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Abstract

Shallow nearshore coastal waters provide a wealth of societal, economic and ecosystem services, yet their topographic structure

is poorly mapped due to a reliance upon expensive and time intensive methods. Space-borne bathymetric mapping has helped

address these issues, but has remained dependent upon in situ measurements. Here we fuse ICESat-2 lidar data with Sentinel-2

optical imagery, within the Google Earth Engine geospatial cloud platform, to create wall-to-wall high-resolution bathymetric

maps at regional-to-national scales in Florida, Crete and Bermuda. ICESat-2 bathymetric classified photons are used to train

three Satellite Derived Bathymetry (SDB) methods, including Lyzenga, Stumpf and Support Vector Regression algorithms. For

each study site the Lyzenga algorithm yielded the lowest RMSE (approx. 10-15%) when compared with in situ NOAA DEM

data. We demonstrate a means of using ICESat-2 for both model calibration and validation, thus cementing a pathway for

fully space-borne estimates of nearshore bathymetry in shallow, clear water environments.
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Abstract 23 

Shallow nearshore coastal waters provide a wealth of societal, economic and ecosystem services, 24 

yet their topographic structure is poorly mapped due to a reliance upon expensive and time 25 

intensive methods. Space-borne bathymetric mapping has helped address these issues, but has 26 

remained dependent upon in situ measurements. Here we fuse ICESat-2 lidar data with Sentinel-27 

2 optical imagery, within the Google Earth Engine geospatial cloud platform, to create wall-to-28 

wall high-resolution bathymetric maps at regional-to-national scales in Florida, Crete and 29 

Bermuda. ICESat-2 bathymetric classified photons are used to train three Satellite Derived 30 

Bathymetry (SDB) methods, including Lyzenga, Stumpf and Support Vector Regression 31 

algorithms. For each study site the Lyzenga algorithm yielded the lowest RMSE (approx. 10-32 

15%) when compared with in situ NOAA DEM data. We demonstrate a means of using ICESat-33 

2 for both model calibration and validation, thus cementing a pathway for fully space-borne 34 

estimates of nearshore bathymetry in shallow, clear water environments.  35 

Plain Language Summary 36 

Knowledge of the depth of the shallow seafloor in coastal waters is needed for a wide range of 37 

applications, including navigation and habitat monitoring. Mapping water depth in these 38 

locations is expensive, arduous and sometimes dangerous. To overcome some of these 39 

challenges, we used multiple satellite datasets to map water depth in several unique coastal 40 

environments. ICESat-2 lidar data is able to sample the depth of the seabed along straight lines in 41 

clear water and is then combined with other satellite imagery to derive wall-to-wall water depth 42 

maps using well known regression algorithms. The results of these models are accurate maps of 43 

water depth from space, containing a level of detail that can exceed some field collected 44 

measurements. 45 
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1 Introduction 46 

Accurate and current bathymetric maps are essential for informing coastal management 47 

decision making. Emerging demands of the blue economy will open up new opportunities, but 48 

could also have significant impacts on coastal regions and coastal habitats around the world 49 

(LiVecci et al, 2019). Several key markets that will demand resources from the nearshore 50 

environment have been identified for future and continued development including, marine 51 

navigation, aquaculture, coastal resilience and disaster recovery, and isolated power supply. 52 

Technological innovation that allows for contemporary nearshore and seafloor maps with regular 53 

repeat observations will enable proper Marine Spatial Planning (MSP) and sharing of coastal 54 

waters (Lester et al, 2018; Foley et al, 2010).  55 

Competing sectors of the Blue Economy will change the bathymetry of nearshore 56 

waterways and coastal regions in a variety of ways. Continued and new dredging to meet 57 

shipping and navigation demands will increase channel depth and quantity of material spoil 58 

