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Abstract

Groundwater development will provide a more stable water source and enhance food security. Sustainable groundwater develop-
ment requires collecting and analyzing data produced at global and national levels and disseminating that data and knowledge
to end users such as States, NGOs, municipalities, businesses, and agropastoralists in a format that is useful for planning and
decision-making. In developing countries, analyzing in situ measurements to de can be challenging due to sparsity of data and
lack of tools and expertise. To address these problems we have developed a web-based geospatial tool that ingests in situ water
level measurements and performs temporal and spatial interpolation to build interactive animated maps, time series plots,
and long-term aquifer depletion curves. We use machine learning to find correlations among Earth observation data, such as
precipitation or soil moisture, with water level data and perform more accurate interpolation. This approach ensures that scarce
in situ data are used as effectively and accurately as possible. This tool helps water managers gain a better understanding of

groundwater resources and determine how aquifers are responding to groundwater development, droughts, and climate change.
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