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Abstract

Groundwater development will provide a more stable water source and enhance food security. Sustainable groundwater develop-

ment requires collecting and analyzing data produced at global and national levels and disseminating that data and knowledge

to end users such as States, NGOs, municipalities, businesses, and agropastoralists in a format that is useful for planning and

decision-making. In developing countries, analyzing in situ measurements to de can be challenging due to sparsity of data and

lack of tools and expertise. To address these problems we have developed a web-based geospatial tool that ingests in situ water

level measurements and performs temporal and spatial interpolation to build interactive animated maps, time series plots,

and long-term aquifer depletion curves. We use machine learning to find correlations among Earth observation data, such as

precipitation or soil moisture, with water level data and perform more accurate interpolation. This approach ensures that scarce

in situ data are used as effectively and accurately as possible. This tool helps water managers gain a better understanding of

groundwater resources and determine how aquifers are responding to groundwater development, droughts, and climate change.
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Abstract
Sustainable groundwater development requires collecting and analyzing data produced
at global and national levels and disseminating that data to end users in a format that is
useful for planning and decision-making. In developing countries, analyzing in situ
measurements to be can be challenging due to sparsity of data and lack of tools and
expertise. To address these problems we have developed a web-based tool that ingests in
situ water level measurements and performs temporal and spatial interpolation to build
interactive animated maps, time series plots, and long-term aquifer depletion curves. We
use machine learning to find correlations between Earth observation data with water
level data to enhance interpolation accuracy. This tool helps water managers gain a
better understanding of groundwater resources and determine how aquifers are
responding to groundwater development, droughts, and climate change.

Methodology

The inputs to our tool include include well locations, historical water level measurements, 
and well information such as the wellhead elevation. The tool can directly ingest data 
from existing databases or for regions where such databases may not exist, data can be 
uploaded and updated using simple spreadsheets or comma separated value (CSV) text 
files. The in-situ water level measurements are combined with Earth observations to 
generate rasters and time series illustrating how groundwater resources are changing 
over time.

To generate a set of maps for a selected time range, we use 
PCHIP or multi-linear regression/extreme learning machine 
to interpolate the well data in time to estimate water levels 
at the selected time intervals using correlated secondary 
information, such as precipitation or soil moisture from 
Earth observation data. After temporal interpolation, we 
spatially interpolate water level data to generate a raster 
water level map for each time step. The resulting raster 
maps are stored in netCDF files that are archived on a 
THREDDS server for distributed access. 

For a more holistic assessment of storage depletion for a given aquifer, we multiply the 
drawdown rasters for each time interval by the aquifer area and an average storage 
coefficient and aggregate the results over time to generate a storage depletion curve. 
This provides a useful tool for water managers to assess long-term conditions. The results 
can be incrementally updated as new in situ data is collected and imported to the system.

This work is being funded by the following NASA 
grants:

An AmeriGEOSS Cloud-based Platform for Rapid 
Deployment of GEOGLOWS Water and Food 
Security Nexus Decision Support Apps 
(80NSCC18K0440)”

Geospatial Information Tools That Use Machine-
Learning to Enable Sustainable Groundwater 
Management in West Africa  (80NSSC20K0155)

For more 
information:

Norm Jones
njones@byu.edu

The results are 
visualized in a web app. 
The user first selects a 
region (state), then a 
subregion (aquifer) and 
then the data product 
to visualize (water level, 
depth to water table, or 
drawdown).

The rasters are animated 
over time using a Leaflet 
animation plug-in. Time 
series are also displayed for 
selected well locations.

Monitoring wells are often 
samples at irregular or 
sporadic intervals. It is not 
uncommon for monitoring 
wells to be abandoned, or to 
have quite brief periods of 
record. We may have only 
one or two years of 
information from a well.

How can we use machine 
learning to best make use of 
what little data we have?

Well Time series often include 
large gaps in collected data

Some wells may only have data 
for one or two years
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Normalize 𝑨 and 𝑌
Determine 𝛽 such that 𝑒 is minimized using least 
squares

𝑨0𝑌 = [𝑨0𝑨 + 𝜆𝑰] 𝛽

𝑌 = 𝑨𝛽 + 𝑒 RESULTS
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Extreme Learning Machine

GLDAS Soil Moisture Liquid Water Equivalent Thickness (cm)

𝑌 ⃑=𝑾𝟐∗𝜎(𝑾𝟏 𝑿+𝑏 ⃑)
𝑿 = input variables
𝑾𝟏 = random values
𝑾𝟐 = coef. fitted via least squares
𝜎 =rectifier function
𝑏 ⃑ =  bias vector

Groundwater levels are 
correlated with soil moisture 
models, drought indicators, and 
other Earth observations (Palmer 
Drought Severity Index, GLDAS 
Root Zone Soil Moisture, GRACE 
Total Water Storage, etc.

We trained a neural 
network using an 
extreme learning 
machine algorithm to 
predict groundwater 
levels from correlated 
Earth observations. 
Results were 
relatively accurate in 
areas not subject to 
excessive 
groundwater 
pumping.


