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Abstract

A new algorithm is proposed for estimating time-evolving global forcing in climate models. The method is a further development

of the work of Forster et al. (2013), taking into account the non-constancy of the global feedbacks. We assume that the non-

constancy of this global feedback can be explained as a time-scale dependence, associated with linear temperature responses

to the forcing on different time scales. With this method we obtain stronger forcing estimates than previously assumed for

the representative concentration pathway experiments in the Coupled Model Intercomparison Project Phase 5 (CMIP5). The

reason for the higher future forcing is that the global feedback parameter is more negative at shorter time scales than at longer

time scales, consistent with the equilibrium climate sensitivity increasing with equilibration time. Our definition of forcing

provides a clean separation of forcing and response, and we find that linear temperature response functions estimated from

experiments with abrupt quadrupling of CO$ 2$ can be used to predict responses also for future scenarios. In particular, we

demonstrate that for most models, the response to our new forcing estimate applied on the 21st century scenarios provides a

global surface temperature up to year 2100 consistent with the output of coupled model versions of the respective model.
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Abstract14

A new algorithm is proposed for estimating time-evolving global forcing in climate mod-15

els. The method is a further development of the work of Forster et al. (2013), taking into16

account the non-constancy of the global feedbacks. We assume that the non-constancy17

of this global feedback can be explained as a time-scale dependence, associated with lin-18

ear temperature responses to the forcing on different time scales. With this method we19

obtain stronger forcing estimates than previously assumed for the representative con-20

centration pathway experiments in the Coupled Model Intercomparison Project Phase21

5 (CMIP5). The reason for the higher future forcing is that the global feedback param-22

eter is more negative at shorter time scales than at longer time scales, consistent with23

the equilibrium climate sensitivity increasing with equilibration time. Our definition of24

forcing provides a clean separation of forcing and response, and we find that linear tem-25

perature response functions estimated from experiments with abrupt quadrupling of CO226

can be used to predict responses also for future scenarios. In particular, we demonstrate27

that for most models, the response to our new forcing estimate applied on the 21st cen-28

tury scenarios provides a global surface temperature up to year 2100 consistent with the29

output of coupled model versions of the respective model.30

1 Introduction31

Diagnosing the magnitude of a climate forcing is necessary to determine the cli-32

mate responses to this forcing. However, defining a clear separation between forcing and33

response is challenging, and no clear distinction exists (Sherwood et al., 2015). In this34

paper we attempt to apply a separation within a linear temperature response framework,35

incorporating also the possibility of globally nonconstant atmospheric feedbacks. We test36

this method on models participating in the Coupled Model Intercomparison Project Phase37

5 (CMIP5).38

In the most common forcing-feedback framework, the radiative imbalance at the
top of the atmosphere (N) is described as

N = λT + F, (1)

where T is the temperature response, λ is the feedback parameter, and F is the radia-39

tive forcing, all evaluated as global means. According to this equation, forcing is the ini-40

tial radiative imbalance, before the global mean surface temperature starts to respond.41

However, as discussed by Hansen et al. (2005); Richardson et al. (2019), there are many42

ways of defining the forcing, allowing various rapid adjustments before diagnosing the43

radiative imbalance. Forcing estimates are therefore method and model dependent. Some44

studies even consider multi-annual adjustments associated with ocean inertia (Williams45

et al., 2008; M. Rugenstein, Gregory, et al., 2016; Menzel & Merlis, 2019). A motivation46

for this study is therefore to find an estimation method aiming for a clean separation be-47

tween forcing and response. By design, our method aims at finding the forcing estimates48

that are the most predictable for the surface temperature responses.49

The uncertainties associated with forcing estimates are large, not only due to the50

different rapid adjustments between models (Smith et al., 2018), but also due to differ-51

ences in the parameterizations of the radiative transfer (Soden et al., 2018). The instan-52

taneous forcing spread contributes to about half of the total intermodel spread in forc-53

ing (Chung & Soden, 2015), and the remaining spread is largely due to fast cloud ad-54

justments (Zelinka et al., 2013). These uncertainties have led to an effort aiming at bet-55

ter characterizing the forcing used for the new CMIP6 model versions (Forster et al., 2016;56

Pincus et al., 2016). These studies recommend using fixed-SST forcing, largely due to57

the reduced level of noise by this method as compared to regression-based estimates. Fixed-58

SST forcing estimates are made by diagnosing the top of atmosphere radiative imbal-59

ance after fixing the sea-surface temperatures and letting the atmosphere adjust. These60
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effective forcings include rapid adjustments, e.g. atmospheric temperature and cloud ad-61

justments, and are found to be better predictors of global surface temperature responses62

than instantaneous forcing estimates (Richardson et al., 2019). There is, however, sub-63

stantial land warming in these simulations. Our main motivation is to improve forcing64

estimates based on already existing simulations, which can be used for models where fixed-65

SST forcing is unavailable, and to circumvent the problem of land warming in fixed-SST66

simulations.67

In experiments with a time-varying forcing, forcing estimates may be even more
uncertain than in idealized experiments with constant forcing. Forster et al. (2013), here-
after F13, computes forcing time series F (t) by rearranging Eq. (1). Their method con-
sists of first determining λ following the regression method of Gregory et al. (2004) us-
ing idealized step-forcing simulations, and then using time series of N(t) and T (t) from
any experiment to compute what they call adjusted forcing:

F (t) = N(t)− λT (t) (2)

We note that adjusted forcing in F13 does not mean the same as adjusted forcing68

in Hansen et al. (2005), where the latter allows only fast stratospheric adjustments to69

take place before the forcing is estimated from the top of the atmosphere imbalance in70

an idealized step-forcing experiment. Forcing estimates based on regressions in a Gre-71

gory plot, such as in Andrews et al. (2012) and F13 are what Forster et al. (2016) refers72

to as regression-based methods, assuming a constant feedback parameter.73

However, several recent studies have pointed out that λ is not a constant (Armour74

et al., 2013; Geoffroy, Saint-Martin, Bellon, et al., 2013; Andrews et al., 2015; Gregory75

& Andrews, 2016; Proistosescu & Huybers, 2017; M. Rugenstein et al., 2020). Armour76

et al. (2013) demonstrate that locally constant feedbacks can result in a globally time-77

dependent feedback parameter because the pace of sea surface temperatures (SST) equi-78

libration depends on the location, weighting the local feedbacks differently with time.79

Other studies demonstrated that also locally, feedbacks change magnitude with equili-80

bration time (e.g. Andrews et al., 2015; Andrews & Webb, 2018; M. Rugenstein, Caldeira,81

& Knutti, 2016; Proistosescu & Huybers, 2017; Dong et al., 2019, 2020) and also through-82

out the historical time period (Paynter & Frölicher, 2015; Gregory & Andrews, 2016; Ar-83

mour, 2017; Marvel et al., 2018; Dessler, 2020). The tropical Pacific, the relative warm-84

ing of midlatitude or global oceans to the West Pacific warm pool, the North Atlantic,85

and the mid- and high latitudes have all been suggested to influence global feedbacks (e.g.86

Winton et al., 2010; Trossman et al., 2016; Andrews & Webb, 2018; Dong et al., 2020;87

Zelinka et al., 2020). The mechanism most often invoked is the dependence of lower tro-88

pospheric stability on the ratio of local and remote SSTs. Regions warming faster than89

the West Pacific warm pool ? which sets the temperature of the free troposphere through90

deep convection ? show a reduced lower tropospheric stability, a decrease in low-cloud91

coverage, and thus, a strong cloud and net radiative effect at the top of the atmosphere92

(e.g. Zhou et al., 2016; Ceppi & Gregory, 2017). In the CMIP6 models, the shortwave93

cloud feedbacks in the extratropics appear to be more important for the nonconstancy94

of λ than clouds in the tropics (Zelinka et al., 2020; Bacmeister et al., 2020), but the rel-95

atively short record of global cloud observations makes it difficult to assess cloud mod-96

eling against the observations (Loeb et al., 2020). Other studies highlight the dependence97

of feedbacks on temperature and radiative forcing (Meraner et al., 2013; Rohrschneider98

et al., 2019; Bloch-Johnson et al., 2021).99

The nonconstancy of λ implies that the forcing definition in Eq. (2) is ambiguous.100