(Bishop et al, 2006). Similarly, aquaculture practices such as kelp and oyster farming will reduce 59 

erosion and increase sediment accumulation (Zhang et al, 2020; de Paiva et al, 2018). These 60 

practices are predicted to change the structure of the seafloor which will have local-scale 61 

implications for sub-aquatic ecosystems and nearshore navigation, by causing rapid changes in 62 

benthic morphology. In addition, nearshore structure is increasingly being looked to as a source 63 

of nature-based risk reduction solutions, including the use of natural barriers to sea level rise and 64 

storm surges (Spalding et al, 2014). For improved coastal resilience assessments, accurate maps 65 

of the seafloor are a critical parameter in measuring the wave attenuation of benthic habitats, like 66 

seagrasses and coral reefs, (Narayan et al, 2016) and the erosion potentional of dune-lined 67 

beaches (Schweiger et al, 2020), but up-to-date and repeatable observations of sediment stability 68 
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(e.g. changes in water depth) and structural complexity are needed (Christianen et al, 2013: 69 

Harris et al, 2018). These and other processes are not fully captured by current, openly available 70 

coarse bathymetry data (Wolfl et al, 2019), which are limited in spatial and temporal resolution. 71 

Increasing the resolutions of bathymetric data requires financial investment and substantial 72 

energy expenditure to conduct more comprehensive or frequent surveys, particularly to capture 73 

the detail required in the nearshore coastal environment.  74 

 Globally, there are several initiatives that procure bathymetric data collected by 75 

hydrographic, oceanographic, and other vessels such as the International Hydrographic 76 

Organization Data Centre for Digital Bathymetry (IHO DCDB; Marks, 2019), European Marine 77 

Observation and Data Network (EMODnet; Emodnet, 2016), the Global Multi-Resolution 78 

Topography (GMRT; Ryan et al, 2009) synthesis and the General Bathymetric Chart of the 79 

Oceans (GEBCO; Kapoor, 1981). While these initiatives ensure that global bathymetric data are 80 

available at satisfactory resolutions across large expanses of open ocean, these data are not 81 

adequate for use in shallow waters where the vertical and spatial resolution is insufficient. With 82 

high-resolution elevation data available for land surfaces (e.g., TanDEM-X; Wessel et al, 2018), 83 

this leaves a corridor of missing data between the land and open ocean, where high quality data 84 

are most required. Singlebeam (SBES) and Multibeam Echo Sounders (MBES) are commonly 85 

deployed on small craft for local-scale high-resolution mapping (Janowski et al, 2018) but 86 

collecting such data in shallow water can be hazardous and time consuming. Bathymetric lidar 87 

data are well suited to fill this gap and can be acquired from airborne systems (Kim et al, 2017) 88 

to circumvent navigation in busy shipping traffic, however they are economically expensive and 89 

time-intensive to gather over large areas, particularly where frequent repeat surveys to capture 90 

rapid changes are required. 91 
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Recent advances in Satellite-Derived Bathymetry (SDB) using multispectral Earth 92 

Observations have lead to new methodological developments and applications through increased 93 

spatial resolution and improved estimations (Traganos et al, 2018a; Caballero et al, 2019; 94 

Caballero and Stumpf, 2020a, 2020b; Casal et al, 2019, 2020; Daly et al, 2020; Mateo-Perez et 95 

al. 2020). Commercial satellite imagery has also been used to improve modeling on shallow 96 

coastal  bathymetry by achieving spatial resolutions of 3-m/pixel and daily revisits (Li et al, 97 

2019; Poursanidis et al, 2019; Lyons et al, 2020). A number of SDB studies have improved water 98 

depth retrieval through empirical correlations of surface reflectance with field-acquired depth 99 

points (Lyzenga, 1978; Stumpf et al, 2003); machine learning that combines surface reflectance 100 

and in-situ data (Pan et al, 2015; Geyman and Maloof, 2019; Albright and Glennie, 2020); 101 

automatic tuning of SDB to water column conditions (Kerr and Purkis, 2018; Li et al, 2019);  102 

inverting wave celerity based on the temporal offset between the satellite’s bands (Daly et al, 103 

2020) and physics-based inversion algorithms that produce highly-accurate SDB estimations but 104 

at the expense of restricted scalability due to the required computational power for the inversion 105 

