching process.

4). This new machine learning method enables efficient, geologically hierarchical history matching, making reservoir
models more realistic.

5). An efficient workflow about hierarchical modeling and hierarchical history matching is provided for integrated
subsurface modeling.
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6. FUTURE WORK

More realistic depositional features and sensitivity analysis

We are going to add more realistic depositional features to our taining models, such as amalgamation, different
property patterns/ trends within each geobody, and calculate the effects of different features on the subsurface fluid
production.
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Figure 12. Adding amalgamation to the training models and adding more heterogeneity by calculating different
property trends within different geobodies.
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