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Abstract

Auroral bright spots have been observed at Earth, Jupiter, and Saturn in regions that map to the boundary layer. It has

been suggested that the bright spots are associated with Kelvin-Helmholtz instability. We utilize a quasistatic magnetosphere-

ionosphere coupling model driven by a vortex in the boundary layer to determine how the field-aligned current structure depends

on ionospheric and boundary layer parameters. We compare vortex induced currents with shear-flow induced currents. We find

that the strength of the maximum currents are comparable, but the structure is significantly different. For a vortex, the current

and electron precipitation maximize when the vortex size mapped to the ionosphere is approximately 1.5 L, where Λ=(Σπ/κ)1/2

is the auroral scale length, Σπ is the Pedersen conductivity, and κ is the Knight parameter. For a vortex, the current width

provides a direct measure of the size, Δ, of the boundary layer structure, while shear-flow aurora generally are determined by

the larger of Δ or L. For comparison with observations, an event is considered where auroral bright spots in the ionosphere are

detected by DMSP SUSSI UVI when Kelvin-Helmholtz structures are observed on the dusk flank by THEMIS.
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Abstract. Auroral bright spots have been observed at Earth, Jupiter,2

and Saturn in regions that map to the boundary layer. It has been suggested3

that the bright spots are associated with Kelvin-Helmholtz instability. We4

utilize a quasistatic magnetosphere-ionosphere coupling model driven by a5

vortex in the boundary layer to determine how the field-aligned current struc-6

ture depends on ionospheric and boundary layer parameters. We compare7

vortex induced currents with shear-flow induced currents. We find that the8

strength of the maximum currents are comparable, but the structure is sig-9

nificantly different. For a vortex, the current and electron precipitation max-10

imize when the vortex size mapped to the ionosphere is approximately 1.511

L, where L ≡
√

ΣP/κ is the auroral scale length, ΣP is the Pedersen con-12

ductivity, and κ is the Knight parameter. For a vortex, the current width13

provides a direct measure of the size, ∆, of the boundary layer structure, while14

shear-flow aurora generally are determined by the larger of ∆ or L. For com-15

parison with observations, an event is considered where auroral bright spots16

in the ionosphere are detected by DMSP SUSSI UVI when Kelvin-Helmholtz17

structures are observed on the dusk flank by THEMIS.18
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1. Introduction

Velocity shears in the boundary layer of Earth and other planets have been corre-19

lated with auroral arcs and field-aligned currents [Sonnerup, 1980; Lundin and Evans ,20

1985]. Free energy from the shear is also known to drive Kelvin-Helmholtz instabilities21

(KHI) [Johnson et al., 2014] leading to the slow development of Kelvin-Helmholtz vortex22

structures [Hasegawa et al., 2006, 2009]. Some of the most commonly observed auro-23

ral features are folds and vortex-like curls [Hallinan and Davis , 1970]. Periodic brights24

spots have been detected by the UV imager on the Viking spacecraft [Lui et al., 1989;25

Potemra et al., 1990]. Lui et al. [1989] suggested that the bright spots may be associated26

with Kelvin-Helmholtz instability, which couples to the ionosphere through a field-aligned27

current system. Figure 1a shows an example of the auroral bead structures detected by28

the DMSP SSUSI UV instrument when a KH vortex was simultaneously observed at the29

magnetopause boundary. Recently, the Cassini spacecraft has detected the presence of30

bright auroral substructures with a characteristic size ranging from 500 km to thousands31

of km in the noon and dusk sectors [Grodent et al., 2011] as shown in Figure 1b. The32

fragmentation of the main ring of emission into small-scale spots appears to be associated33

with structuring of the field-aligned current system based on magnetic field perturbations34

observed with Cassini/MAG [Talboys et al., 2009a, b, 2011; Delamere et al., 2013]. Such35

field-aligned currents naturally develop as Kelvin-Helmholtz vortices twist magnetic field36

lines leading to the suggestion that the vortices result from Kelvin-Helmholtz instability.37

