
P
os
te
d
on

30
N
ov

20
22

—
C
C
-B

Y
4.
0
—

h
tt
p
s:
//
d
oi
.o
rg
/1
0.
10
02
/e
ss
oa
r.
10
50
49
81
/v

2
—

T
h
is

a
p
re
p
ri
n
t
an

d
h
as

n
ot

b
ee
n
p
ee
r
re
v
ie
w
ed
.
D
at
a
m
ay

b
e
p
re
li
m
in
ar
y.

Integrating Remote Sensing and Machine Learning for

Groundwater Withdrawal Estimation in Arizona

Sayantan Majumdar1,1, Ryan Smith1,1, Brian Conway2,2, James Butler3,3, and
Venkataraman Lakshmi4,4

1Missouri University of Science and Technology
2Arizona Department of Water Resources
3University of Kansas
4University of Virginia

November 30, 2022

Abstract

Groundwater is the largest source of Earth’s liquid freshwater and plays a critical role in global food security. With the

rising global demand for drinking water and increased agricultural production, overuse of groundwater resources is a major

concern. Because groundwater withdrawals are not monitored in most regions with the highest use, methods are needed to

monitor withdrawals at a scale suitable for implementing sustainable management practices. In this study, we combine pub-

licly available datasets into a machine learning framework for estimating groundwater withdrawals over the state of Arizona.

This extends a previous study in which we estimated groundwater withdrawals in Kansas, where the climatic conditions and

aquifer characteristics are significantly different. Datasets used in our model include energy-balance (SSEBop) and crop coeffi-

cient evapotranspiration estimates, precipitation(PRISM), and land-use (USDA-NASS Cropland Data Layer), and a watershed

stress metric. Random forests, a widely popular machine learning algorithm, are employed for predicting groundwater with-

drawals from 2002-2018 at 5 km spatial resolution. We used in-situ groundwater withdrawals available over the Arizona Active

Management Area (AMA) and Irrigation Non-Expansion Area (INA) from 2002-2010 for training and 2011-2018 for validating

the model respectively. The results show high training (R2 [?] 0.98) and good testing (R2 [?] 0.82) scores with low normalized

mean absolute error [?] 0.42 and root mean square error [?] 1.29 for the AMA/INA region. Using this method, we are able to

spatially extend estimates of groundwater withdrawals to the whole state of Arizona. We also observed that land subsidence

in Arizona is predominantly occurring in areas having high yearly groundwater withdrawals of at least 100 mm per unit area.

Our model shows promising results in sub-humid and semi-arid (Kansas) and arid regions (Arizona), which proves the robust-

ness and extensibility of our integrated approach combining remote sensing and machine learning into a holistic, automated,

and fully-reproducible workflow. The success of this method indicates that it could be extended to areas with more limited

groundwater withdrawal data under different climatic conditions and aquifer properties.
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WATER RESOURCES | GROUNDWATER

Figure 1: Distribution of Earth's water (USGS (https://www.usgs.gov/special-topic/water-science-school/science/groundwater-flow-and-water-cycle)).

Groundwater is the largest source of Earth’s liquid freshwater and plays a critical role in global food security. Hence,
overuse of groundwater resources is a major concern.

It is hard to estimate groundwater use or storage at local scales. Existing satellite methods for estimating groundwater
storage change involve using GRACE/GRACE-FO (https://en.wikipedia.org/wiki/GRACE_and_GRACE-FO) data at a
coarse resolution (~ 400 km).

In this study, we combine publicly available datasets into a machine learning framework for estimating groundwater
withdrawals (which are related to change in groundwater storage) at very high resolution (5 km) over the state of
Arizona.

 

https://www.usgs.gov/special-topic/water-science-school/science/groundwater-flow-and-water-cycle
https://en.wikipedia.org/wiki/GRACE_and_GRACE-FO


REMOTE SENSING AND MACHINE LEARNING |
WORKFLOW

Figure 2: Overall workflow (Logos: official websites, RF figure: HARP/DSC-SPIDAL (https://dsc-spidal.github.io/harp/docs/examples/rf/)).

Here, we use data from various sensors that measure different components of the water balance for monitoring
groundwater withdrawal (SSEBop (https://earlywarning.usgs.gov/ssebop/modis), PRISM
(https://prism.oregonstate.edu/), USDA-NASS CDL
(https://www.nass.usda.gov/Research_and_Science/Cropland/SARS1a.php)).

This extends a previous study (Majumdar et al., 2020) in which we estimated groundwater withdrawals in Kansas, where
the climatic conditions and aquifer characteristics are significantly different.

Random forests (https://en.wikipedia.org/wiki/Random_forest) (RF), a widely popular machine learning algorithm, is
employed for predicting groundwater withdrawals from 2002-2018 at 5 km spatial resolution.

We used in-situ groundwater withdrawals available over the Arizona Active Management Area (AMA
(https://new.azwater.gov/sites/default/files/media/AMAFACTSHEET2016%20%281%29_0.pdf)) and Irrigation Non-
Expansion Area (INA (http://(http://infoshare.azwater.gov/docushare/dsweb/Get/Document-10190/Irrigation%20Non-
Expansion%20Areas%20(INAs).pdf)) from 2002-2010 for training and 2011-2018 for validating the model respectively.