This is particularly apparent for strong temperature responses, when λT more strongly101

affects the determination of the value of F . Here the magnitude and time-dependence102

of λ are particularly important. Larson and Portmann (2016) demonstrated for instance103

that λ obtained from regressions in the first 20 yr time period of abrupt4xCO2 gives higher104

forcing estimates compared to regressions in 150 yr time period. This is one of several105
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reasons why Forster et al. (2016) recommends fixed-SST methods instead of regression106

methods to determine the forcing.107

We explore how an alternative definition of effective forcing with a time-scale de-108

pendent λ differs from estimates by F13. To compute these alternative estimates, we de-109

compose the temperature response assuming it responds linearly to the forcing, and we110

demonstrate that the linear temperature response to the new forcing is close to the mod-111

elled temperature response in future scenarios for most CMIP5 models. By a linear re-112

sponse, we mean the temperature response determined from a linear non-homogeneous113

system of differential equations, whose solution can be expressed as a convolution be-114

tween a Green’s function and the forcing. Our results suggest that this forcing estimate115

appears more appropriate for estimating temperature responses using linear response mod-116

els than previous estimates.117

Our method is an iterative routine, starting with the F13 estimate of forcing, then118

computing the linear response to this forcing, which is further used to compute a new119

forcing estimate, etc., until convergence to a final forcing estimate is obtained. Theory120

and methods are described in Section 2, and the results are shown in Section 3. In Sec-121

tion 4, we discuss the assumptions made in our method, and how it compares to other122

forcing estimates, before we conclude in Section 5.123

2 Theory and methods124

The time-scale dependence of λ is analysed by making use of the same decompo-
sition as in Proistosescu and Huybers (2017), hereafter PH17. While PH17 use the method
to better understand estimates of climate sensitivity, we are interested in the intersect
of the fit with the vertical axis, the initial radiative imbalance. We also estimate param-
eters using a different approach, mainly because our method simplifies the comparison
to methods based on single regression estimates in Gregory plots. The equations that
will be presented in this section provide interpretations of the different λ’s that may ap-
pear in a Gregory plot, as well as interpretations of ”forcing estimates” based on regres-
sions on decadal to centennial time scales. The method is based on the assumption that
the temperature response can be decomposed into a sum of K components T =

∑K
n=1 Tn,

where each component is the exponential temperature response to the forcing on the time
scale τn [yrs],

Tn(t) = cn exp(−t/τn) ∗ F (t). (3)

The ∗ denotes a convolution, and the factors cn [Km
2

W ] are the amplitudes of the tem-125

perature responses per unit forcing. As further explained in the next subsection, this tem-126

perature decomposition can be interpreted as either approximating different global-scale127

processes (such as mixed-layer versus deep ocean responses to forcing) or as regions re-128

sponding with different pace to the forcing (such as the tropics in general versus regions129

of upwelling or deep ocean convection). cn therefore depends on both the feedbacks and130

thermal inertia associated with different regions, and the fraction of the global area in-131

volved in the response at time scale τn.132

Furthermore, the method assumes that constant feedback parameters λn exist, with
n = 1, ...,K associated with each time scale, such that the terms in Eq. (1) can be de-
composed into the following sums:

N(t) =

K∑
n=1

Nn(t) = F (t) +

K∑
n=1

λnTn(t) = F (t) + λ(t)T (t) (4)

By rewriting Eq. (4), PH17 noted that the time-variation of λ(t) can be explained
as a weighted average of the feedbacks associated with different components Tn(t) of the
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global temperature:

λ(t) =

∑K
n=1 λnTn(t)∑K
n=1 Tn(t)

(5)

We note that in a 4xCO2 experiment, we define the forcing to be a constant, and133

the slope λ(t) must be interpreted as the slope of a line drawn between the fixed forc-134

ing F and a point (T (t), N(t)). This slope may differ from a linearization around a point135

(T (t), N(t)) by regressing a range of points (see discussion on feedback definitions in M. A. A. Ru-136

genstein and Armour (2021)).137

Armour et al. (2013) suggested a similar decomposition, but interpreted the com-138

ponents as locally constant feedbacks multiplied by local temperatures with different time139

evolution. However, recent studies suggest that non-local feedbacks are also important140

(Andrews et al., 2015; Zhou et al., 2016; Dong et al., 2019; Bloch-Johnson et al., 2020),141

meaning that temperature changes in one region, and in particular the West Pacific, can142

influence feedbacks globally.143

2.1 Linear model and response144

A simple model of temperature changes in the climate system can be constructed
by considering different boxes or components that store and exchange energy. If assum-
ing that all anomalous heat fluxes are linearly related to temperature anomalies in the
system, the heat uptake in all boxes can be written into a linear non-homogeneous sys-
tem

C
dT(t)

dt
= KT(t) + F(t) (6)

By choosing the vector of temperature change components T to be K-dimensional,145

the system describes K components that will respond on K different time scales, and146

the vector F the atmospheric forcing acting directly on each component. The vector F147

could in principle contain different forcings in different regions. The heat capacities [Wyr
m2K ]148

associated with each component are along the diagonal of the diagonal K×K matrix149

C, and coefficients for heat exchange between components and heat loss to the atmo-150

sphere [ W
m2K ] constitute the matrix K. The left-hand side of this equation describes the151

heat uptake of each component, and the sum of all heat uptakes must equal the net ra-152

diative imbalance N . In this sum of all components, all fluxes between components can-153

cel out, and the sum reduces to Eq. (4).154

Linear systems like this have been widely studied, often using one, two or three boxes155

(e.g. Geoffroy, Saint-Martin, Olivié, et al., 2013; Fredriksen & Rypdal, 2017). Symmet-156

ric matrices K will describe diffusive heat fluxes depending on the temperature differ-157

ence between two boxes, and feedback parameters will appear on its diagonal. Non-symmetric158

parts may be due to the dependence of temperature anomalies in one box only. For in-159

stance change in sinking processes due to temperature anomalies in the North Atlantic160

regarded as one box, may by mass continuity induce horizontal mass and hence energy161

fluxes from adjacent ocean basins regarded as other boxes, independent of the temper-162

ature change in these boxes. K may also incorporate heat fluxes to the deep ocean if as-163

suming they can be modelled as linear functions of temperature components (e.g. Held164

et al., 2010; Geoffroy, Saint-Martin, Olivié, et al., 2013).165

By applying the method variation of parameters, it can be shown that the solu-
tion to Eq. (6) is (see the supporting information):

T(t) =

∫ t

−∞
e(t−s)C

−1KC−1F(s) ds, (7)

showing that the temperature at time t is a response to the forcing experienced at all
previous times s. If the matrix C−1K has only negative eigenvalues, −1/τn, the solu-
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tion for each temperature component Tk(t) will be a weighted sum of K exponential re-
sponses to the global average forcing F with time scales τn (where the weights βn are
determined by eigenvalues, eigenvectors, and heat capacities),

Tk(t) =

∫ t

−∞

K∑
n=1

βne
(s−t)/τnF (s) ds (8)

Furthermore, the global surface temperature is a weighted average of the compo-
nents Tk(t):

T (t) =

K∑
n=1

cn

∫ t

−∞
e(s−t)/τnF (s) ds (9)

where we define the new weights cn to be an area-weighted average of the weights βn.166

If the forcing is not the same in all regions, Eq. (9) is still valid if the regional forcings167

are scaled versions of the global average forcing. We recognize Eq. (9) as a convolution168

between a Green’s function G(t) and a forcing F (t), consistent with Eq. (3): T (t) = G(t)∗169