The currents and auroral precipitation associated with Kelvin-Helmholtz structures are38

controlled by the coupling of boundary layer with the ionosphere [Lyons , 1980; Wei and39
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Lee, 1993; Lotko et al., 1987; Echim et al., 2007, 2008]. Ionospheric currents are driven by40

the electric field of the vortex, which maps into the ionosphere. Vortices can drive upward41

currents in the center of the vortex, and field-aligned potential drops that develop to carry42

the current can accelerate electrons, which precipitate in the ionosphere. In the case of43

shear layers, it has been shown that physical properties of the current generator can be44

inferred from the ionospheric signatures [Simon Wedlund et al., 2013; Echim et al., 2019].45

In this paper we examine how the boundary layer and ionospheric parameters control the46

currents and precipitation, and we examine the differences between vortex driven currents47

vs shear flow driven currents.48

2. Model

Previously, we examined the dependence of shear-driven field-aligned currents on solar49

wind and ionospheric parameters [Johnson and Wing , 2015; Wing and Johnson, 2015].50

We used a one-dimensional model that specified a velocity field intended to model the51

interface between a flowing boundary layer plasma and a stagnant magnetospheric plasma.52

In contrast, in the nonlinear stage of Kelvin-Helmholtz instability, the shear layer is broken53

up into circulating vortex structures. The slow development of the vortices allows electrons54

to respond rapidly along the magnetic field setting up a current voltage relationship, which55

we characterize by a Knight relationship [Knight , 1973]. We then follow the procedure56

outlined in Johnson and Wing [2015] to obtain a solution for the field-aligned current57

density for a specified vortex structure.58

D R A F T August 13, 2020, 10:07pm D R A F T



JOHNSON ET AL.: AURORAL VORTICES X - 5

Following previous studies [Lyons , 1980; Wei and Lee, 1993; Echim et al., 2007, 2008;59

De Keyser and Echim, 2013] we solve the equation of current continuity in the ionosphere60

∇ · ΣP∇φi = j‖(φm, φi) (1)

where φm and φi are the potential in the magnetosphere and ionosphere respectively. The61

profile of φm is specified to capture the basic structure of a Kelvin-Helmholtz vortex. In62

our model, the potential drop between the magnetosphere and ionosphere drives a parallel63

current out of the ionosphere determined by a linear Knight relation [Knight , 1973]64

j‖ = κ(φi − φm), (2)

where the Knight conductivity, κ = nee
2/
√

2πmeTe, is controlled by the density and65

temperature of magnetospheric electrons, which carry the upward field-aligned currents.66

The linear Knight relation is obtained from an expansion of the nonlinear current-voltage67

relation when 1 � e(φi − φm)/Te � b (b = Bi/Bm where Bm and Bi are the magnetic68

field strength at the top and bottom of the potential drop). For simplicity, we will assume69

that κ is constant throughout the shear layer, recognizing that the current profile will70

be primarily controlled by the value of density and temperature close to the current71

maximum.72

The assumption of a linear Knight relation is reasonable when the ratio of the poten-73

tial drop to the average electron thermal energy is smaller than the mirror ratio. This74

is generally the case at Earth’s dayside magnetopause as well as the field-aligned cur-75

rent system associated with the breakdown of corotation at Saturn [Johnson and Wing ,76

2015; Ray et al., 2013]. At Jupiter the potential drop associated with the breakdown of77

corotation can be large and a full Knight relation may be necessary to describe current78
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saturation [Echim et al., 2007; Ray et al., 2009]. However, the vorticity associated with79

Kelvin-Helmholtz vortices is typically weaker than that associated with the large-scale80

boundary flows due to viscous interaction and mixing, and the linear Knight relation can81

provide some insights. The solutions obtained for the field-aligned current using the linear82

Knight relation should always be compared with the saturation current, nevtheb/
√

2π, to83

ensure their validity.84

In our previous analysis of the shear layer, we found a simple relationship for the85

dependence of the current density profile on magnetospheric and ionospheric parameters.86

The main feature of the profile, maximum current density and thickness, are provided in87