(Casal et al, 2020). Despite the advances in SDB and the recent increased availability of cloud-106 

computing platforms such as the Google Earth Engine and Amazon Web Services, most 107 

approaches still rely on airborne/shipborne data and local computing resources. 108 

An ability to widely collect consistent SDB calibration and validation data will alleviate 109 

some of the limitations in deriving routine nearshore bathymetry. The first release of ICESat-2 110 

data highlighted the potential to acquire global bathymetric lidar data in shallow (<40m) coastal 111 

waters (Markus et al, 2017; Parrish et al, 2019). This exciting new capability is especially timely 112 

for coastal ecosystem studies as it paves the way for purely spaceborne SDB approaches in the 113 

optically shallow global seascape realm (Albright and Glennie, 2020, Ma et al. 2020). Such 114 
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fusion approaches between satellite-based multispectral imagery and lidar data are now feasible 115 

and could significantly reduce the needed time, costs, and computation to produce seamless SDB 116 

maps, especially in data poor regions. 117 

  In the present study, we have developed one of the first fully space-based approaches to 118 

measure nearshore bathymetry in optically shallow waters. The SDBs presented here are derived 119 

from a newly designed cloud-native workflow within the Google Earth Engine cloud platform 120 

(Gorelick et al, 2017) using multi-temporal Sentinel-2A/B data (Traganos et al, 2018a) and 121 

ICESat-2 lidar observations (Parrish et al, 2019). Our primary aim is to evaluate the accuracy, 122 

scalability and uncertainties of this approach for retrieving SDB, in comparison to freely availble 123 

bathymetric Digital Elevation Models (DEMs). 124 
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2 Materials and Methods 125 

2.1 Data 126 

2.1.1 ICESat-2 127 

The Ice, Cloud and Elevation Satellite-2 (ICESat-2; IS-2) is a spaceborne altimeter launched in 128 

September 2018. IS-2 carries the Advanced Topographic Laser Altimeter System (ATLAS) 129 

which is a photon counting lidar, composed of three pairs of beams each separated by 3.3 km, 130 

with 90 m between each pair. The pairs of lasers are divided into a strong and a weak beam, 131 

based on a 1:4 energy ratio. Each laser has a repetition rate of 10 kHz with a wavelength of 532 132 

nm. Each photon shot is separated by 70 cm with a footprint size of approximately13 m. IS-2 133 

geolocated photon data is provided in the ATL03 product which is disseminated through the 134 

National Snow and Ice Data Center (NSIDC).   135 

2.1.2 Sentinel-2 136 

The estimation of satellite-derived bathymetry is based on Copernicus Sentinel-2 data and is 137 

performed end-to-end within the Google Earth Engine (GEE) geospatial computing platform. 138 

Sentinel-2 is a twin-satellite mission with 10-m spatial resolution and a 5-day revisit period and 139 

which have provided open and free data since June 2015. In this study, we utilized both Level-140 

1C (L1C) top-of-atmosphere (TOA) reflectance (23 June 2015 - Present) and Level-2A (L2A) 141 

atmospherically corrected surface reflectance (SR) (28 March 2017 - Present) datasets, available 142 

within GEE. 143 

2.1.3 Ancillary Bathymetric Data 144 

2.1.3.1 NOAA Bathymetry 145 
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The Bermuda and Biscayne Bay, Florida topographic-bathymetric Digital Elevation models 146 

(DEMs) were acquired from the NOAA National Centers for Environmental Information using 147 

the Bathymetric Data Viewer portal (https://maps.ngdc.noaa.gov/viewers/bathymetry/). The 148 

Bermuda DEM, at a resolution of 1 to 3 arc-second spatial resolution, was collected by multiple 149 

institutions (e.g., Government of Bermuda, California State University, and NOAA) over a 150 

period of 20 (1993-2012; Sutherland et al, 2013). Data was derived from a variety of 151 

measurement techniques including topographic surveys, bathymetric lidar, gridded and raw 152 

multibeam bathymetry, and nautical chart sounding depth, all combined to create a 1 arc-second 153 