F (t) =
∫ t
−∞G(t− s)F (s)ds, with G(t) =

∑K
n=1Gn(t) =

∑K
n=1 cn exp(−t/τn), assum-170

ing negative eigenvalues.171

2.2 Estimating linear response in abrupt 4xCO2 experiments172

To simplify the estimation of parameters of these responses (time scales τn and am-173

plitudes cn), we start by fixing the time scales, such that T and N depend linearly on174

the remaining parameters cn. We find that the exact choice of time scales is not impor-175

tant, as long as we choose them well separated, and within the range of expected time176

scales. Annual time scales are important over land and shallow ocean areas, while decadal177

and centennial time scales are particularly important in ocean regions with mixing to178

the deeper oceans, and hence higher thermal inertia. Following PH17, we use three dif-179

ferent time scales. They find three time scales to be the smallest number that well de-180

scribes the temperature responses. In addition as explained later, we will assume the ex-181

istence of a fourth time scale explaining slower temperature responses than can be ob-182

served in the records studied in this paper.183

We analyse data from 21 CMIP5 models, available at https://esgf-node.llnl184

.gov/projects/cmip5/. The variables used are global annual averages of surface air tem-185

peratures (tas), and net top-of-atmosphere radiation, computed as the difference between186

incoming shortwave radiation and outgoing longwave and shortwave radiation (rsdt - rlut187

- rsut). To minimize the effect of possible model drifts, the temperature T (t) and the188

variables used to compute the net top of atmosphere radiation N(t) time series are de-189

fined as deviations from linear trends in the corresponding time period of the control run190

(trend values for the abrupt4xCO2 period are given in Table S1, and are very small). With191

this definition we also avoid non-zero means of N(t) in equilibrium, which is the case for192

many models (Forster et al., 2013).193

The shortest time scale τ1 is chosen to be a random number between 1 and 6 years,194

the second time scale τ2 is a random factor between 5 and 10 multiplied by τ1, and the195

third is a randomly chosen time scale between 80 and 1000 years. The random choice196

is done 1000 times for each model, and finally, for each model, we keep the set of τn with197

the best (least squares) fit to the modelled temperature evolution for 150 years after an198

abrupt quadrupling of CO2. The resulting parameters are dependent on the length of199

the time series used. If using longer time series the longest time-scale responses may change200

the most, but these are also the least important for our 21st century analyses.201

The temperature response for these step-forcing experiments can be found by com-
puting the integrals in Eq. (9) with a constant forcing F4xCO2

for t > 0. This integral
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results in

T4xCO2
(t) =

K∑
n=1

an(1− e−t/τn) (10)

where an = cnτnF4xCO2
is the equilibrium temperature of each component, and the equi-202

librium climate sensitivity (ECS) is defined as 1
2

∑K
n=1 an (equilibrium response to a dou-203

bling of CO2).204

The expression for N is derived as:205

N4xCO2(t) = F4xCO2 +

K∑
n=1

(λnTn(t))

= F4xCO2
+

K∑
n=1

(
λnan(1− e−t/τn)

)
= F4xCO2

+

K∑
n=1

λnan −
K∑
n=1

λnane
−t/τn

= −
K∑
n=1

λnane
−t/τn

where we in the last step set that F4xCO2
+
∑K
n=1 λnan = 0, due to the constraint that206

N → 0 when t→∞. Introducing the notation that bn = −anλn gives us N4xCO2
(t) =207 ∑K

n=1Nn(t) =
∑K
n=1 bne

−t/τn , and F4xCO2
= −

∑K
n=1 λnan =

∑K
n=1 bn.208

The parameters an, bn could be found using linear regression, but that does some-209

times violate the physical assumption that these should have the same sign as the forc-210

ing. Therefore we have used the non-negative least squares algorithm to ensure positive211

parameters. This is used only for finding an, and the resulting temperature responses212

are shown in Figure 1 b). This method could in principle also have been used to find bn,213

but this does not seem to provide a sufficiently good fit on the short scales. Instead, λn214

are determined in a Gregory plot, and then used to compute bn = −λnan.215

2.3 Algorithm for estimating λn216

The λn, n = 1, . . . ,K are all determined from linear fits in a Gregory plot, as217

shown in Figure 1 a). We start with estimating λ3 corresponding to time scale τ3, then218

we estimate λ2, and finally λ1. We assume that the sum
∑3
n=1 an underestimates the219

equilibrium response, since the sum excludes the response on the multi-millennial scale220

τ4. However, we assume τ4 is so large that we can make the following approximations221

for t ≤ 150 years:222

T4(t) = a4

(
1− e−t/τ4

)
≈ 0 (11)

N4(t) = b4e
−t/τ4 ≈ b4 (12)

Hence T (t) ≈
∑3
n=1 Tn(t) and N(t) ≈ b4+

∑3
n=1Nn(t), where b4 could be interpreted223

as a constant heat flux going into the deeper oceans, hereby not leading to surface warm-224

ing on short time scales. We made the somewhat arbitrary choice of setting τ4 = 5000225

years, and assume λ4 = λ3. The results are not sensitive to the choice of τ4 as long as226

the approximations in Eqs. (11) and (12) hold. In the 150 year long runs considered in227

this paper, we have no information about λ4, but longer runs show that the feedback pa-228

rameter changes little on the longer time scales (M. Rugenstein et al., 2020).229

Determining λ3: We consider only temperatures larger than the equilibrium tem-230

perature of the first two components, such that T1(t) + T2(t) ≈ a1 + a2, and we have:231

N(t) ≈ −λ3(a3−T3(t))+b4. The total temperature is therefore approximated by T (t) ≈232
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a1+a2+T3(t), resulting in N(t) ≈ −λ3(a1+a2+a3−T (t))+b4. This shows that N is233

approximately a linear function of T with slope λ3 for T > a1 + a2. Therefore, λ3 is234

computed by linear regression of these points, and the equilibrium temperature found235

by following this line until N = 0. This equilibrium estimate should be higher than
∑3
n=1 an,236

and the difference is a4. Whenever the unphysical result a4 < 0 is obtained, we exclude237

the chosen time scales from our analysis.238

Determining λ2: First we subtract our estimates of T3(t), T4(t) and N3(t), N4(t)239

from the time series T (t) and N(t), respectively. We then obtain estimates of T1(t) +240

T2(t) and N1(t)+N2(t), and these points are the dark gray dots in Figure 1a). For a1 <241

T1(t) + T2(t) < a1 + a2, T1(t) + T2(t) is approximately a1 + T2(t), and should equal242

the equilibrium value a1 + a2 when N1(t) +N2(t) = 0. In this range, N1(t) +N2(t) ≈243

−λ2(a2−T2(t)), approximately linearly related to T1(t) +T2(t). Therefore, λ2 is esti-244

mated using a least-squares algorithm forcing the linear fit to go through the point (a1+245

a2, 0).246

Determining λ1: We subtract estimates of (T2(t), N2(t)) from the dark gray dots247

to obtain estimates of T1(t) and N1(t) (light gray dots in Figure 1). We have now N1(t) ≈248

−λ1(a1−T1(t)), and we can, as previously, use least squares to compute λ1, forcing the249

linear fit to pass the point (a1, 0).250

In the least squares fits, we also include an upper time limit to the set of points251

to be included in the calculation. This limit is set to the first time step after reaching252

99% of the equilibrium temperature of the component of interest. In this way, our slope253

is associated with the response on the particular time scale τn, and little influenced by254

the fluctuations around the equilibrium values. Changing this limit to e.g. 90% or 95%255

has only minor effects on the results. Feedback parameters associated with fluctuations256

around the base state, or more precisely, radiative restoring coefficients are studied in257

several papers (Colman & Power, 2010; Colman & Hanson, 2013; Lutsko & Takahashi,258

2018; Bloch-Johnson et al., 2020). Depending on the model, they can be similar or dif-259

ferent from those associated with the final fluctuation after a quadrupling of CO2 (M. Ru-260

genstein et al., 2020), and they may also differ from feedbacks associated with forced re-261

sponses (e.g. Zhou et al., 2015; Dessler & Forster, 2018).262

When all an, λn are estimated, we compute bn = −λnan and we finally have our263

estimate of F4xCO2
=
∑4
n=1 bn. That is, the sum of the initial radiative imbalance of264

all 4 components.265

2.4 New estimates of effective forcing time series266

Using our parameter estimates from the previous subsections, we can for any ex-267

periment use the global mean evolutions of T (t) and N(t) to compute a new estimate268

of the effective forcing as follows:269

1. Compute F (t) using F13’s method (a single estimate of λ), and take this as the270

initial estimate of the effective forcing.271

2. Use this forcing estimate and amplitudes cn = an
τnF4xCO2

estimated from 4xCO2272

experiments to compute the components Tn(t) from Eq. (3) by performing con-273

volution integrals.274

3. A new estimate of F (t) can then be computed as:

F (t) = N(t)−
∑
n

λnTn(t) (13)

4. Repeat steps 2-3 until convergence of F (t). We have used 20 iterations.275

We demonstrate how the method can be applied to study the forcing for 1% CO2276

experiments, the historical period and the four representative concentration pathways277

(RCPs) RCP2.6, RCP4.5, RCP6.0 and RCP8.5.278
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Table 1. Estimated parameters, where we define F2x and T2x to be half the forcing and equi-

librium temperature estimated for a quadrupling of CO2. The parameters in parentheses (−λ),

(F2x) and (T2x) are estimated from a single linear regression over years 1-150 in a Gregory plot.

