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Abstract

During each International Ocean Discovery Program (IODP) expedition a vast array of data, typically amounting to hundreds
of gigabytes to several terabytes of information, are collected from drill cores. These data include physical, chemical, and
magnetic properties and digital images collected continuously or every few centimeters along the cores using automated track
systems, as well as a variety of analyses conducted on discrete subsamples taken from the cores. Coring just since the start of
Expedition 349 in January 2014 has recovered over 50 km of core, resulting in a very large amount of data, most of which are
accessible from the IODP LIMS database. Some of the properties typically measured include P-wave velocity, density, magnetic
susceptibility, natural remanent magnetization, natural gamma radiation, and visible spectral reflectance. In addition, the
lithology of all cores is described based mainly on visual characteristics of the surface of the split cores, visual examination of
smear slides and thin sections, and compositional or mineralogical information derived from geochemical analyses. Our goal
in this study is to mine these data for interrelationships that would otherwise be difficult to assess given the way the data are
partitioned by specific property within the database. In particular, we extract basic lithologic information from the complex
array of descriptive information and then tie that information to all other observations in order to characterize the physical,

chemical, and magnetic properties of a myriad of lithologies.
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The coupling of track and sample data with lithology provides the means to:
- characterize the physical, magnetic, and chemical properties of common lithologies,
. investigate data connections that may be useful as proxies or for testing hypotheses,
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Shipboard Sedimentologists). Hence, a lithology such as a “nannofossil ooze with diatoms”is an ooze composed of >25% nannofossils and 10-25% diatoms. is to further process and clean the data from the 33 expeditions, add observations from other measurements, and then make the data available (as text files with tabular comma separated values) on an open access database, along with example scripts (e.g., like
the R, Python, and Microsoft Power Bl scripts used in this study) for analyzing and plotting the data. Methods we are developing will be used to expand the data mining efforts to other expeditions (once out of moratorium) and may eventually be applied for re-
Lithologies across multiple expeditions are merged into three main columns that give the lithology prefix, the principal (or dominant) lithology, and the al-time assessment of data as it is collected on future expeditions.
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