DEM. The Biscayne Bay (S200) DEM has a 1 arc-second spatial resolution which was derived 154 

from nearly 150,000 soundings collected within the bay from 12 different surveys over a period 155 

of 63 years (1930-1993; NOAA, 1998). The data was gridded by prioritizing more recent data 156 

and/or highest resolution data over older and lower resolution data. Where data coverage was 157 

sparse, generic interpolation and extrapolation models were used to fill gaps.   158 

 159 

2.1.3.2 Singlebeam Sonar 160 

Using low cost fishfinder tools, the collection of bathymetry data at the Gulf of Chania (Crete) 161 

was completed June - July 2020 based on the method of Poursanidis et al (2018), covering a 162 

depth range of 2 to 55 m. 163 

2.2 Study Sites 164 

2.2.1 Natura 2000 GR4340003, Crete 165 

The Natura 2000 site GR4340003 is found on the North West of the the island of Crete, Greece. 166 

The Island bounds the southern border of the Aegean Sea, approximately 160 km south of the 167 

https://maps.ngdc.noaa.gov/viewers/bathymetry/
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Greek mainland, and has an area of 8,336 km
2
 and a coastline of 1,046 km. Specifically, the 168 

Natura 2000 site GR4340003 “Chersonisos Rodopou – Paralia Maleme – Kolpos Chanion” 169 

includes Rodopos peninsula and the coastal area from Kolympari to Platanias, at the NW part of 170 

Crete, approximately 20 km from Chania city. The marine part of the site extends to a depth of 171 

50 m and is characterized by the presence of Posidonia oceanica seagrass beds. 172 

2.2.2 Biscayne Bay, Florida 173 

Biscayne Bay is an estuary on the east coast of South Florida (USA) that is ecologically diverse 174 

and serves as a nursery for many marine species. The bay is heavily influenced by human 175 

activities such as boating, diving, recreational and commercial fishing, and serves as a major 176 

shipping port. Around the major shipping port and private docks there are incised channels that 177 

can exceed 15 m in depth and require regular dredging. The bay faces many ecological concerns 178 

mostly due to declining water quality and freshwater inflows caused by increased runoff (Carey 179 

et al, 2011). The benthic habitats of the central and southern regions of the bay are dominated by 180 

seagrass, which includes Thalassia testudinum, with sporadic patch reef complexes (Lirman et 181 

al, 2008). 182 

2.2.3 Bermuda 183 

Bermuda is a subtropical Caribbean Island over 1200 km north of the Bahamas, and 965 km east 184 

of North Carolina. It is surrounded by the northernmost coral reef assemblage in the Atlantic 185 

Ocean and also includes seagrass beds, mangroves, salt marshes, and rocky and sandy intertidal 186 

areas (Coates et al, 2013). The reef complex forms a 2 to 10 m deep, 1.5 km wide rim that 187 

surrounds the northern part of the islands. Patch reefs within the lagoon can be found within 1-2 188 

m of the water surface. Marine transport is important to the island as most resources are imported 189 
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and shipping channels have been modified to accommodate large cruise ships. Channel dredging 190 

has led to water quality issues in nearby regions (Lester et al, 2016). 191 

2.3 Satellite-Derived Bathymetry Modeling 192 

2.3.1 ICESat-2 Bathymetric Photons 193 

ICESat-2 ATL03 data was queried via the Open Altimetry online portal 194 

(https://www.openaltimetry.org) where it was subset and downloaded over our regions of interest 195 

from the NSIDC server in HDF5 format (Figure 1, a, b, c). The ATL03 product does not record 196 

the true location and elevation of sub-aquatic photons due to the refraction of the laser at the 197 

air/water interface and the delayed travel time of the laser through the water column. To correct 198 

the offset, accurate longitude, latitude, and photon height corrections were performed using the 199 

methods of Parrish et al. (2019). This uses the spacecraft geometry and incident laser refraction 200 

at the water surface to correct target photon depths, using inputs that include the IS-2 instrument 201 