The results differ slightly from the numbers reported from the Gregory method by Andrews

et al. (2012), possibly because of minor differences in the way global annual average values are

constructed. For one model (GFDL-ESM2G) the best fit consists of two exponential responses,

where we estimate a2 = 0 and report λ2 = b2/a2 as ’NaN’.

τ1 τ2 τ3 −λ1 −λ2 −λ3 (−λ) F2x (F2x) T2x (T2x)

ACCESS1-0 2.43 12.79 231.10 1.30 1.12 0.56 0.78 3.72 2.97 4.33 3.83
ACCESS1-3 1.13 5.80 150.10 1.46 1.30 0.56 0.82 3.60 2.89 4.12 3.53
CanESM2 2.86 26.39 279.11 1.30 1.01 0.91 1.04 4.24 3.83 3.83 3.69
CCSM4 1.04 5.52 197.28 1.32 1.77 0.90 1.18 4.02 3.47 3.19 2.94
CNRM-CM5 1.45 10.71 392.15 1.38 1.09 1.22 1.14 3.87 3.71 3.20 3.25
CSIRO-Mk3-6-0 1.62 11.29 308.98 1.86 1.12 0.41 0.63 3.94 2.58 4.94 4.08
GFDL-CM3 3.28 32.58 98.81 1.21 0.80 0.63 0.75 3.61 2.99 4.24 3.97
GFDL-ESM2G 2.98 17.50 291.97 1.76 NaN 0.90 1.29 3.65 3.09 2.67 2.39
GFDL-ESM2M 1.03 5.77 240.02 1.52 1.58 1.22 1.38 3.58 3.36 2.52 2.44
GISS-E2-H 1.56 10.43 186.27 2.02 1.83 1.40 1.65 4.21 3.81 2.39 2.31
GISS-E2-R 1.51 10.61 232.40 2.98 1.02 1.42 1.79 5.09 3.78 2.25 2.11
HadGEM2-ES 1.01 8.39 367.62 1.96 0.89 0.35 0.63 4.02 2.90 5.91 4.61
inmcm4 1.02 5.65 597.43 1.90 1.48 1.28 1.43 3.18 2.98 2.14 2.08
IPSL-CM5A-LR 1.72 16.54 163.83 1.03 0.84 0.58 0.75 3.43 3.10 4.55 4.13
IPSL-CM5B-LR 1.21 8.01 80.30 2.39 1.11 0.91 1.02 3.64 2.64 2.68 2.60
MIROC-ESM 1.78 11.32 266.35 1.96 0.92 0.68 0.91 5.37 4.26 5.21 4.67
MIROC5 2.77 15.17 89.28 1.72 1.43 1.36 1.52 4.38 4.13 2.80 2.72
MPI-ESM-LR 1.81 9.20 202.56 1.30 1.50 0.86 1.13 4.53 4.09 3.91 3.63
MPI-ESM-MR 1.02 6.23 158.54 2.27 1.45 0.94 1.18 5.15 4.07 3.67 3.46
MRI-CGCM3 1.42 11.61 233.73 2.22 1.34 0.96 1.25 4.05 3.24 2.76 2.60
NorESM1-M 1.75 9.34 273.12 1.87 1.52 0.78 1.11 3.88 3.10 3.17 2.80

Model mean 1.73 11.73 231.26 1.73 1.28 0.90 1.12 4.04 3.38 3.50 3.20
Standard deviation 0.69 6.58 115.35 0.45 0.30 0.31 0.31 0.56 0.50 1.02 0.78

3 Results279

The results of the linear response fit for T (t) and N(t) following an abrupt qua-280

drupling of CO2 are given for the model NorESM1-M in Figure 1, and the estimated pa-281

rameters are listed in Table 1. We note from Figure 1a) that both the forcing and equi-282

librium temperature estimates are higher than when obtained from a straight line fit.283

The narrow spread of the light blue lines also indicate that the choice of time scales is284

of little importance, and hence not affecting the overall conclusions. Similar plots are285

shown for the other models listed in Table 1 in the Supporting information. The uncer-286

tainty in both the forcing estimate and ECS estimate vary substantially from model to287

model. Models with a rapid initial warming, such as GISS-E2-R, have fewer points con-288

straining the regression estimate for the shortest time scale, implying larger uncertainty289

of the forcing.290

An overview of all our estimates of the 4xCO2 forcing is presented in Figure 2. In291

addition, we compare our forcing estimates to regression estimates done for years 1-20292

and years 1-150. In all except one model, the 1-20 year regression gives a higher estimate293
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Figure 1. Results for NorESM1-M: a) The black dots and line is a conventional Gregory

plot, the light blue lines (recognized as light-blue shading) are our fits to the black points with

1000 different choices of time scales, and the dark blue fit is when using the best (least squares)

fits for the temperature in b). Vertical blue lines are the sums of equilibrium temperatures∑m
n=1 an, m = 1, 2, 3. The dark (light) gray dots are N vs. T after subtracting components as-

sociated with the third (and second) time scales, and the dashed blue lines are fits to these dots.

b) The black curve is the climate model temperature output, and the light blue curves are best

fits to the modelled temperature using 1000 different choices of time scales. The dark blue curve

is the best fit, and the dashed blue curves are the individual components due to the four time

scales which are summed to obtain this fit. c) As panel b), but for the change in net top of the

atmosphere radiation.

than the 1-150 year regression. And in all but two models, our best forcing estimate is294

even higher than estimates obtained from regression of years 1-20. The fixed-SST 4xCO2295

forcing estimates reported by Andrews et al. (2012) are higher than regression-based es-296

timates over 150 years for most of the models where this is available, but smaller than297

our new forcing estimates.298

Using global annual means of N(t) and T (t) from the coupled models, we continue299

by testing the algorithm described in Section 2.4 for 1% CO2 experiments. In these ex-300

periments we expect a linearly increasing forcing, because to first order, for small increases301

in CO2 the forcing depends logarithmically on the CO2 concentration (Myhre et al., 1998)302
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Figure 2. A summary of the 4xCO2 forcing estimates made in this paper, to provide an

overview of their uncertainties and how they compare to regression estimates. The 1%CO2 esti-

mates are the linear fits to the estimated 1% CO2 forcing time series evaluated in year 140, the

time of quadrupling (except for the models GFDL-ESM2G and GFDL-ESM2M, where the esti-

mates are instead twice the doubling estimates in year 70). Fixed-SST estimates are taken from

Andrews et al. (2012) for the models where these are available.

