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Abstract

Magnetic reconnection is responsible for the major reconfigurations of the magnetosphere that lead to energy transport and

deposition into the ionosphere. The fast rate at which magnetic energy is converted to plasma kinetic energy is likely enabled by

the polarization Hall electric field that results from the separation of ions and electrons at small scales. Signatures of Hall fields

have played a key role in identifying and studying reconnection, but the density of accumulated charge has not been quantified.

We use the 4-point measurements of the Magnetospheric Multiscale mission to compute the divergence of the electric field and

present the first observations of charge density in the diffusion region of magnetic reconnection. We show how it ties into the

Hall system, discuss measurement uncertainties, analyze quality estimates, and make comparisons to 2D simulations. Charge

density is briefly presented for other phenomena, and ranges from 2% or less of the background plasma density for magnetic

reconnection and electron-scale magnetic holes and peaks to upwards of 4% for electron phase space holes.
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Charge Density in Other Contexts Error Analysis and Implications
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General Error Formula

Variance of ∇•E, ∇×E, -𝜕B/𝜕t: gradient approximated as average of unique s/c-to-s/c differences

<< 1.0 x 10-4 cm-3

= 46 nV/m2

E is sampled 
64x faster than 
B so averaging 

reduces the 
error by 8.

|𝛻×B| / |𝛻•B| |𝛻∙E| / |𝛻×E - 𝝏B/𝝏t|

Charge density and the Hall system

● Inflow: Ions and electrons ExB drift inward

● IDR: B curvature radius < ion gyroradius: RC < rion

● EDR: RC < re-

● Charge Density: Separation of IDR & EDR 

● Outflow: Plasma is energized and diverted

● Hall J: Created by ion and electron outflow

● Hall B: Formed from Hall currents

● Hall E: Due to charge separation

MMS Example 2017-07-17

● E-field in S/C frame is dominated by JxB

● Hall fields and currents detected 

● Ratio of charge density to background density is 1%

Multi S/C Perspective

Region I

● E- and B-fields diverge, J finite
● Entry into IDR
● Net positive charge density

Region II

● S/C differences intensify in EDR
● Entry into EDR
● Net negative charge density

Region III

● E- and B-fields converge
● Exit EDR then IDR
● Net positive charge density

E-Field at peak charge density is divergent

Comparison to Simulations

● Simulation matches qualitatively and 
quantitatively with the data
○ Positive (negative) in IDR (EDR)
○ |ρ/e|max = 1x10-5 cm-3

● Linear gradient ∇•E matches local 
measurements of ρ

● ρ is nonuniform across the tetrahedron

Asymmetric 
Reconnection

● Regions I, II, & III are the same as the symmetric case

● Hall fields and currents detected 

● Ratio of charge density to background density is 10-3%

Electron Phase-Space Hole

● ρ < 0 until all S/C are within the hole

● ρ > 0 inside the hole

● Suggests an electron sheath in vortex region

● Ratio of charge density to background density is 0.25%

Magnetic Hole

● In-situ observations match theory

○ ρ < 0 at edges of hole

○ ρ > 0 inside the hole

● Ratio of charge density to background density 
is 4%

Expected Errors

à la Curlometer Technique

Quality Estimate

Implications

Steady-State Reconnection

● ∂B/∂t = ∇xE = 0

● 0-th order diffusion region can be 
expressed as a scalar potential

○ E = -∇V

Wave Generation

● Quasi-neutrality assumptions simplify 
wave generation mechanisms

● Could serve as an additional means of 
carrying charge away from EDR
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Summary

● ρ ≠ 0 in the diffusion region

● ρ is supported by the Hall system

● Qualitative and quantitative agreement 
with simulations

● ρ/N varies by context

○ Symmetric reconnection: 1%

○ Asymmetric Reconnection 10-3%

○ Magnetic Hole: 0.25%

○ Phase-Space Hole: 4%

● Electron plasma and ion acoustic waves

○ Both affected by charge imbalance

○ Both have been observed during 
reconnection
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