Table 1. Observations of currents detected in the dayside upward region 1 current system88

are well organized by the theoretical prediction for the maximum current density [Wing89

and Johnson, 2015]. The spatial dependence of the current density on the width of the90

shear layer ∆ is shown in Figure 3. In this case, the currents are driven by potential drop91

across the shear layer and maximize as the shear increases and width of the boundary92

layer decreases.93

The primary difference between the vortex analysis and previous analysis of shear-driven94

currents [Lyons , 1980; Echim et al., 2008; Johnson and Wing , 2015] lies in the specification95

of the magnetospheric potential, φm. The velocity field is approximated as a cylindrically96

symmetric vortex, which captures the essential features of the Kelvin-Helmholtz structure97

as illustrated in Figure 298

φm(ρm) = −V0B0∆m exp(−ρ2
m/2∆2

m) (3)
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with a velocity field99

Vϕ(ρm) =
B0 × dφ(ρm)/dρm

B2
0

= V0
ρm
∆m

exp(−ρ2
m/2∆2

m) (4)

where ρm is a radial coordinate in the magnetosphere and ∆m is the characteristic scale100

of the vortex, where the velocity maximizes. This form of the velocity field dictates that101

we solve Equation 1 in cylindrical coordinates.102

Assuming constant conductivity and combining Equations 1 and 2, we find103

1

ρi

d

dρi
ρ
dφi
dρi

=
φi − φm
L2

(5)

where L =
√

ΣP/κ is the well known electrostatic auroral scale length [Lyons , 1980].104

In this case, it is useful to employ the azimuthally symmetric Hankel transform105

Φ(q) =

∫ ∞
0

φ(ρ)J0(qρ)ρdρ

φ(ρ) =

∫ ∞
0

Φ(q)J0(qρ)qdq (6)

Cylindrical symmetry implies that106

Φi(q) =

(
1

1 + q2L2

)
Φm(q) (7)

∆Φ(q) = Φi − Φm = −
(

q2L2

1 + q2L2

)
Φm (8)

j‖(q) = −κ
(

q2L2

1 + q2L2

)
Φm(q) (9)

The potential should be expressed in terms of the ionospheric coordinate107

φm(ρi) = −V0B0∆m exp(−ρ2
i /2∆2

i ) (10)

Performing the Hankel transform in terms of the radial ionospheric coordinate, ρi, we108

obtain109

Φm(q) = −V0B0∆m

∫ ∞
0

e−ρ
2/2∆2

i J0(qρ)ρdρ = −V0B0

√
b∆3

i e
−q2∆2

i /2 (11)
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where from now on we let ρi = ρ. The parallel current density is then obtained by the110

inverse Hankel transform.111

j‖(ρ) = ΣPV0B0

√
b∆3

i

∫ ∞
0

q2e−q
2∆2

i /2

1 + q2L2
J0(qρ)qdq (12)

The maximum value of the current density occurs at the vortex center, ρ = 0. Therefore,112

j‖,max = lim
ρ→0

ΣPV0B0

√
b∆3

i

∫ ∞
0

q2e−q
2∆2

i /2

1 + q2L2
J0(qρ)qdq

=
ΣPV0B0

√
b∆3

i

2L4

∫ ∞
0

µe−2α2µ

1 + µ
dµ

= κV0B0∆m

[
1− 2α2e2α2

E1(2α2)
]

(13)

where α ≡ ∆i/2L and113

E1(z) =

∫ ∞
1

e−zt

t
dt (14)

is the exponential integral.114

In the limit α� 1,115

E1(z) = −γ − log(z) +
∞∑
k=1

(−1)k+1zk

kk!
(15)

j‖,max = κV0B0∆m

[
1− 2α2(1 + 2α2 + ...)(−γ − log(2α2) + 2α2 + ...)

]
= κV0B0∆m(1 + 2α2 log(2α2) + ...)

= κV0B0∆m(1 +
∆2
i

L2
log(∆i/L) + ...) (16)

It should be noted here that the current is much smaller than for a shear layer by a116

factor O(α), cf. Table 1.117

For α� 1118

E1(z) ∼ e−z

z

[
1− 1

z
+

2

z2
+ ....

]
(17)
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so that119

j‖,max ∼ κV0B0∆m

[
1−

(
1− 1

2α2
+

1

2α4
+ ...