wavelength (532 nm), water salinity (35 Practical Salinity Units (PSU)) at atmospheric pressure 202 

and location specific ocean temperatures. Photons were initially transformed to orthometric 203 

height (EGM2008), and local UTM zone. Water surface photons were then manually selected 204 

using an interactive python plot. The average of the selected water surface photons was defined 205 

as the water surface model, from which photons below this were refraction corrected. Given that 206 

the IS-2  data does not currently operate off-nadir pointing, longitude and latitude corrections 207 

were minimal and photon depth correction was approximately 25% (at high precision) shallower 208 

than the value recorded in the ATL03 data, in line with the calculations of Parrish et al (2019). A 209 

bathymetric profile was manually selected from the corrected photons. Manual data selection 210 

yielded a higher signal-to-noise ratio than trialled automated methods and ensured only high 211 

https://www.openaltimetry.org/
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quality depth information was collected. Examples of the refraction corrected photons and 212 

selected bathymetry photons are given in Figure 1 (g, h, i). For each IS-2 pass only the high-213 

power beams were utilized. When input into the SDB model, only IS-2 depth photons with a 214 

system assigned “Land Confidence” level of 4 were used. These were aggregated into a Sentinel-215 

2 10-m resolution grid (outlined below) and are shown in Figure 1 (d, e f). 216 

 217 

 218 
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Figure 1: a, b & c) ICESat-2 depth data points for Bermuda, Biscayne Bay and Crete; d, e & f) 219 

ICESat-2 depth data points with “Land Confidence” level 4 binned to Sentinel-2 10-m resolution 220 

for Bermuda (SDB training (green) and validation (blue)), Biscayne Bay and Crete; g, h & i) 221 

ICESat-2 photons and selected bathymetric profile for a single laser transect in Bermuda, 222 

Biscayne Bay and Crete. 223 

 224 

 225 

2.3.2 Sentinel-2 Sattelite Derived Bathymetry (SDB) 226 

 227 

To pre-process and synthesize Sentinel-2 data to estimate and scale up the SDB models, we 228 

developed a novel cloud-native geoprocessing workflow. This new cloud-based workflow builds 229 

on the pre-processing and SDB estimation developed by Traganos et al, (2018a) and Traganos et 230 

al, (2018b). Firstly, an evolved cloud mask was developed that combines the GEE-based 231 

Sentinel-2 Cloud Probability dataset, the QA60 band, and metadata information. Next, a multi-232 

temporal mosaic was derived using four Sentinel-2 bands; B1-coastal aerosol, B2-blue, B3-233 

green, and B4-red, as these wavelengths are less susceptible to light attenuation. We derived the 234 

mosaic using the 20
th

 percentile for each study area data cube to reduce common natural 235 

interferences in satellite images over coastal regions, such as sunglint, turbidity, waves, and 236 

remaining clouds and haze.  237 

After the initial pre-processing steps, three cloud-based SDB models were derived using the 238 

relationship between the multi-temporal satellite data and the IS-2 data: i) a cluster-based linear 239 

model merging a k-means unsupervised clustering algorithm (Arthur and Vassilvitskii, 2007) 240 

with the algorithm of Lyzenga (1978)－hereafter CBL. This combination ensures that by 241 
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splitting the multi-temporal data into numerous classes, each reflectance band adheres to the 242 

linear model assumption of homogeneous bottom albedo. This was particularly beneficial in 243 

Bermuda and Biscayne Bay which have variable bottom types. Prior to selecting the relevant 244 

bands for modeling, we performed preliminary statistical tests with various combinations of 245 

Sentinel-2 bands with this method, and acquired the best accuracy with the multilinear regression 246 

of B1, B2, B3, and B4. ii) a cluster-based ratio model applying the same k-means clustering 247 

algorithm as above, prior to the ratio algorithm of Stumpf et al, (2003)－hereafter CBS. Both 248 

CBL and CBS models follow the concept of the cluster-based regression (CBR) algorithm of 249 