(see limitations of this discussed in Byrne and Goldblatt (2014); Etminan et al. (2016);303

Gregory et al. (2015); Bloch-Johnson et al. (2021)). A linear increase is indeed what we304

observe for NorESM1-M in Figure 3, for both the initial and the new forcing estimate.305

For the new estimate we note a high consistency between the climate model tempera-306

ture output and the linear response to the forcing. This result suggests that our method307

can successfully construct forcing estimates that well predicts the surface temperature308

responses. Results for other models are similar, and are shown in the supporting infor-309

mation. After 140 years of 1% increase the CO2 concentration is quadrupled, and the310

linear fit to the 1% CO2 forcing time series evaluated in year 140 is yet another estimate311

of F4xCO2 , which we include in Figure 2. For most models this estimate is close to our312

best estimates determined from abrupt4xCO2 experiments.313

Next we apply the algorithm to the historical and RCP experiments to compute314

forcing estimates for the time period 1850 - 2100. Our new forcing estimate for the his-315

torical and RCP8.5 experiment for NorESM1-M diverges from the forcing estimate us-316

ing a single feedback parameter when approaching the end of the 21st century (Figure317

4a). The difference is about 2 W/m2 in 2100, and smaller differences are seen during the318

historical period. As a result, the sum of the linear temperature responses we compute319

by convolving with the two forcing estimates according to Eq. (3) also diverge (dashed320

curves in Figure 4b), reaching a difference of almost 1 degree in year 2100. We note that321

the linear response to our new forcing (dashed blue curve) is remarkably close to the cli-322

mate model temperature output, indicating that our alternative forcing definition and323

linear response assumption is the better approximation for this model. This result holds324

also for the other RCP scenarios (see Figures S109 - S111 in the supporting information).325

By computing the time-varying feedback parameter λ(t) using Eq. (5), we find a326

generally higher magnitude than the single estimate of λ. During the historical period327

the global temperature response is often close to 0, causing high fluctuations in the es-328

timated λ(t). The estimate becomes more stable for the future scenarios, where we find329

a slowly decreasing magnitude of λ(t), consistent with a higher weighting of the slow re-330

sponses. For all years in the experiment, the magnitude of λ(t) is still considerably higher331
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Figure 3. Results for NorESM1-M: a) The black curve is the forcing computed as in F13,

using a single and constant value of λ. The gray curves are the iterations of the algorithm de-

scribed in section 2.4, using three different λ’s, and the blue curve the new forcing obtained by

convergence after 20 iterations. The dashed lines are linear fits to the initial and final forcing

estimates. b) The thick black curve is the modelled temperature change, and the black and blue

dashed curves the linear responses to the black and blue curves in a), applying the same response

function as estimated in Figure 1 b).

than the single regression estimate, hence the term −λ(t)T (t) gives a higher contribu-332

tion to the forcing estimate. This effect on the forcing is however only visible when the333

temperature response is strong.334
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Figure 4. Similar to Figure 3, but for NorESM1-M historical and RCP8.5 experiment.

Repeating the analysis in Figure 4 for all models and RCP scenarios shows that335

the method presented here works well for many models, but not all (Figures in support-336

ing information). A summary of these results are given in Figure 5, where panel a) com-337

pares the mean estimated forcing over years 2091-2100 using the two different methods.338

The names of the scenarios are constructed to reflect the intended forcing in the end of339

the 21st century (van Vuuren et al., 2011), and these forcing levels are also shown for340

comparison. We find that model estimates using F13’s method are centered at lower val-341

ues, while our new forcing estimates are centered close to or slightly above the intended342

levels. However, the intended forcing is difficult to prescribe as it depends on model-specific343

fast adjustments, so we can only expect these to be approximate values. The GISS-E2-344
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Figure 5. Estimated year 2095 forcing (a) and temperature difference between the result of

the linear response and the climate model output (b). For each scenario, the left points show

results using F13’s method, and the right points show results using our method. Values in year

2095 are computed by averaging over the ten years 2091-2100. The forcing levels 2.6, 4.5, 6.0 and

8.5 W/m2 are also shown for reference in a) as horizontal black lines.

R model might be considered as an outlier, and its response to abrupt4xCO2 is also vi-345

sually different from the other models.346

Consistent with the increase in forcing level, we observe an increase in the estimated347

linear temperature responses in panel b). The linear responses to F13 forcing are mostly348

lower than the climate model temperature output, and the responses to our new forc-349

ing are scattered around, with a center slightly above. Some deviation from the climate350

model temperature is expected due to internal variability, and to assess this expected351

uncertainty, we refer to the model spread of the Community Earth System Model Large352

Ensemble (CESM-LE) (Kay et al., 2015). Here 40 model simulations for the historical353

+ RCP8.5 scenarios from the same model show a model spread of around 0.4 K, which354

is attributed to internal variability.355

Using F13 forcing, the linear response is within these uncertainties for only a few356

models. For the new forcing, more models are within this uncertainty range than out-357

side. There are also other uncertainties to consider, e.g. associated with our parameter358

estimation method, probably making the expected uncertainty interval larger than 0.4359

K. The uncertainty due to internal variability is also model-dependent (Olonscheck et360

al., 2020), hence it is difficult to identify models where our linear response hypothesis361

and forcing estimation method fail.362

We note also that the uncertainty of the future scenario forcing estimates is strongly363

related to the uncertainty of the 4xCO2 forcing, since both are highly influenced by λ1364

(the inter-model correlation between our 4xCO2 and RCP8.5 forcing is 0.82). This is par-365

ticularly apparent for the GISS-E2-R model, where the response of the first few years366

is so abrupt that forcing estimates, and hence linear responses, are uncertain with both367

our and F13’s estimation method.368

In the two models CNRM-CM5 and MIROC5 the two forcing estimates are very369

similar, because the feedback is close to constant for all years. For these models we find370

also that the forcing estimate based on a single feedback parameter gives a slightly bet-371

ter estimate of the linear response. So if the global feedback in fact is constant for all372

years considered here, using all years in the regression should give a more certain esti-373

mate of the feedback parameter, and therefore also more certain forcing estimates.374
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For the three models GFDL-ESM2G, GFDL-ESM2M, and inmcm4 we find that375

our method is performing less well (see Figures in the Supporting information). The rea-376

son is probably linked to the almost constant 4xCO2 temperature responses over years377

∼ 20− 70, ∼ 20− 60 and ∼ 20− 120, respectively. Our linear response with exponen-378

tially relaxing temperatures always predicts continuously increasing temperatures, which379

therefore poorly approximates these 4xCO2 global temperatures. The flattening of the380

response could possibly be linked to changes in the ocean circulation, e.g. a slowdown381

of the Atlantic meridional overturning circulation. In that case, linear systems with com-382

plex eigenvalues giving oscillatory responses could be an alternative solution. Hence, we383

will not disregard linear response in these results, but leave further testing of including384

oscillations in the responses to future studies.385

4 Discussion386

For most abrupt4xCO2 experiments the Gregory plot follows a convex curve, hence387

our forcing estimates are mostly higher than those found from simple regression anal-388

yses over 150 years (Andrews et al., 2012), or using only the first 20 years (Andrews et389

al., 2015; Larson & Portmann, 2016). As suggested by PH17, this convexity could be ex-390

plained by considering different feedback parameters associated with the different time391

scales of the responses. The time-scale dependence of the feedback parameter could be392

due to feedbacks varying in strength at different time scales, or it could be regionally dif-393

ferent feedbacks weighted differently with time in the global average when the pattern394

of surface warming evolves. Since it is likely a combination of these circumstances, an395

interpretation of our parameters could be summarized into: λ1: Average of annual-scale396

feedbacks in regions with strong annual-scale responses, λ2: Average of decadal-scale feed-397

backs in regions with strong decadal-scale responses, λ3: Average of centennial-scale feed-398

backs in regions with strong centennial-scale responses. Or as we come back to later, this399

description could also be considered an approximation of feedbacks changing with cli-400

mate state.401

The fixed-SST estimation method does not include time-variation and uncertain-402

ties in the feedback parameter. Instead, extra model simulations are made with SSTs403

fixed to climatological values, and the top of atmosphere radiative imbalance is diagnosed.404

A drawback of this method is that atmospheric and land surface temperatures are al-405

lowed to change. Hence the global temperature anomaly is not 0 when the radiative im-406

balance is diagnosed, and the forcing estimate is therefore contaminated with fast feed-407

back processes associated with land warming. The fixed-SST estimates should be more408

comparable to our radiative imbalance after some months of adjustments of T (t) and N(t),409

and Figure 2 shows that they are indeed lower than our estimates for the models where410

they are available.411

Ideally the fixed-SST method should be extended to fix the land surface temper-412

atures also, in order to provide a consistent framework where forcing and feedbacks are413

well separated. Due to technical difficulties, this has only been done for one complex global414

climate model so far (Andrews et al., 2021). As discussed by Andrews et al. (2021), sev-415

eral methods have been suggested to correct fixed-SST estimates to account for effects416

of land temperature changes. One could for instance extrapolate the estimate to T =417