)]
j‖,max ∼ κV0B0∆m

[
1

2α2
− 1

2α4
+ ...

]
j‖,max ∼ 2

ΣPV0B0b

∆m

[
1− 4L2

∆2
i

]
(18)

It should be noted that for large α the maximum current density is enhanced by a factor120

of 4 relative to the shear layer value.121

A uniform approximation [Bender and Orszag , 1978] generally valid for all values of α122

may be found123

j‖,max ≈ κ
V0B0∆m

1 + 2α2
=

2ΣPV0B0b∆m

∆2
m + 2bL2

(19)

It should be readily apparent that the current density vanishes in either the limit that124

∆m → 0 or ∆m → ∞, and the current density takes on a maximum value at an in-125

termediate value of ∆m. From Equation 13 it can be found that the maximum current126

density occurs at ∆i = 1.5L and j‖,max = 0.57κV0B0L. This result is in close agreement127

with that obtained from the uniform approximation (Equation 19) where the maximum128

current density occurs at ∆i =
√

2L and j‖,max = κV0B0L/
√

2.129

3. Width of the Vortex Current

Performing a Taylor expansion about the maximum current density at x = 0, we find130

j‖(x) ≈ j‖,max

(
1− x2

i

2σ2

)
(20)

where131

σ ≡

√
−j‖

d2j‖/dx2

∣∣∣∣
x=0

. (21)
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Taking the second derivative of the current132

d2j‖
dx2

= lim
ρ→0

ΣPV0B0

√
b∆3

i

∫ ∞
0

q2e−q
2∆2

i /2

1 + q2L2

(
d2

dρ2
J0(qρ)

)
qdq

= lim
ρ→0

ΣPV0B0

√
b∆3

i

∫ ∞
0

q2e−q
2∆2

i /2

1 + q2L2

(
−q2

2
(J0(qρ)− J2(qρ))

)
qdq

= −ΣPV0B0

√
b∆3

i

4L6

∫ ∞
0

µ2e−2α2µ

1 + µ
dµ

= −κV0B0∆m

2L2

[
1

2α2
−
(

1− 2α2e2α2

E1(2α2)
)]

(22)

Then for α� 1133

σ ≈ ∆i (23)

while for α� 1134

σ ≈ ∆i

2
(24)

In contrast with the shear layer, the width of the current layer mostly depends on the135

size of the driver. An estimate for the full width at half maximum (Λ) can be obtained136

by recognizing that if the current density were fit to a Gaussian of width σ, then Λ =137

2
√

2 ln 2σ.138

4. The Spatial Dependence of the Current

Having established the typical strength and width of the current structure associated139

with a vortex, it is useful to examine the exact solution of Equation 12 obtained from140

direct integration using standard methods. The results are presented in Figure 3. The141

parallel current density is shown as a function of x/L in panel (a). In panel (b) the142

normalized current, j‖/j‖,max is shown. For comparison, panels (c) and (d) show the same143

variables for a shear layer [Johnson and Wing , 2015]. The width of the current layer is144

obtained directly from panels (b) and (d) as the isocontour where j‖(Λ/2) = j‖,max/2.145
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For the vortex, the analytic width for small and large α (Equations 23 and 24) are shown146

as broken yellow and magenta lines. It is apparent from the isocontour that the width147

vanishes as α → 0 in panel (b), whereas it reaches a limiting value the order of L in148

panel (c). This result demonstrates that an auroral vortex structure maps directly the a149

boundary layer vortex structure, but an auroral feature associated with a velocity shear150

interface will not map directly if ∆i . L.151

For the 2008 April 23 09:35-09:43 UT event shown in Figure 1a, we have simultaneous152

observations of DMSP F16 SSUSI FUV imager [Paxton et al., 1993], SSJ5 particle precip-153

itation [Hardy et al., 1984], magnetic field [Rich et al., 1985], and THEMIS C magnetic154

field [Auster et al., 2008] and plasma [McFadden et al., 2008] at the Earth’s boundary155

layer. This event has been identified as a Kelvin-Helmholtz event in the survey performed156

by Kavosi and Raeder [2015]. NASA OMNI provides the solar wind data for this event:157

solar wind speed V = 580km s−1, n = 5.5cm−3, and IMF(Bx, By, Bz) = (4,−8,−5)nT.158