Geyman and Maloof (2019). Our preliminary statistical tests with various cluster-based ratios 250 

identified the B3/B2 ratio as the most accurate model. It is also worth noting that the variable 251 

benthic habitats in both Bermuda and Biscayne Bay prompted the use of five clusters in the CBL 252 

and CBS SDB models. In contrast, Crete features a mainly homogeneous sandy seabed, averting 253 

us from applying clustering prior to the empirical linear and ratio models which we applied and 254 

tested here in their original form. iii) a machine learning model based on Support Vector 255 

Regression (SVR)－hereafter SVR. We implemented an Epsilon-SVR with the default GEE 256 

parameter and a linear kernel to map the first four log-transformed Sentinel-2 bands to a high-257 

dimensional feature space to fit a regression hyperplane. The relationship between IS-2 and 258 

Sentinel-2 data, for the best performing model, at each study site is presented in Figure S1. 259 

 260 

2.4 Reference Data and Accuracy Assessment 261 

IS-2 data in all three study regions were used to train our three SDB models. We selected only 262 

the IS-2 data points with a “Land Confidence” level of 4, within a Sentinel-2 10 m grid (Figure 263 

1). Multiple IS-2 depths within a Sentinel-2 pixel were averaged. We used 80% of the IS-2 264 
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observations for training, using three different training/validation approaches for each study site, 265 

driven by the availability and quality of reference bathymetric DEM data. A validation sample 266 

size of 20% of the IS-2 dataset was used. For the country of Bermuda, we used six IS-2 transects 267 

for training (5,173 points) and two IS-2 transects for validation－reduced from 2,510 to 1,293 268 

points to fit the 80/20 ratio. Here, the training and validation data were collected on different 269 

days, during different passes, which served as separate independent observations. Initial 270 

comparison to a NOAA DEM yielded poor results due to the low temporal and spatial resolution 271 

of the DEM (Figure S2 and Figure S3). For Biscayne Bay, IS-2 data was used for training 272 

(34,342 points) whereas NOAA bathymetric DEM data was used for validation, using 8,585 273 

(20%) random-stratified points. Lastly, an amalgamation of training with IS-2 data (133 points) 274 

and with validation data collected from in-situ singlebeam data (85 points) was used in Crete. 275 

For each validation, we calculated the root mean square error (RMSE) and mean absolute error 276 

(MAE) as well as the standard deviation of the bathymetry estimation. Residual maps to identify 277 

the spatial distribution of the differences between the SDB models and the corresponding NOAA 278 

DEMs in Bermuda and Biscayne Bay were also generated (Figure S3 and Figure S4). 279 

3 Results 280 

The CBL method produced the most reliable SDB estimates at all sites with a RMSE of 2.62 m, 281 

0.83 m, and 2.19 m, and MAE of 2 m, 0.65 m, and 2.02 m for Bermuda, Biscayne Bay, and 282 

Crete, respectively. Among the three methods, SVR tends to underestimate the range of the 283 

depths, although its error values do not differ much from that of the CBL method. The RMSEs of 284 

the CBL models are lower or close to 10% of the maximum depth for the Bermuda (26 m) and 285 

Crete (22 m) models, but close to 17% for the Biscayne Bay model where the maximum depth of 286 
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the modeled area is much lower (5 m). The variance of the models for Bermuda, Biscayne Bay, 287 

and Crete were 0.68, 0.79, and 0.83, respectively (Figure 2 j-l). The reference and the modeled 288 

depths of Bermuda (Figure 2 j) are in good agreement mostly between the depths of 11-17 m, 289 

whereas for the shallower Biscayne Bay (Figure 2 k) it is between 1.2-3 m.  290 

 291 

 292 

Table 1: Root mean square error, mean average error, and variance of the SDB model vs 293 