The predictors for the RF model include 
SSEBop evapotranspiration (ET), PRISM precipitation (P), agriculture(AGRI), surface water (SW), urban (URBAN)
densities, crop coefficient (CC), and watershed stress (WS) metrics (Smith & Majumdar, 2020), WS_PA (WS calculated
using averaged P) and WS_PA_EA (WS calculated using averaged P adjusted with averaged ET), with the response
variable being groundwater (GW) withdrawal.

https://dsc-spidal.github.io/harp/docs/examples/rf/
https://earlywarning.usgs.gov/ssebop/modis
https://prism.oregonstate.edu/
https://www.nass.usda.gov/Research_and_Science/Cropland/SARS1a.php
https://en.wikipedia.org/wiki/Random_forest
https://new.azwater.gov/sites/default/files/media/AMAFACTSHEET2016%20%281%29_0.pdf
http://%28http//infoshare.azwater.gov/docushare/dsweb/Get/Document-10190/Irrigation%20Non-%20Expansion%20Areas%20(INAs).pdf


GROUNDWATER WITHDRAWALS | STUDY AREA,
RESULTS, AND ANALYSIS

Figure 3: Groundwater basins and sub-basins in Arizona highlighting the AMA/INA regions. This map has been downloaded from the Arizona
Department of Water Resources (ADWR) (https://new.azwater.gov/sites/default/files/GWBasin_ShowingCAP_0.pdf) portal.

https://new.azwater.gov/sites/default/files/GWBasin_ShowingCAP_0.pdf


(a) Mean actual groundwater (GW) pumping and predicted GW pumping for the test data (2011-2018)

(b) Time series showing actual and predicted groundwater (GW) withdrawals. 
Figure 4: Groundwater (GW) pumping analysis for the test data (2011-2018).

The NA (no data) values inside the state of Arizona in Figures 4 (a) and (b) represent unknown or unreported
groundwater pumping data.

A total of 113,896 samples are present in this region spanning all the years from 2002-2018. The training (2002-2010)
and testing (2011-2018) data split is 53%-47%.



Figure 5: The feature or variable importances are values (sum up to 1) signifying the impact of each variable (the higher the value, the more
importantthe feature).

Accordingly, URBAN is the most important predictor followed by AGRI, ET, and SW.

For the RF model, we kept the number of trees as 500, and maximum number of featrues as 8.



GROUNDWATER WITHDRAWALS | MORE ANALYSIS,
LAND SUBSIDENCE

Figure 6: Mean groundwater (GW) withdrawals for (a) the AMA/INA region in Arizona and (b) the entire state of Kansas (Majumdar et al., 2020).

The predicted groundwater withdrawals at 5 km spatial resolution for both Arizona and Kansas show good accuracy.

Figure 7: Mean predicted groundwater withdrawals and mean land subsidence maps for the 2010-2018 period.

Most of the land subsidence is occurring in southern and south-eastern Arizona.

All subsiding areas have high or moderate predicted groundwater pumping.

Groundwater withdrawals are slightly correlated with land subsidence. Subsidence is a function of withdrawals, clay
content and aquifer confinement.The mismatch between predicted pumping and subsidence can provide clues to these
properties.



CONCLUSION AND FUTURE WORK
Our machine learning model shows promising results in sub-humid and semi-arid (Kansas) and arid regions (Arizona) at
very high resolution (5 km), which proves the robustness and extensibility of our integrated approach combining remote
sensing and machine learning into a holistic, automated, and fully-reproducible workflow.

The success of this method indicates that it could be extended to areas with more limited groundwater withdrawal data
under different climatic conditions and aquifer properties.

Figure 8: Proposed deep learning framework as part of future work
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ABSTRACT
Groundwater is the largest source of Earth’s liquid freshwater and plays a critical role in global food security. With the
risingglobal demand for drinking water and increased agricultural production, overuse of groundwater resources is a major
concern. Because groundwater withdrawals are not monitored in most regions with the highest use, methods are needed to
monitor withdrawals at a scale suitable for implementing sustainable management practices. In this study, we combine publicly
available datasets into a machine learning framework for estimating groundwater withdrawals over the state of Arizona. This
extends aprevious study in which we estimated groundwater withdrawals in Kansas, where the climatic conditions and aquifer
characteristics are significantly different.

 
Datasets used in our model include energy-balance (SSEBop) and crop coefficient evapotranspiration estimates, precipitation
(PRISM), and land-use (USDA-NASS Cropland Data Layer), and a watershed stress metric. Random forests, a widely popular
machine learning algorithm, are employed for predicting groundwater withdrawals from 2002-2018 at 5 km spatial resolution.
We used in-situ groundwater withdrawals available over the Arizona Active Management Area (AMA) and Irrigation Non-
Expansion Area (INA) from 2002-2010 for training and 2011-2018 for validating the model respectively. The results show high
training (R2 ≈ 0.98) and good testing (R2 ≈ 0.82) scores with low normalized mean absolute error ≈ 0.28 and root mean square
error ≈ 1.28 for the AMA/INA region. Using this method, we are able to spatially extend estimates of groundwater withdrawalsto
the whole state of Arizona.

 
We also observed that land subsidence in Arizona is predominantly occurring in areas having high yearly groundwater
withdrawals of at least 100 mm per unit area. Our model shows promising results in sub-humid and semi-arid (Kansas) and
aridregions (Arizona), which proves the robustness and extensibility of our integrated approach combining remote sensing and
machine learning into a holistic, automated, and fully-reproducible workflow. The success of this method indicates that it could
be extended to areas with more limited groundwater withdrawal data under different climatic conditions and aquifer properties.

Figure 1. Mean Groundwater (GW) withdrawals for (a) the AMA/INA region in Arizona and (b) the entire state of Kansas. 
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