The THEMIS C observations within the Kelvin-Helmholtz structures found at the bound-159

ary layer provide the electron density and temperature, ne = 2cm−3 and Te = 5keV, from160

which we can calculate the Knight κ (see Equation 2). The DMSP F16 trajectory inter-161

sects the auroral oval near dusk at 17:30 - 18:00 Magnetlc Local Time (MLT) where the162

solar zenith angle χ ∼ 100◦. At this solar zenith angle, the Pedersen conductivity due163

to the ionizing solar extreme ultraviolet (EUV) radiation is Σp,s ∼ 1S [Ieda et al., 2014].164

The DMSP SSJ5 observation provides, peak electron energy Ee = 460eV, and electron165

energy flux ε = 0.43 ergs cm−2 s−1 sr−1, from which we obtain Pedersen conductivity due166

to electron precipitation Σp,e = 0.1S using the Robinson et al. [1987] formula. The total167

Σp =
√

Σ2
p,s + Σ2

p,e ∼ 1S [Wallis and Budzinski , 1981]. Using these calculated values of168
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Σp and κ, we obtain an auroral electrostatic scale length L =
√

ΣP/κ = 36km. From the169

DMSP magnetic field data or from the size of the bead in the SSUSI image in Figure 1a,170

we obtain the current width Λ = 126 km, which would give Λ/L = 3.5. Table 1 shows171

that the optimal condition for the maximum current width occurs when and Λ/L = 2.8,172

which is very close to the observed value of 3.5.173

We can estimate the size of the KH vortex at the magnetopause boundary from the174

observed value of Λ/L = 3.5. From the definition of Λ as the FWHM, the current should175

drop by a factor of 2 at |x| = Λ/2 or |x|/L = 1.75. In Figure 3b, the black curve defines176

the half-max for a given α and it can be seen that |x|/L = 1.75 corresponds to α ≈ 1. The177

KH vortex scale mapped to the ionosphere is therefore ∆i = 2αL = 72km. The KH vortex178

at the magnetopause boundary ∆m =
√
b∆i = 3100km ∼ 0.5RE, where b = Bi/Bm, Bm is179

the magnetic field magnitude at the magnetopause and Bi is the magnetic field magnitude180

at the ionosphere. Here, we have estimated the values of Bm = 22nT and Bi = 4.1×104nT181

from THEMIS and DMSP magnetic field observations, respectively. We note that not all182

DMSP SSUSI observations for KH events show clear bead structures such as the ones183

shown in Figure 1a, which may be attributed to non-optimal conditions for obtaining184

maximum current width and mapping the vortices from the magnetopause boundary to185

the ionosphere. Figure 4 suggests that electron flux (scaling as j‖∆φ = j2
‖/κ) is reduced186

by a factor of 2 outside of the range 0.27 < α < 2, which corresponds to a range from 800187

km to 1 RE. Structures outside this range would not be distinguishable from the ambient188

UV emissions in Figure 1a. The conditions favorable to auroral bead structures associated189

with Kelvin-Helmholtz events will be investigated in our follow up observational study.190
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At Saturn, the fragmentation of the main ring of emission into small-scale spots shown191

in (Figure 1b) is suggestive of a similar process. Typical auroral features are localized192

(500-2000km) auroral bright spots (10-30 kR) that map to the boundary layer. As shown193

in Figure 4 it is expected that the peak energy flux occurs for scales satisfying α = 0.75194

and in this regime, the width of the energy flux is Λε ≈ 1.6∆i. The most prominent scale195

associated with the bright spots is Λε ≈ 2000 km, which maps to ∆m ≈ 1 RS in the196

boundary layer (using
√
Bi/Bm ∼ 60, and is consistent with the size of K-H structures197

