How neutral is quasi-neutral: Charge Density in the Reconnection Diffusion Region Observed by MMS

Matthew Argall¹, Jason Shuster², Ivan Dors¹, Kevin Genestreti³, Takuma Nakamura⁴, Roy Torbert¹, James Webster⁵, Narges Ahmadi⁶, Robert Ergun⁶, Robert Strangeway⁷, Barbara Giles², and James Burch³

¹University of New Hampshire ²NASA Goddard Space Flight Center ³Southwest Research Institute ⁴Austrian Academy of Sciences ⁵Rice University ⁶University of Colorado, Boulder ⁷University of California, Los Angeles

November 22, 2022

Abstract

Magnetic reconnection is responsible for the major reconfigurations of the magnetosphere that lead to energy transport and deposition into the ionosphere. The fast rate at which magnetic energy is converted to plasma kinetic energy is likely enabled by the polarization Hall electric field that results from the separation of ions and electrons at small scales. Signatures of Hall fields have played a key role in identifying and studying reconnection, but the density of accumulated charge has not been quantified. We use the 4-point measurements of the Magnetospheric Multiscale mission to compute the divergence of the electric field and present the first observations of charge density in the diffusion region of magnetic reconnection. We show how it ties into the Hall system, discuss measurement uncertainties, analyze quality estimates, and make comparisons to 2D simulations. Charge density is briefly presented for other phenomena, and ranges from 2% or less of the background plasma density for magnetic reconnection and electron-scale magnetic holes and peaks to upwards of 4% for electron phase space holes.

Matthew R. Argall¹ (matthew.argall@unh.edu), J. Shuster², I. Dors¹, K. J. Genestreti³, T. K. M. Nakamura⁴, R.B. Torbert^{1,3}, J. M. Webster⁵, N. Ahmadi⁶, R.E. Ergun⁶, R. J. Strangeway⁷, B. L. Giles⁸, J. L. Burch³ Los Angeles, Los Angeles, CA, USA; ⁸Goddard Space Flight Center, Greenbelt, MD, USA; ⁹Southwest Research Institute, San Antonio, TX, USA