validation dataset in Bermuda, Biscayne Bay, and Crete 294 

SITE METHOD RMSE (M) MAE (M) R
2
 MAX DEPTH (M)* 

BERMUDA CBL 2.62 2.00 0.58 26 

 CBS 2.89 2.21 0.50 26 

  SVR 2.96 2.00 0.43 26 

BISCAYNE BAY CBL 0.83 0.65 0.72 5 

 CBS 1.07 0.90 0.30 5 

  SVR 0.89 0.73 0.64 5 

CRETE CBL 2.19 2.02 0.89 22 

 CBS 2.41 2.18 0.85 22 

  SVR 3.70 2.52 0.75 22 

*based on the IS-2 training datasets 295 

 296 
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 297 

 298 

Figure 2: a, b, c) Sentinel-2 RGB synthesis. a) Bermuda: 53 L2A Surface Reflectance tiles, 597 299 

km
2
 (March 28, 2017 – April 20, 2020); b) Biscayne Bay: 583 L1C Top-Of-Atmosphere tiles, 300 

689 km
2
 (January 1, 2015 – December 31,2019); c) Crete: L1C 403L1C Top-Of-Atmosphere, 301 

61km
2
 (January 1, 2015 – December 31,2019). d, e, f) CBL Bathymetry SDB at Bermuda, 302 

Biscayne Bay and Crete. g, h, i) NOAA DEM at Bermuda and Biscayne Bay and EMODnet at 303 

Crete, j, k, l) SDB-IS2 depth comparison at Bermuda, Biscayne Bay and Crete. 304 
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3.1 Comparison with publicly available DEM data 305 

The detailed Bermuda SDB model picks up the bathymetric relief and rugosity of the shallow 306 

and coral reef areas in more detail compared to the NOAA DEM product (Figure 2 d and g). The 307 

Bermuda NOAA DEM product is a merge of multiple datasets and heavily interpolated in 308 

sparsely covered region where navigation is difficult. For this reason, we observe high residuals 309 

between the Bermuda SDB and NOAA DEM in the coral reef complexes (Figure 34). Similarly, 310 

in shallow water regions, the Bermuda SDB model resolved the detailed relief of the seabed 311 

which the NOAA DEM did not (Figure 2 h). With the variance of 0.14, the relationship between 312 

SDB and NOAA DEM depths in Bermuda shows a very low agreement (Figure S2) specifically 313 

at depths greater than 11 m. The mapped residuals range from -55.96 m to 51.28 m, where 314 

negative values occur near patch reef complexes and positive values occur within the spur and 315 

groove formations of the coral reef rim 316 

 317 

In Biscayne Bay, the SDB model underestimates the depths of the navigation channels compared 318 

to the Biscayne Bay NOAA DEM (Figure 2 e and h). More specifically, IS2 could not retrieve 319 

the water depth in the deep dredged channels around the Miami Port (Figure 2 h), which reach a 320 

depth of 17 m. The mapped residuals range from -14.11 m to 2.86 m (Figure S4). As the IS-2 321 

photons are manually selected, it is noteworthy that photons were able to penetrate the water to 322 

the depths of these channels, but did not exhibit an obvious surface for selection and were thus 323 

omitted to avoid the use of incorrect depths in the model. 324 

 325 

For the Crete study site, however, the SDB models under predict the deeper depths, specifically 326 

greater than a depth of 15 m, where the water is optically deep. Here the relationship between IS-327 
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2 reference depths and the log-transformed S-2 reflecance values become non-linearThe 328 

reference and the modeled depths of Crete are in good agreement mostly between the depth of 7-329 

15 m. We obtained an available bathymetric map for the Crete study site for qualitative 330 

comparison, but not for validation, from EMODNET, with a resolution of ~115 m (Figure 2 i). 331 

The EMODnet bathymetry model has a reduced precision compared to the SDB and only 332 

consists of integer values for each pixel. Compared to the EMODNET bathymetry map, our 333 

Crete SDB model is in much higher spatial resolution (10 m), and features a more gradual 334 

change of depths. 335 

4 Discussion and Conclusions 336 

In this study, we have demonstrated the unique fusion of ICESat-2 and Sentinel-2 data for 337 

measuring coastal ecosystem structure and shallow water bathymetry, from coastline to country 338 

scales. We developed adaptive bathymetry estimation methods derived solely from space-borne 339 

observations over coastal waters in Bermuda, Biscayne Bay, and Crete at high-resolution and 340 

with low error. The GEE cloud computing platform provides large computational power and a 341 

well-integrated system to process hundreds of multi-temporal images in short time, as well as 342 

perform analysis with thousands of data points with ease. The high resolution of Sentinel-2 and 343 