[Grodent et al., 2011; Masters et al., 2010, 2011]. Using the theory mentioned above, it198

should be possible to compare the expected auroral intensity vs scale (∆) to see if the199

distribution follows the expected trend, and to constrain L (ionospheric conductivity)200

based on the peak intensity.201

5. Discussion and Conclusions

The field-aligned current properties of a shear layer are compared with that of a vortex202

in Table 1. In the limit that ∆i � L the maximum current density has essentially203

the same behavior for shear layers and vortices and the current width scales with ∆i.204

The primary difference is in the limit ∆i � L. In this case, the shear layer becomes a205

discontinuity, but the current in the shear layer spreads out to the auroral scale, L and206

the current maximizes at j‖,max = κV0B0L
√
b. On the other hand, the vortex current207

does not broaden and the current is confined in the vortex structure. As the width of the208

vortex vanishes, ∆ → 0, the current scales with j‖,max = κV0B0∆m, and also vanishes.209

For the vortex, the maximum current occurs when ∆i = 1.5L and j‖,max = 0.57κV0B0L.210

For this scale of driver, the current width will be Λ = 2.8L and the width of the electron211

energy flux, Λε = 2.4L.212
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Two important conclusions can be drawn. First, if vortex structures are detected at the213

ionosphere, they basically map to structure in the boundary layer whereas shear layers only214

map if the scale is large enough. Secondly, the current density maximizes when the vortex215

size maps to the auroral scale length with roughly the same strength of current density216

as for the shear layer. As vortices become either larger or smaller than the optimal size,217

the current vanishes. This property suggests that it may be useful to obtain the statistics218

of spot size vs intensity from auroral images in planetary magnetospheres from which it219

may be possible to infer ionospheric properties knowing that currents maximize when the220

width is 1.5 L.221
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(a)

(b)

Figure 1. (a) DMSP SSUSI UV image showing auroral bead structure at 13-18 MLT

when Kelvin-Helmhotz vortex was simultaneously observed at the magnetopause bound-

ary on the dusk flank by THEMIS B on 2008 April 23 09:35-09:43 UT. (b) A compilation

of three polar views of the northern auroral emission at Saturn obtained with the FUV

channel of the Cassini-UVIS spectro-imager on August 26, 2008. The image provides a

global view of auroral structures obtained over 77 minutes with a spatial resolution of

200 km (adapted from Figure 1 of [Grodent et al., 2011]). A key feature is the cluster of

grapes structures, which vary in size and intensity. These structures are thought to be

associated with Kelvin-Helmholtz vortices.
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Figure 2. The model includes a driver in the magnetosphere associated with a velocity

vortex. The converging electric field of the slowly evolving vortex maps to the ionosphere

where it drives Pedersen currents, which are diverted along the magnetic field within the

vortex. For simplicity, the vortex is taken to be a cylindrically symmetric velocity ring of

characteristic size ∆m.
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Figure 3. The spatial profile of the current density as a function of x/L for different

values of α = ∆i/2L. Panels (a) and (b) show the current density and normalized current

density for the vortex solution. Panels (c) and (d) show current density and normalized

current density for the shear-layer solution. The black line on figures (b) and (d) show

the half width of the current density for the vortex solution. The yellow and magenta

dashed lines show the width based on Equations 23 and 24.
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Figure 4. Maximum energy flux (j2
‖/κ) vs scale of the vortex (α = ∆i/2L), mapped to

the ionosphere based on Equation 13. The energy flux peaks at α = 0.75. The flux drops

by a factor of 2 outside the range 0.27 < α < 2, and the energy flux drops by a factor of

10 outside the range 0.1 < α < 5.35. For the event shown in Figure 1, we can infer that

α ≈ 1, which is very close to the optimum size that maximizes the current and energy

flux.
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Table 1. Comparison of Vortex and Shear Currents

Vortex Shear Layer

j‖,max
2ΣPV0B0b

∆m + 2bL2/∆m

ΣPV0B0b

∆m +
√
bL

Λ(∆i � 2L) 2.35∆i 1.38L

Λ(∆i � 2L) 1.67∆i 1.76∆i

max
∆

(j‖,max) 0.57κV0B0

√
bL κV0B0

√
bL

∆i

(
max

∆
(j‖,max)

)
1.5L 0

Λ
(

max
∆

(j‖,max)
)

2.8L 1.38L
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