0 using Eq. (2) given that we know the feedback parameter, or use radiative kernels (Richardson418

et al., 2019). Richardson et al. (2019) call these estimates Adjusted Effective radiative419

forcing, and find also these to be the best predictors for global surface temperatures be-420

cause they have the efficacies closest to 1.421

Efficacy factors are introduced to correct for differences in how strong the climate422

response is to different forcing agents, due to e.g differences in rapid adjustments, or ef-423

fects of a forcing being concentrated in certain regions. Forcing in experiments consid-424

ered in this study are dominated by CO2, a well-mixed greenhouse gas. Other forcings425
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present during the historical period and future scenarios could be more spatially inho-426

mogeneous, e.g. aerosols, and contribute to different spatial patterns of the response. We427

neglect this effect when applying the parameters estimated for abrupt4xCO2 experiments428

to other experiments, and assume the regional patterns to evolve similarly for different429

experiments. During the historical period, a changing feedback parameter will only re-430

sult in weak changes in our forcing estimate since the temperature responses are still rel-431

atively weak. But if applying our method to strong forcings other than CO2, the pos-432

sible effect of efficacies should be investigated first.433

When estimating a time-varying forcing, an alternative to fixing the SSTs to cli-434

matological values (as employed in RFMIP) is to prescribe the SSTs to e.g. the simu-435

lated historical values from the coupled model (as employed in AerChemMIP). These436

methods produce relatively similar results (Forster et al., 2016), and will both have a lower437

uncertainty than regression-based estimates. Regression-based estimates are influenced438

by changes in T (t) arising due to internal variability, e.g. El Niño events, which could439

drive changes in N(t). In prescribed-SST methods the temperature-driven changes in440

N(t) is subtracted, resulting in a reduced noise level in the forcing estimate (Forster et441

al., 2013).442

The theory described in this paper does not include an explicit temperature-dependence443

of the feedback parameter (Rohrschneider et al., 2019; Bloch-Johnson et al., 2021), since444

it is assumed that Eq. (6) is linear and K is independent of temperature. However, our445

estimation algorithm does not clearly distinguish between a time-scale dependence and446

a temperature-dependence of the feedbacks, since these dependencies are intrinsically linked.447

In particular, the strong temperature responses to 4xCO2 is invoked on the long time448

scales, where the responses to the shorter time scales have already been realised, hereby449

affecting the feedback parameters if they have temperature dependence. If the 4xCO2450

responses have temperature-dependent feedbacks, the model needed to explicitly explain451

them becomes nonlinear, and our linear approach may perform less well in providing re-452

sponses to other scenarios with weaker or stronger temperature responses than that of453

4xCO2. We believe this only causes smaller errors in the temperature responses stud-454

ied here, but it is a potential explanation for our forcing and responses for the future sce-455

narios being slightly overestimated.456

Linear response theory is widely used to describe responses of climate variables.457

If a forcing record is known, linear response is a computationally cheap tool to estimate458

e.g. temperature responses compared to running a fully coupled climate model. Many459

studies assume a Green’s function taking a certain form, with unknown parameters that460

need to be estimated. For box models taking the form of Eq. (6) the Green’s function461

is a sum of exponential functions, but power-laws with fewer parameters have also been462

used with success (Rypdal & Rypdal, 2014; Fredriksen & Rypdal, 2017). Linear responses463

to RCP forcing are often studied using a non-parametric approach developed by Good464

et al. (2011). In the supporting information we show how this method relates to our lin-465

ear model. This method was used in Good et al. (2013) to find the response to RCP sce-466

narios using the forcing computed by F13. They use this to simulate only differences be-467

tween RCP scenarios, while we attempt to simulate the full temperature evolution since468

the historical runs started until year 2100. Another difference to our approach is that469

we obtain a smoother estimate of the expected response to forcing, with fluctuations only470

coming from the forcing, while the responses of Good et al. (2013) are themselves influ-471

enced by internal variability.472

Larson and Portmann (2016) note that the non-parametric model written in ma-473

trix form: Y = X∆F/F0 can be inverted to estimate the forcing increments ∆F, which474

can further be summed up to find the forcing time series. In this equation Y is a vec-475

tor of the time evolution of a climate variable, and X is a matrix containing the same476

variable in the abrupt4xCO2 experiment. Their resulting forcing estimate depends also477

on the forcing estimate F0 from the abrupt4xCO2 experiment, which introduces a po-478
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tential source of bias in the estimate. Internal variability from X and Y can lead to a479

very noisy estimate, but some of this is removed when they replace the original abrupt4xCO2480

time series with a fitted exponential response. With our method we also greatly reduce481

the influence of internal variability from the experiment where the forcing is to be es-482

timated by smoothing it with our linear response to the estimated forcing. So we can483

say that there is a trade-off between a noisy estimate and having more parameters to be484

estimated. The method by Larson and Portmann (2016) is treated as an alternative to485

the F13 method, but here we show how the F13 method and the linear response can be486

put into one framework. While Larson and Portmann (2016) can demonstrate that their487

method is not directly dependent of a changing feedback parameter, our method also has488

the power to explain why this can be the case.489

5 Conclusions490

The method presented here cleanly separates between forcing and responses to forc-491

ing, where the estimated parameters from abrupt4xCO2 experiments are used to deter-492

mine forcing and surface temperature responses for other experiments. The resulting RCP493

forcing estimates at the end of the 21st century is closer to the target levels than pre-494

vious estimates by F13. Our high forcing estimates are strongly influenced by the high495

magnitude of the feedback parameter λ1 at annual time scales. Unfortunately this value496

is uncertain, as it depends crucially on the first few years of adjustment. Using more en-497

semble members of abrupt4xCO2 experiments may help constrain the estimate of λ1 (M. Ru-498

genstein, Gregory, et al., 2016). More members would also constrain regression estimates499

of forcing in general (Forster et al., 2016).500

Forcing based on fixed-SST methods is often higher than the regression estimate501

over 150 years (Andrews et al., 2012; Tang et al., 2019), has a smaller uncertainty and502

is more computationally efficient (Forster et al., 2016). However, these forcing estimates503

are only available for a few models and scenarios in CMIP5. They will be available for504

more models and scenarios in CMIP6 (Smith et al., 2020), but far from all. The forc-505

ing estimation method presented here could therefore be a valuable supplement in the506

cases where fixed-SST forcing is unknown, particularly for models where a linear rela-507

tion between N and T is a poor approximation. Improved forcing estimates could help508

to quantify the dependency of forcing value on CO2 concentration in studies compar-509

ing e.g. 0.5x, 2x, 4x, 8x CO2, and temperature dependence of feedbacks (Bloch-Johnson510

et al., 2021).511

Putting forcing, linear responses, and nonconstancy of the global feedback param-512

eter into a unified framework provides also an important insight into why the traditional513

regression-based forcing estimates may be too low. Furthermore, it suggests how these514

methods can be improved to provide better forcing estimates, resolving the problems caused515

by assuming a constant feedback parameter in regression-based methods (Forster et al.,516

2016).517
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Text S1: Deriving temperature response

To show that Eq. (7) is the solution of Eq. (6), we start by rewriting to:

dT(t)

dt
= C−1KT(t) + C−1F(t)

We consider first the homogeneous problem

dT(t)

dt
= AT(t)

where A = C−1K. The matrix of possible solutions xi(t) to this problem is the funda-

mental matrix

Φ(t) = [x1(t) x2(t) . . . xn(t)].

eAt is a fundamental matrix when A consists of constant coefficients, since

dΦ(t)

dt
=

deAt

dt
= AeAt = AΦ(t).

According to the variation of parameters formula for first-order linear systems dx
dt

=

P(t)x + f(t), a particular solution is given by

xp(t) = Φ(t)

∫
Φ(t)−1f(t)dt

(see e.g. Edwards and Penney (2007)). For our problem, this means that the particular

solution is

xp(t) = eAt

∫
e−AtC−1F(t)dt.