ICESat-2 data allows us to map benthic variability in detail, improving upon available 344 

bathymetry maps, especially within optically shallow water where the reflectance values between 345 

different depths are more distinguishable. 346 

 347 

We have demonstrated that our approach can yield products that are comparable to, and even 348 

improve upon, locally collected existing data. At our study site locations, existing DEM data 349 

were composed of multiple methods collected over a large temporal period at varying 350 
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resolutions. Therefore, changes in seabed structure due to hydrodynamic processes (such as 351 

sediment deposition) and natural catastrophes could have been overlooked. At Biscayne Bay, 352 

while our RSME error was small, some uncertainty can be attributed to differences between the 353 

high resolution SDB model and lower temporal and spatial resolution NOAA DEM. However, 354 

sources of uncertainty are also recognized in the remotely sensed data. At Biscayne Bay, IS-2 355 

was unable to detect the bottom of dredged channels, which may have been caused by sediment 356 

(turbidity in active shipping lanes) or the inability of the photons to reliably penetrate to those 357 

depths. As the IS-2 bathymetric photons were manually selected, photons at these depths were 358 

omitted as they did not not form a coherent reflecting surface. While this limits the introduction 359 

of noise into the model it also highlights potential sources of error that are introduced due to user 360 

interpretation. This error may also be present in Bermuda and Crete,  particularly where IS-2 was 361 

used as both training and validation data. Furthermore, a more general source of uncertainty was 362 

the effect of tide level in the analysis. By creating Sentinel-2 composite images using the 20% 363 

percentile of tens to hundreds of tiles, we collected the darkest reflectance values, which might 364 

not coincide with the depth values acquired by the IS-2 platform on a certain acquisition date. 365 

The tidal range for our study sites was microtidal (< 1 m) thus the advantages of the approach 366 

over the small introduction of error are interpreted to be an acceptable tradeoff. 367 

 368 

The SDB models obtained with this approach are capable of contributing to the development of 369 

the Blue Economy. Without the requirement for in situ data, repeat bathymetric maps can be 370 

created for customized time-periods. This flexibility is required for monitoring changes in 371 

nearshore topography for the purposes of navigation (Mavraeidopoulos et al, 2017), site 372 

assessments, post-disaster mobilization and response (Stronko, 2013), infrastructure 373 
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developments (Coughlan et al, 2020), and for bathymetry and benthic cover mapping in regions 374 

where field data acquisitions are scarce or prevented by a hazardous environment. Coastal zones 375 

will experience a future increase in development and impacts from storm events (Horton et al, 376 

2015) and therefore the need for contemporary and repeat bathymetric observations, particularly 377 

for data poor regions, will be critical for ensuring sustainability of coastal resources. This is 378 

particularly pertinent for “Big Ocean States” (or “Small Island Nations”) which may lack the 379 

capacity to carry out bathymetric surveys of their territories (Purkis et al, 2019). A purely space-380 

borne cloud-based method empowers them to conduct their own structural and ecological 381 

assessments. 382 

 383 

Furthermore, our demonstrated method will allow the development of a global map of coastal 384 

submerged ecosystems, which continues to be a critical need of the Blue Economy community. 385 

This would be the foundation of global habitat accounting for currently poorly mapped sub-386 

aquatic ecosystems. Indeed, the need of global distribution maps for seagrasses, a blue carbon 387 

ecosystem, has been an issue in coastal ecosystem studies, global conservation efforts and 388 

national climate change policy agendas (Unsworth et al, 2019). We believe that by scaling up our 389 

approach, we will be able to contribute one of the key factors in making a global map of 390 

seagrass, and other shallow benthic habitats, possible.  391 
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