Given an initial value T(0) = T0, the full solution can be written as

T(t) = eC
−1KtT0 +

∫ t

0

e(t−s)C−1KC−1F(s) ds,

or alternatively, if we know the full history of the system,

T(t) =

∫ t

−∞
e(t−s)C−1KC−1F(s) ds.
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Text S2: Relation to non-parametric impulse-response models

To find the relation between linear model considered here and linear models considered

in e.g. Larson and Portmann (2016); Good, Gregory, and Lowe (2011); Good, Gregory,

Lowe, and Andrews (2013), we start with the general equation from the end of Section

2.1: T (t) =
∫ t

−∞G(t − s)F (s)ds. As noted by Hasselmann, Sausen, Maier-Reimer, and

Voss (1993), such a convolution integral can also describe a general climate state variable

Φ(t) that responds linearly to a forcing:

Φ(t) =

∫ t

0

G(t− s)F (s)ds (1)

assuming F (t) = 0 for t ≤ 0. If the forcing takes the form of a unit step-function, which

is 0 for t ≤ 0 and 1 for t > 0, the climate response is:

R(t) =

∫ t

0

G(t− s)ds

and dR
dt

= G(t). By performing an integration by parts, we note that Eq. (1) can be

rewritten to

Φ(t) =

∫ t

0

dF

ds
R(t− s)ds (2)

where the additional term R(0)F (t) − R(t)F (0) = 0 because R(0) = 0 and F (0) = 0.

Discretizing this integral using time steps of years results in the same type of sum used

by Larson and Portmann (2016); Good et al. (2011, 2013):

Φi =
i∑

j=0

∆FjRi−j (3)

If using a response to a step-forcing ∆Fs instead of the unit response, the response needs

to be normalized by ∆Fs.
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Figure S1. As Figure 1, but for the model ACCESS1-0.
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Figure S2. As Figure 3, but for the model ACCESS1-0.
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Figure S3. As Figure 4, but for the model ACCESS1-0.
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Figure S4. As Figure 4, but for the model ACCESS1-0 and experiment RCP4.5.
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Figure S5. As Figure 1, but for the model ACCESS1-3.
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Figure S6. As Figure 3, but for the model ACCESS1-3.
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Figure S7. As Figure 4, but for the model ACCESS1-3.
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Figure S8. As Figure 4, but for the model ACCESS1-3 and experiment RCP4.5.
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Figure S9. As Figure 1, but for the model CanESM2.
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Figure S10. As Figure 3, but for the model CanESM2.
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Figure S11. As Figure 4, but for the model CanESM2.
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Figure S12. As Figure 4, but for the model CanESM2 and experiment RCP4.5.
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Figure S13. As Figure 4, but for the model CanESM2 and experiment RCP2.6.
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Figure S14. As Figure 1, but for the model CCSM4.
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Figure S15. As Figure 3, but for the model CCSM4.
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Figure S16. As Figure 4, but for the model CCSM4.
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Figure S17. As Figure 4, but for the model CCSM4 and experiment RCP6.0.

1850 1900 1950 2000 2050 2100
t (years)

2

0

2

4

F(
t) 

[W
/m

2 ]

a) Historical and RCP4.5 effective forcing

1850 1900 1950 2000 2050 2100
t (years)

0

1

2

3

T(
t) 

[°
C]

b) Historical and RCP4.5 temperature

Figure S18. As Figure 4, but for the model CCSM4 and experiment RCP4.5.
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Figure S19. As Figure 4, but for the model CCSM4 and experiment RCP2.6.
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Figure S20. As Figure 1, but for the model CNRM-CM5.
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Figure S21. As Figure 3, but for the model CNRM-CM5.
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Figure S22. As Figure 4, but for the model CNRM-CM5.
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Figure S23. As Figure 4, but for the model CNRM-CM5 and experiment RCP4.5.
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Figure S24. As Figure 4, but for the model CNRM-CM5 and experiment RCP2.6.
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Figure S25. As Figure 1, but for the model CSIRO-Mk3-6-0.
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Figure S26. As Figure 3, but for the model CSIRO-Mk3-6-0.
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Figure S27. As Figure 4, but for the model CSIRO-Mk3-6-0.
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Figure S28. As Figure 4, but for the model CSIRO-Mk3-6-0 and experiment RCP6.0.
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Figure S29. As Figure 4, but for the model CSIRO-Mk3-6-0 and experiment RCP4.5.
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Figure S30. As Figure 4, but for the model CSIRO-Mk3-6-0 and experiment RCP2.6.
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Figure S31. As Figure 1, but for the model GFDL-CM3.
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Figure S32. As Figure 3, but for the model GFDL-CM3.

November 5, 2021, 9:27am



X - 20 :

1900 1950 2000 2050 2100
t (years)

4

2

0

2

4

6

8

F(
t) 

[W
/m

2 ]
a) Historical and RCP8.5 effective forcing

1900 1950 2000 2050 2100
t (years)

1

0

1

2

3

4

5

T(
t) 

[°
C]

b) Historical and RCP8.5 temperature

Figure S33. As Figure 4, but for the model GFDL-CM3.
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Figure S34. As Figure 4, but for the model GFDL-CM3 and experiment RCP6.0.
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Figure S35. As Figure 4, but for the model GFDL-CM3 and experiment RCP4.5.
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Figure S36. As Figure 4, but for the model GFDL-CM3 and experiment RCP2.6.
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Figure S37. As Figure 1, but for the model GFDL-ESM2G.
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Figure S38. As Figure 3, but for the model GFDL-ESM2G. Note that in this model CO2

increases only until we reach a doubling after 70 years.
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Figure S39. As Figure 4, but for the model GFDL-ESM2G.
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Figure S40. As Figure 4, but for the model GFDL-ESM2G and experiment RCP6.0.
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Figure S41. As Figure 4, but for the model GFDL-ESM2G and experiment RCP4.5.
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Figure S42. As Figure 4, but for the model GFDL-ESM2G and experiment RCP2.6.
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Figure S43. As Figure 1, but for the model GFDL-ESM2M.
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Figure S44. As Figure 3, but for the model GFDL-ESM2M. Note that in this model CO2

increases only until we reach a doubling after 70 years.
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Figure S45. As Figure 4, but for the model GFDL-ESM2M.
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Figure S46. As Figure 4, but for the model GFDL-ESM2M and experiment RCP6.0.

November 5, 2021, 9:27am



: X - 27

1900 1950 2000 2050 2100
t (years)

2

0

2

4

F(
t) 

[W
/m

2 ]

a) Historical and RCP4.5 effective forcing

1900 1950 2000 2050 2100
t (years)

0.5

0.0

0.5

1.0

1.5

2.0

T(
t) 

[°
C]

b) Historical and RCP4.5 temperature

Figure S47. As Figure 4, but for the model GFDL-ESM2M and experiment RCP4.5.
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Figure S48. As Figure 4, but for the model GFDL-ESM2M and experiment RCP2.6.
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Figure S49. As Figure 1, but for the model GISS-E2-H.
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Figure S50. As Figure 3, but for the model GISS-E2-H.
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Figure S51. As Figure 4, but for the model GISS-E2-H.
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Figure S52. As Figure 4, but for the model GISS-E2-H and experiment RCP6.0.
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Figure S53. As Figure 4, but for the model GISS-E2-H and experiment RCP4.5.
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Figure S54. As Figure 4, but for the model GISS-E2-H and experiment RCP2.6.
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Figure S55. As Figure 1, but for the model GISS-E2-R.
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Figure S56. As Figure 3, but for the model GISS-E2-R.
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Figure S57. As Figure 4, but for the model GISS-E2-R.
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Figure S58. As Figure 4, but for the model GISS-E2-R and experiment RCP6.0.
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Figure S59. As Figure 4, but for the model GISS-E2-R and experiment RCP4.5.
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Figure S60. As Figure 4, but for the model GISS-E2-R and experiment RCP2.6.
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Figure S61. As Figure 1, but for the model HadGEM2-ES.
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Figure S62. As Figure 3, but for the model HadGEM2-ES.
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Figure S63. As Figure 4, but for the model HadGEM2-ES.
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Figure S64. As Figure 4, but for the model HadGEM2-ES and experiment RCP6.0.
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Figure S65. As Figure 4, but for the model HadGEM2-ES and experiment RCP4.5.

November 5, 2021, 9:27am



X - 36 :

1900 1950 2000 2050 2100
t (years)

2

1

0

1

2

3

F(
t) 

[W
/m

2 ]

a) Historical and RCP2.6 effective forcing

1900 1950 2000 2050 2100
t (years)

0.0

0.5

1.0

1.5

2.0

T(
t) 

[°
C]

b) Historical and RCP2.6 temperature

Figure S66. As Figure 4, but for the model HadGEM2-ES and experiment RCP2.6.

November 5, 2021, 9:27am



: X - 37

0 1 2 3 4 5
T [°C]

1

0

1

2

3

4

5

6
N 

[W
/m

2 ]
a1 a1 + a2 a1 + a2 + a3

a) Evolution of top of the atmosphere radiative imbalance and temperature

0 25 50 75 100 125 150
t (years)

0

1

2

3

T(
t) 

[°
C]

b) T following abrupt4xCO2

25 50 75 100 125 150
t (years)

0

2

4

6
N(

t) 
[W

/m
2 ]

c) N following abrupt4xCO2

Figure S67. As Figure 1, but for the model inmcm4.
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Figure S68. As Figure 3, but for the model inmcm4.
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Figure S69. As Figure 4, but for the model inmcm4.
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Figure S70. As Figure 4, but for the model inmcm4 and experiment RCP4.5.
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Figure S71. As Figure 1, but for the model IPSL-CM5A-LR.
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Figure S72. As Figure 3, but for the model IPSL-CM5A-LR.
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Figure S73. As Figure 4, but for the model IPSL-CM5A-LR.
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Figure S74. As Figure 4, but for the model IPSL-CM5A-LR and experiment RCP6.0.

1850 1900 1950 2000 2050 2100
t (years)

2

0

2

4

F(
t) 

[W
/m

2 ]

a) Historical and RCP4.5 effective forcing

1850 1900 1950 2000 2050 2100
t (years)

0

1

2

3

T(
t) 

[°
C]

b) Historical and RCP4.5 temperature

Figure S75. As Figure 4, but for the model IPSL-CM5A-LR and experiment RCP4.5.
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Figure S76. As Figure 4, but for the model IPSL-CM5A-LR and experiment RCP2.6.
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Figure S77. As Figure 1, but for the model IPSL-CM5B-LR.
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Figure S78. As Figure 3, but for the model IPSL-CM5B-LR.
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Figure S79. As Figure 4, but for the model IPSL-CM5B-LR.
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Figure S80. As Figure 4, but for the model IPSL-CM5B-LR and experiment RCP4.5.
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Figure S81. As Figure 1, but for the model MIROC-ESM.
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Figure S82. As Figure 3, but for the model MIROC-ESM.
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Figure S83. As Figure 4, but for the model MIROC-ESM.
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Figure S84. As Figure 4, but for the model MIROC-ESM and experiment RCP6.0.
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Figure S85. As Figure 4, but for the model MIROC-ESM and experiment RCP4.5.
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Figure S86. As Figure 4, but for the model MIROC-ESM and experiment RCP2.6.
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Figure S87. As Figure 1, but for the model MIROC5.
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Figure S88. As Figure 3, but for the model MIROC5.
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Figure S89. As Figure 4, but for the model MIROC5.
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Figure S90. As Figure 4, but for the model MIROC5 and experiment RCP6.0.
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Figure S91. As Figure 4, but for the model MIROC5 and experiment RCP4.5.
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Figure S92. As Figure 4, but for the model MIROC5 and experiment RCP2.6.
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Figure S93. As Figure 1, but for the model MPI-ESM-LR.

20 40 60 80 100 120 140
t (years)

0

2

4

6

8

10

F(
t) 

[W
/m

2 ]

a) 1% CO2 effective forcing

20 40 60 80 100 120 140
t (years)

0

1

2

3

4

5

T(
t) 

[°
C]

b) 1% CO2 temperature

Figure S94. As Figure 3, but for the model MPI-ESM-LR.
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Figure S95. As Figure 4, but for the model MPI-ESM-LR.
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Figure S96. As Figure 4, but for the model MPI-ESM-LR and experiment RCP4.5.
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Figure S97. As Figure 4, but for the model MPI-ESM-LR and experiment RCP2.6.
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Figure S98. As Figure 1, but for the model MPI-ESM-MR.
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Figure S99. As Figure 3, but for the model MPI-ESM-MR.
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Figure S100. As Figure 4, but for the model MPI-ESM-MR.
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Figure S101. As Figure 4, but for the model MPI-ESM-MR and experiment RCP4.5.
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Figure S102. As Figure 4, but for the model MPI-ESM-MR and experiment RCP2.6.
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Figure S103. As Figure 1, but for the model MRI-CGCM3.
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Figure S104. As Figure 3, but for the model MRI-CGCM3.
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Figure S105. As Figure 4, but for the model MRI-CGCM3.

1850 1900 1950 2000 2050 2100
t (years)

2

0

2

4

6

F(
t) 

[W
/m

2 ]

a) Historical and RCP6.0 effective forcing

1850 1900 1950 2000 2050 2100
t (years)

0

1

2

T(
t) 

[°
C]

b) Historical and RCP6.0 temperature

Figure S106. As Figure 4, but for the model MRI-CGCM3 and experiment RCP6.0.
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Figure S107. As Figure 4, but for the model MRI-CGCM3 and experiment RCP4.5.
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Figure S108. As Figure 4, but for the model MRI-CGCM3 and experiment RCP2.6.
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Figure S109. As Figure 4 with the model NorESM1-M, but for the experiment RCP6.0.
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Figure S110. As Figure 4 with the model NorESM1-M, but for the experiment RCP4.5.
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Figure S111. As Figure 4 with the model NorESM1-M, but for the experiment RCP2.6.
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Table S1. The piControl trends computed over the 150 year period after branching of the

abrupt4xCO2 experiment. Temperature trends have units ◦C per year, and the top of atmosphere

radiation components have units W/m2 per year.

∆T/year ∆rlut/year ∆rsdt/year ∆rsut/year
ACCESS1-0 1.05e-03 1.52e-03 1.66e-06 -1.31e-03
ACCESS1-3 4.76e-04 1.14e-03 1.79e-07 -6.73e-04
CanESM2 1.80e-04 2.02e-04 9.70e-17 -2.18e-04
CCSM4 -5.03e-04 -4.86e-04 -1.28e-15 7.58e-04
CNRM-CM5 1.16e-03 1.61e-03 -1.09e-06 -9.32e-04
CSIRO-Mk3-6-0 6.71e-04 8.82e-04 -3.76e-09 -1.09e-03
GFDL-CM3 8.09e-04 1.51e-03 -1.29e-15 -9.08e-04
GFDL-ESM2G -1.04e-03 -1.86e-03 0.00e+00 1.93e-03
GFDL-ESM2M -1.11e-04 -3.93e-04 0.00e+00 -3.21e-04
GISS-E2-H 8.76e-04 9.77e-04 -1.02e-15 -6.38e-04
GISS-E2-R 5.33e-04 7.95e-04 -3.75e-16 -6.00e-04
HadGEM2-ES -2.84e-04 1.06e-04 0.00e+00 1.67e-04
inmcm4 -7.63e-04 -1.18e-03 1.48e-06 1.03e-03
IPSL-CM5A-LR -3.86e-04 -3.81e-04 1.02e-10 1.01e-03
IPSL-CM5B-LR 1.36e-03 2.84e-03 -2.39e-10 -1.62e-03
MIROC-ESM 6.67e-04 7.70e-04 -2.85e-06 -9.82e-05
MIROC5 -3.60e-04 -2.79e-04 4.66e-10 6.02e-04
MPI-ESM-LR -5.64e-05 2.76e-04 -8.26e-07 -1.28e-04
MPI-ESM-MR 2.89e-05 8.32e-05 -1.40e-07 -1.91e-05
MRI-CGCM3 2.93e-04 1.07e-03 2.75e-06 -4.39e-04
NorESM1-M -4.72e-04 -9.77e-04 1.14e-10 3.36e-04
min -1.04e-03 -1.86e-03 -2.85e-06 -1.62e-03
max 1.36e-03 2.84e-03 2.75e-06 1.93e-03
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